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STATIC OUTPUT FEEDBACK ROBUST
CONTROLLER DESIGN VIA LMI APPROACH

Vojtech Veselý
∗

The paper addresses the problem of the robust output feedback controller design with a guaranteed cost and parameter
dependent Lyapunov function quadratic stability for linear continuous time polytopic systems. The proposed design methods
lead to an iterative LMI based algorithm. Numerical examples are given to illustrate the design procedure.
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1 INTRODUCTION

During the last decades numerous papers dealing
with the design of static robust output feedback control
schemes to stabilize uncertain systems have been pub-
lished (Benton and Smith, 1999; Crusius and Trofino,
1999; El Ghaoui and Balakrishnan, 1994; Geromel, De
Souza and Skelton, 1998; Henrion, Tarboriech and Gar-
cia, 1999; Kose and Jabbari, 1999; Li Yu and Jian Chu,
1999; Mehdi, Al Hamid and Perrin, 1996; Pogyeon, Young
Soo Moon and Wook Hyun Kwon, 1999; Tuan, Apkarian,
Hosoe and Tuy, 2000; Veselý, 2002). Various approaches
have been used to study the two aspects of the robust
stabilization problem, namely conditions under which the
linear system described in state space can be stabilized
via output feedback and the respective procedure to ob-
tain a stabilizing or robustly stabilizing control law.

The necessary and sufficient conditions to stabilize the
linear continuous time invariant system via static output
feedback can be found in (Kučera, and De Souza, 1995;
Veselý, 2001). In the above and other papers, the authors
basically conclude that despite the availability of many
approaches and numerical algorithms the static output
feedback problem is still open.

Recently, it has been shown that an extremely wide ar-
ray of robust controller design problems can be reduced
to the problem of finding a feasible point under a Bi-
affine Matrix Inequality (BMI) constraint. The BMI has
been introduced in (Goh, Safonov and Papavassilopoulos,
1995). In this paper, the BMI problem of robust controller
design with output feedback is reduced to a LMI problem
(Boyd et al , 1994).The theory of Linear Matrix Inequali-
ties has been used to design robust output feedback con-
trollers in (Benton and Smith, 1999; Crusius and Trofino,
1999; El Ghaoui and Balakrishnan, 1994; Henrion, Tar-
boriech and Garcia, 1999; Li Yu and Jian Chu, 1999;
Tuan, Apkarian, Hosoe, and Tuy, 2000; Veselý, 2001).
Most of the above works present iterative algorithms in
which a set of LMI problems are repeated until certain

convergence criteria are met. The V-K iteration algorithm
proposed in (El Ghaoui and Balakrishnan, 1994) is based
on an alternative solution of two convex LMI optimiza-
tion problems obtained by fixing the Lyapunov matrix or
the gain controller matrix. This algorithm is guaranteed
to converge, but not necessarily, to the global optimum
of the problem depending on the starting conditions.

The main criticism formulated by control engineers
against modern robust analysis and design methods
for linear systems concerns the lack of efficient easy
to use and systematic numerical tools. This is espe-
cially true when analyzing robust stability as affected
by highly structured uncertainty with BMI, for which
no polynomial-time algorithm has been proposed so far
(Henrion, Alzelier and Peaucelle, 2002).

This paper is concerned with the class of uncertain
linear systems that can be described as

ẋ(t) = (A0 + A1θ1 + · · · + Apθp)x(t) (1)

where θ = [θ1 . . . θp] ∈ Rp is a vector of uncertain and
possibly time varying real parameters.

The system represented by (1) is a polytope of linear
affine systems which can be described by a list of its
vertices

ẋ(t) = Acix(t), i = 1, 2, . . . , N (2)

where N = 2p .

