
Journal of ELECTRICAL ENGINEERING, VOL. 54, NO. 1-2, 2003, 13–21

NEURAL NETWORK MODEL FOR
SCALAR AND VECTOR HYSTERESIS

Miklós Kuczmann — Amália Iványi
∗

The Preisach model allows to simulate the behaviour of magnetic materials including hysteresis phenomena. It assumes

that ferromagnetic materials consist of many elementary interacting domains, and each of them can be represented by a
rectangular elementary hysteresis loop. The fundamental concepts of the Preisach model is that different domains have

some probability, which can be described by a distribution function, also called the Preisach kernel. On the basis of the

so-called Kolmogorov-Arnold theory the feedforward type artificial neural networks are able to approximate any kind of

non-linear, continuous functions represented by their discrete set of measurements. A neural network (NN)based scalar

hysteresis model has been constructed on the function approximation ability of NNs and if-then type rules about hysteresis

phenomena. Vectorial generalization to describe isotropic and anisotropic magnetic materials in two and three dimensions

with an original identification method has been introduced in this paper. Good agreement is found between simulated and

experimental data and the results are illustrated in figures.

K e y w o r d s: hysteresis characteristics, Everett surface, vector hysteresis, feedforward type neural networks, backprop-

agation training method.

1 INTRODUCTION

Simulation of hysteresis characteristics of magnetic
materials needs to be implemented into electromagnetic
field simulation software tools to predict the behaviour of
different types of magnetic equipment. Hysteresis charac-
teristics of magnetic materials can be described by a non-
linear, multivalued relation between the magnetic field in-
tensity H(t) and the magnetization M(t) . That is called
the hysteresis operator. Many assumptions and hypothe-
ses have been developed since the last period of magnetic
research, as the classical Preisach model [1, 2, 3, 11], the
Jiles-Atherton model [1], the Stoner-Wohlfarth model [5]
and some new approaches based on NNs [7, 8, 9].

A mathematical hysteresis operator with continuous
output built on the function approximation ability of
feedforward type NNs and its vectorial generalization
for isotropic and anisotropic magnetic materials in two
and three dimensions have been introduced in this pa-
per [12–18]. The applicability of the developed method is
illustrated in figures.

2 NEURAL NETWORKS FOR

FUNCTION APPROXIMATION

NNs are parallel information-processing systems, im-
plemented by hardware or software. Using the technique
of NNs is a quite new and very attractive calculating
method, moreover a powerful mathematical tool, because
it may be applied to solve problems which conventional

methods on traditional computers find difficulties to work
out [10].

One of the wide pallets of applications of NNs is
the function approximation, based on the theorem of
Kolmogorov-Arnold. This theorem can be formulated as
follows. For each positive integer n , there exist 2n+1 con-
tinuous functions Φ1,Φ2, . . . ,Φ2n+1 , mapping [0, 1] into
the real line, and having the additional property that, for
any continuous function f(x1, x2, . . . , xn) of n real vari-
ables, there is a continuous function Ψ of one variable on
[0, n] into the real line such that

f(x1, x2, . . . , xn) =

2n+1
∑

q=1

Ψ

{ n
∑

p=1

Φq(xp)

}

(1)

for all values of x1, x2, . . . , xn in the interval [0, 1] . There
has not been any rule how to choose the functions Ψ
and Φq , but there is a lot of latitude. Equation (1) can
be represented by a feedforward type NN with at least
two hidden layers with non-linear activation functions, so
this type of NNs can be applied for universal function
approximation.

Feedforward type NNs consist of elementary process-
ing elements (neurons) collected into layers. The output
of an individual neuron y is the output of a non-linear,
differentiable activation function y = ψ(s) , where s is the

linear combination of the input values x , s = w
>
x + b ,

where w and b are the weight coefficients and the bias of
the neuron, moreover ψ(·) is typically the bipolar sigmoid

activation function. Neurons in the jth layer are con-
nected into the neurons in the (j + 1)th layer by weights
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Fig. 1. Structure and training of feed-forward type NNs

Fig. 2. A set of the first order reversal hysteresis curves

W . If the transfer function of the individual neurons
has been chosen beforehand, then the only one degree of
freedom left is the setting of weights W . These weights
can be determined by a convergent, iterative algorithm,
called training process to minimize a suitably defined er-
ror (mean square error, MSE, sum squared error, SSE,
etc) between the desired output value measured on a real
plant and the answer of the network. Training or adapta-
tion is the most important property of NNs, so networks
are able to modify their behaviour, to infer from imper-
fect, noisy and incomplete data sets. The aim of training
algorithm is to modify the weights of the NN, to find an
appropriate model, to create a functional relationship be-
tween input-output training patterns. Training patterns
can be collected in input-output pairs in the general form

τ (N) = {(xk, tk) , k = 1, . . . , N} , where tk = f(xk) and
N is the number of measured points.

Mathematically, the training method is a minimization
task that can be written for MISO (multi input single
output) systems as

W
∗ : min

W

1

N

N
∑

n=1

(

tn −Ψ(xn,W)
)2
, (2)

where dn = Ψ(xn,W) is the output of NN and W is the
weight matrix of the network. Calculation of the mini-
mum value of the criterion function C(λ) is realized by an
iterative algorithm, ∂C(λ)/∂W = ∇ [C(λ)] → 0, where
λ is the normalized sum of the difference between the de-
sired value and the output of the NN. The weights are
adapted in every iteration steps k as

W(k + 1) =W(k) + ∆W(k) . (3)

The value of ∆W(k) can be formulated in many ways.
The most generally applied training method is the back-
propagation algorithm, but we used a modified, faster
procedure, the Levenberg-Marquardt optimization
method, which uses the following adaptation rule:

∆W = −
(

J>J + αI
)−1

J>α , where α is an error vector,

α is a the Levenberg parameter, I is the unit matrix and
J is the Jacobian matrix of derivatives of each error to
each weight. The general structure of feedforward type
NNs and the supervised training algorithm can be seen
in Fig. 1.

A set of experimental data τ (N) , measured on a real
specimen must be used to execute the training algo-
rithm. In our investigations we applied the classical scalar
Preisach model for generating the training data set [2, 3].

3 THE SCALAR HYSTERESIS MODEL

The developed NN model of scalar hysteresis charac-
teristics consists of a system of two feedforward type NNs
with bipolar sigmoid transfer functions and a heuristic if-
then type knowledge-base about the hysteresis phenom-
ena.

Let us suppose that the virgin curve and a set of the
first order reversal branches are available. It has been
found that it is enough to use only the descending (or
ascending) branches (Fig. 2) because of the symmetry of
hysteresis characteristics. Hysteresis curves are normal-
ized with the magnetization value in saturation state Ms

and the appropriate magnetic field intensity, denoted by
Hs . In practice, these data sets can be replaced by mea-
surements [12–18].

Hysteresis characteristics is a multivalued function, it
results in difficulties when using feedforward type NNs.
If a new dimension is introduced to the measured and
normalized transition curves, multivalued function can
be represented by a single-valued surface. The down-
grade part of hysteresis characteristics can be described

at a turning point H
(desc)
tp with a negative real param-

eter ξ(desc) , determined as ξ(desc) = −
(

1 + H
(desc)
tp

)/

2.

The effect of this pre-processing technique can be seen in
Fig. 3 for descending curves. After pre-processing, func-
tion approximation can be worked out by feedforward
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Fig. 3. First order reversal branches after preprocessing

Fig. 4. Block representation of the scalar neural network model of
hysteresis

type NNs trained by the Levenberg-Marquardt back-
propagation method [10]. The anhysteretic curve with 41
training points can be approximated by a NN with 8 neu-
rons in one hidden layer, and the pre-processed first or-
der reversal branches (about 500–600 data pairs) are ap-
proached by a NN with 7, 11 and 6 processing elements in
3 hidden layers. Training of NNs takes about twenty min-

utes (MSE = 5×10−6 ) on a Celeron 566 MHz computer
(192 Mbyte RAM), using the Neural Network Toolbox of
MATLAB.

Applying NNs, relationship between magnetization M
and magnetic field intensity H can be performed in ana-
lytical formula, M = H{H} .

Memory mechanism of magnetic materials is realized
by an additional algorithm based on heuristics. It is the
knowledge-base for the properties of hysteresis phenom-
ena. Magnetization at a simulation step responded by the
NN is constructed on the actual value of the magnetic
field intensity, the appropriate value of parameter ξ and
the set of turning points. Turning points in the ascend-
ing and descending branches are stored in the memory,

which is a matrix with division [Htp,Mtp, ξ]
>
. Turning

points can be detected by evaluation of a sequence of
{Hk−1, Hk} generated by a tapped delay line (TDL). Af-
ter detecting a turning point Htp = Hk−1 and storing it
in the memory, the aim is to select an appropriate tran-
sition curve for the detected turning point calculated by
the regula falsi method.

Conditions are collected in the selection rules, to
choose the suitable NN. After detecting a turning point,
generally denoted by HSTART = Htp , the algorithm for
minor loops can be summarized as follows.

If MATRIX(desc) (MATRIX(asc) ) has more columns
and magnetic field intensity is increasing (decreasing)

at the kth simulation step, the actual minor loop must

be closed at the last stored value of HGOAL = H
(desc)
tp

(HGOAL = H
(asc)
tp ) which can be found in the last col-

umn of MATRIX(desc) (MATRIX(asc) ). Denote this
column of the appropriate MATRIX with C . The value
of normalized magnetization Mk responded by the neural

model at HGOAL must be equal to MGOAL = M
(desc)
tp

(MGOAL = M
(asc)
tp ) in the Cth column of the accord-

ing MATRIX . It is the condition for closing the mi-
nor loops, it can be satisfied by the correction function

Fig. 5. Comparison of neural scalar model and the classical Preisach model
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Fig. 6. Definition of directions in two dimensions

η = η(H,M) , where η
(

HSTART ,MSTART

)

= MGOAL −

M
(NN)
GOAL and decreasing linearly. After closing a minor

loop, the appropriate columns of MATRIX must be
erased.

The block representation of the model can be seen in
Fig. 4.

The experimented NN model of hysteresis can be used
as a mathematical, continuous scalar model to simulate
the behaviour of magnetic materials. Two kinds of hys-
teresis characteristics predicted by the developed model
have been compared with the results of the Preisach
model as plotted in Fig. 5.

Accommodation property also can be simulated, when
Hk = Hk + αMk−1 is applied as an input of the model,
where α is the moving parameter [1, 11].

In electromagnetic field calculation software it is
favourable to use the Newton-Raphson iteration tech-
nique. It requires the value of differential susceptibil-
ity, χdiff = dM/dH , which can be performed in an-
alytical form by the chain rule when applying NNs,
dM/dH = dH{H}/dH .

4 ISOTROPIC VECTOR HYSTERESIS MODEL

The vector NN model of magnetic hysteresis is con-
structed as a superposition of scalar NN models in given
directions eϕ [1, 6, 11]. The magnetization vector M can
be expressed in two dimensions as

M(t) =

∫ π/2

−π/2

eϕH{Hϕ}dϕ , (4)

where Mϕ = H{Hϕ} is the magnetization in the direc-
tion eϕ , Hϕ = |H | cos(ϑH − ϕ) and ϑH is the direc-
tion of magnetic field intensity vector H . The functions
H{Hϕ} depend on the polar angle ϕ if the magnetic ma-
terial presents anisotropy, otherwise it is ϕ -independent.
Firstly, isotropic case has been analyzed. In computer re-
alization it is useful to discretize the interval [−π/2, π/2]
(x ≥ 0) as ϕi = −π/2 + (i − 1)π/n , where i = 1, . . . , n
(Fig. 6) and n is the number of directions.

In three dimensions a similar expression can be ob-
tained,

M(t) =

∫ π/2

−π/2

∫ π/2

−π/2

eϑ,ϕH{Hϑ,ϕ}dϑdϕ . (5)

where

Hϑ,ϕ = [ a1 a2 a3 ]ϑ,ϕ [Hx Hy Hz ]
>
, (6)

and the directions are given as a = a1e1 + a2e2 + a3e3 ,
|a| = 1. Directions of the three dimensional model are
generated by the icosahedron. The angles ϕ and ϑ are
measured from the x -axis and the x–y plane.

After measuring the Everett surface in the x direc-
tion, the following expression can be obtained between
the measured scalar Everett surface F (α, β) and the un-
known vector Everett function E(α, β) :

F (α, β) ∼=

n
∑

i=1

cosϕiE(α cosϕi, β cosϕi) . (7)

Fig. 7. Illustration for the identification process
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Fig. 8. First order reversal curves of hysteresis and the Everett

surface measured in the x direction

Fig. 9. The resulted identification in two dimensions for isotropic

case

Fig. 10. The resulted identification in three dimensions for isotropic
case

In an isotropic case the vector Everett surface is unique

for all directions. Expression (7) can be solved numeri-

cally, the algorithms is given as follows. The formulation

(7) can be rewritten in the form

F (αk, βl) ∼=

n1
∑

i1=1

cosϕi1 E(αk cosϕi1 , βl cosϕi1)

+

n2
∑

i2=1

cosϕi2 E(αk cosϕi2 , βl cosϕi2) , (8)

where αk = 2
(

k− (N +2)/2
)

, βl = 2
(

(N +2)/2− l
)/

N ,
k, l = 1, . . . , N + 1 and the size of the Everett table is

(N+1)× (N+1). Expression (8) contains n1 known and

n2 unknown points in the Everett surface (Fig. 7). The

first sum contains known values of the Everett function,

E(αk cosϕi1 , βl cosϕi1) because αj−1 ≤ αk cosϕi1 ≤ αj
and βm ≤ βl cosϕi1 ≤ βm−1 (m − 1 > l , j < k ). The

second sum contains the unknown value of the vector

Everett surface.

If βl = 0, l = 1, . . . , N + 1 and assuming linear
interpolation in the surface E(α, β) , the

F (αk, 0) =

n1
∑

i1=1

(

cosϕi1
(

E(αj−1, 0) +
(

E(αj , 0)

− E(αj−1, 0)
)

(αk cosϕi1 − αj−1)
/

(αj − αj−1)
)

)

+E(αk−1, 0)
(

(1 + bk)c1 − akc2
)

+ E(αk, 0)(akc2 − bkc1) , (9)

formulation can be got, where c1 =
∑n2

i2=1 cosϕi2 , c2 =
∑n2

i2=1 cos
2 ϕi2 , ak = αk/(αk − αk−1) , bk = αk−1/(αk −

αk−1) and j ≤ k − 1. From (9), value of E(αk, 0) can
be expressed. A similar relation can be obtained, when
αk = βk .

If β 6= 0, a similar mathematical formulation can be
obtained. Firstly, let us assume that (αk cosϕi1 , βlcosϕi1)
is bounded by known points A(x1, y1, z1) , B(x2, y2, z2)
and C(x3, y3, z3) in the vector Everett surface. The value
of the Everett surface in this co-ordinate can be ex-
pressed assuming linear interpolation in the given triangle
(A,B,C) . Unknown values can be expressed after some
simple mathematical formulations using linear interpola-
tion in a triangle.

Because of symmetry of the hysteresis characteristics,
it is enough to calculate the half of the Everett surface.

First order reversal curves of vector NN model can be
calculated from the identified vector Everett surface as
Mαβ =Mα − 2E(α, β) , where Mα is a reversal magneti-
zation point in the major hysteresis loop according to the
magnetic field intensity α , and Mαβ is a magnetization
value in a reversal curve starting from the reversal point
(α,Mα) . The reversal curves can be approximated by the
scalar NN model.

Let us assume that the measured hysteresis curve and
the corresponding Everett surface are given in the x di-
rection as plotted in Fig. 8.

Simulation results for reversal curves obtained from
the identified Everett surface in two dimensions (20 di-
rections) and three dimensions (24 directions) can be seen
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Fig. 11. Identification results in two dimensions for anisotropic
case, (a) in the easy axis and (b) in the hard axis

in Fig. 9 and Fig. 10. Experimental results are denoted by
points, hysteresis characteristics given by the NN model
is denoted by the dashed line.

5 ANISOTROPIC VECTOR

HYSTERESIS MODEL

In an anisotropic case the scalar Everett surface is
depending on the direction ϕ [1, 6, 11]. It is difficult to
take into account the angular dependence of the Everett
surface in the identification task, therefore the Fourier
expansion has been applied, so the same identification
procedure can be used as in the isotropic case. In two
dimensions, the Everett surface F (ϕ) = F (α, β, ϕ) is π -
periodic with respect to ϕ and an even function F (−ϕ) =
F (ϕ) if ϕ = 0 and ϕ = π/2 represents the easy axis and
the hard axis. Let us assume that the Everett functions
are available in n directions in the interval [0, π/2] from
measurements using the Epstein’s frame. The angular
dependence of the Everett surface can be handled by the
Fourier expansion as

F (ϕ) ∼=
∑

k

Ck cos(2kϕ) , (10)

where function Ck = Ck(α, β) is the k
th harmonic com-

ponent, which is independent of the angle ϕ . Using the

trapezoidal formula for integration, the Fourier compo-
nents can be calculated as

C0 =
∆ϕ

π

(

(

F (0) + F (π/2)
)

+2

n−1
∑

i=1

F (ϕi)
)

(11)

and Ck =
2∆ϕ

π

(

(

F (0) + F (π/2)(−1)k
)

+2

n−1
∑

i=1

F (ϕi) cos(2kϕi)
)

(12)

where ∆ϕ = π/
(

2(n − 1)
)

. The same identification pro-
cess can be applied as in the isotropic case for the Fourier
harmonics,

Ck(α, β)∼=

n′

∑

i=1

cosϕi cos(2kϕi)Ek(α cosϕi, β cosϕi), (13)

where ϕi = −π/2 + (i− 1)π/n
′ and n′ = 2(n− 1) is the

number of directions. In this study two angular harmonics
(k = 0, 1) have been used.

In three dimensions a similar process can be applied.
Assuming the same conditions as in 2D model, the Ev-
erett surface F (ϑ, ϕ) = F (α, β, ϑ, ϕ) also can be repre-
sented by a Fourier expansion with respect to ϑ and ϕ
in the form

F (ϑ, ϕ) ∼=
∑

n

∑

m

Cmn cos(2mϑ) cos(2nϕ) , (14)

where function Cmn = Cmn(α, β) is the harmonic com-
ponent, and can be calculated as

C00 =
4

π2

∫ π/2

0

∫ π/2

0

F (ϑ, ϕ)dϑdϕ ∼=
∆ϑ∆ϕ

π2

(

(

F (0, 0)

+ F (π/2, 0) + F (0, π/2) + F (π/2, π/2)
)

+2

M−1
∑

k=1

(

F (ϑk, 0)

+ F (ϑk, π/2)
)

+2

N−1
∑

l=1

(

F (0, ϕl) + F (π/2, ϕl)
)

+ 4

M−1
∑

k=1

N−1
∑

l=1

F (ϑk, ϕl)
)

(15)

and

Cmn =
8

π2

∫ π/2

0

∫ π/2

0

F (ϑ, ϕ) cos(2mϑ) cos(2nϕ)dϑdϕ

∼=
2∆ϑ∆ϕ

π2

(

(F (0, 0) + F (π/2, 0)(−1)m + F (0, π/)(−1)n

+ F (π/2, π/2)(−1)m+n)
)

+ 2

M−1
∑

k=1

(

F (ϑk, 0) + F (ϑk, π/2)(−1)
n
)

cos(2mϑk)

+ 2

N−1
∑

l=1

(

F (0, ϕl) + F (π/2, ϕl)(−1)
m
)

cos(2nϕl)

+ 4

M−1
∑

k=1

N−1
∑

l=1

F (ϑk, ϕl) cos(2mϑk) cos(2nϕl) , (16)
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Fig. 12. Identification results in three dimensions for anisotropic case, (a) in the x, (b) in the y and (c) in the z directions

Fig. 13. Simulated H and M loci for different conditions in isotropic case

where ϑ ∈ [0, π/2] , ϕ ∈ [0, π/2] ∆ϑ = π/
(

2(M −1)
)

and

∆ϕ = π/
(

2(N − 1)
)

. In this case M ×N measurements
must be used.

The identification process must be applied for the fol-
lowing expression:

Cmn(α, β) ∼=

n′

∑

i=1

cosψi cos(2mϑi) cos(2nϕi)

× Emn(α cosψi, β cosψi) , (17)

where n′ is the number of directions generated by the
icosahedron and ψi is the angle between the i

th direction
given by the icosahedron and the x -axis. In this study
two angular harmonics according to the angles ϑ and ϕ
(m,n = 0, 1) have been used.

After the identification process, the Everett surfaces in
the given directions can be calculated similarly to the ex-
pression (10) in two dimensions or equation (14) in three
dimensions. Knowing the Everett surfaces, first order re-
versal curves can be generated and NNs can be trained.

The introduced methods have been applied to simulate
anisotropic magnetic materials. In two dimensions ten
different scalar hysteresis characteristics were available,
generated by the elliptical interpolation function

F (ϕ) = F 2
x cos

2 ϕ+ F 2
y sin

2 ϕ , (18)

where F (ϕ) = F (α, β, ϕ) and Fx = Fx(α, β, ϕ) , Fy =
Fy(α, β, ϕ) are the known Everett surfaces in the rolling
and transverse directions and ϕ ∈ [0, π/2] [4]. In three
dimensions 5 × 5 scalar hysteresis characteristics have
been assumed, constructed by the expression

F (ϑ, ϕ) = cos2 ϑ(F 2
x cos

2 ϕ+F 2
y sin

2 ϕ)+F 2
z sin

2 ϑ , (19)

where F (ϑ, ϕ) = F (α, β, ϑ, ϕ) , and Fx = Fx(α, β, ϑ, ϕ) ,
Fy = Fy(α, β, ϑ, ϕ) , Fz = Fz(α, β, ϑ, ϕ) are the known
Everett surfaces in the x , y and z axis. In practice, these
data sets can be replaced by measurements with the usual
Epstein’s frame.

Simulation results for reversal curves obtained from
the identified Everett surface in two dimensions (18 di-
rections) and three dimensions (9 directions) can be seen
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Fig. 14. Simulated H and M loci for different conditions in anisotropic case

Fig. 15. Induced anisotropy in isotropic material

in Fig. 11.a,b and Fig. 12.a, b, and c (trivial conditions in
the directions of x , y and z axes). Experimental results
are denoted by points, hysteresis characteristics given by
the NN model is denoted by the dashed line.

6 SOME PROPERTIES OF

THE NN VECTOR MODEL

Applying rotational magnetic field intensity with dif-
ferent amplitude and with linearly increasing amplitude,
the output of the 2D vector NN isotropic model has been
plotted in Fig. 13. a, b and c. The specimen is magne-
tized to a given value in the rolling direction, and then
the magnetic field intensity is rotated keeping its magni-
tude constant (Fig. 13. a and b). In Fig. 13.c, the vec-
tor of magnetization gradually approaches the regime of
uniform rotation. The variation of the circular polarized
magnetic field intensity is the following:

H(t) =
{

Hx(t) =Hm cos(ωt) , Hy(t) =Hm sin(ωt)
}

, (20)

where Hm is the amplitude of magnetic field intensity
and ω is the angular velocity [11]. The results for 2D

anisotropic vector model under the same conditions can

be seen in Fig. 14. a, b and c. These figures highlight the

anisotropic material behaviour.

Let us suppose that the magnetic field intensity was

first increased along the y direction of the isotropic mag-

netic material to a given value, and then it was decreased

to zero. This process results in remanent magnetization

in y direction. After reaching Hy zero, magnetic field in-

tensity is increased along the x direction. The orthogonal

remanent component of magnetization can be reduced as

it can be seen in Fig. 15 for different remanent values. It

is an anisotropy induced by the magnetic prehistory of

the material [4, 11].

The position of the vector of magnetization and the

hysteresis loops along the x and y -axis for a linear ex-

citation in anisotropic case are plotted in Fig. 16 a, b

and c.

7 CONCLUSIONS

A NN model for magnetic hysteresis based on the func-

tion approximation ability of NNs has been experimented.

The anhysteretic magnetization curve and a set of the

first order reversal branches must be measured on a real

magnetic material. Introducing an additional parameter

ξ solves a fundamental problem of simulating hystere-

sis characteristics, that is the multivalued property. The

magnetization becomes a single valued function of two

variables and an if-then type knowledge-base can be used

for simulating different phenomena of magnetic materials.

This method has been generalized in two and three

dimensions with an original identification process. The

vector model is based on the Mayergoyz type technique,

but identical scalar models are constructed on the iden-

tified scalar NN model of hysteresis.
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Fig. 16. Anisotropic magnetic material in linear excitation, (a) vector of H and M, (b) hysteresis characteristics in the x-axis and (c) in
the y-axis
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