The system represented by (2) is quadratically stable
if and only if there is a common Lyapunov matrix P > 0
such that

A⊤

ciP + PAci < 0, i = 1, 2, . . . , N . (3)

A weakness of quadratic stability is that it guards against
arbitrary fast parameter variations. As a result, this test
tends to be conservative for constant or slow-varying
parameters θ , for polytopic systems. To reduce conser-
vatism when (1) is affine in θ and the parameters of sys-
tem are time invariant, in (Gahinet, Apkarian and Chilali,
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1996) the parameter-dependent Lyapunov functions P (θ)
has been used in the form

P (θ) = P0 + θ1P1 + · · · + θpPp . (4)

Robust controller design with guaranteed cost and affine
quadratic stability has been proposed in [14]. Other types
of parameter-dependent Lyapunov functions have been
proposed in [2] for the stability analysis of linear dis-
crete time systems and for the analysis and the design
of continuous time systems with affine type uncertainties
in (Shaked, 2001; Henrion, Alzelier and Peaucelle, 2002;
Takahashi, Ramos, and Peres, 2002). In this paper, we
pursue the idea of (Takahashi, Ramos, and Peres, 2002)
and introduce a new robust controller LMI design proce-
dure with less conservative results and guaranteed cost.
The proposed approach allows to reduce important class
of BMI problems to LMI. For guaranteed cost and sys-
tem (2) this leads to an iterative LMI based algorithm.
The proposed design procedure guarantees with suffi-
cient conditions parameter dependant Lyapunov function
quadratic stability (PDQS) for closed loop systems.

The paper is organized as follows. In Section 2 the
problem formulation and some preliminary results are
brought. The main results are given in Section 3. In Sec-
tion 4 the obtained theoretical results are applied. We
have used the standard notation. A real symmetric pos-
itive (negative) definite matrix is denoted by P > 0
(P < 0). Much of the notation and terminology fol-
lows the references of (Kučera, and De Souza, 1995; and
Gahinet, Apkarian and Chilali, 1996).

2 PRELIMINARIES AND

PROBLEM FORMULATION

We shall consider the following affine linear time in-
variant continuous time uncertain systems

ẋ(t) = A(θ)x(t) + B(θ)u(t) ,

y(t) = C(θ)x(t) , x(0) = x0

(5)

where x(t) ∈ Rn is the plant state; u(t) ∈ Rm is the

control input; y(t) ∈ Rl is the output vector of system;
A(θ), B(θ), C(θ) are matrices of appropriate dimensions
and

A(θ) = A0 + A1θ1 + · · · + Apθp ,

B(θ) = B0 + A1θ1 + · · · + Bpθp ,

C(θ) = C0 + C1θ1 + · · · + Cpθp .

Note that, in order to keep the polytope affine property,
the matrix B(θ) or C(θ) must be precisely known. In the
following we assume that C(θ) is known and equal to ma-
trix C . In general, a polytope description of uncertain-
ties results in a less conservative controller design than
other characterizations of uncertainty [4]. However, as the
number of uncertain parameters increases, the number of
vertices increases exponentially, and the design time in-
creases exponentially too. The system represented by (5)
is a polytope of linear systems. The linear matrix inequal-
ity approach requires that system (5) be described by a

list of its vertices, ie, in the form

{(Av1, Bv1, Cv1), . . . , (AvN , BvN , CvN )} . (6)

Consequently, the system (6) is static output feedback
quadratically stabilizable if and only if there is a Lya-
punov matrix P > 0 and a feedback matrix F such that

(Avi + BviFCvi)
⊤P + P (Avi + BviFCvi) < 0,

i = 1, 2, . . . , N . (7)

If (7) holds for P > 0 and some F , then the vertices of
the polytope (6) are said to be simultaneously quadrat-
ically stabilized by F . It is well known [4] that if P is
a common Lyapunov matrix for the vertices of the poly-
tope (6), it serves as a common Lyapunov function for
the uncertain system (5) for all admissible uncertainties

θi ∈< θi, θi > , i = 1, 2, . . . , p . In (6), each vertex is com-
puted for a different permutation of the p variables θi ,
alternatively taken at maximum and minimum values.

Recently, new type of parameter dependent Lyapunov
function (PDLF) (Shaked, 2001; Henrion, Alzelier and
Peaucelle, 2002; Takahashi, Ramos, and Peres, 2002) has
been introduced in the form

P (α) =

N
∑

i=1

Piαi ,

N
∑

i=1

αi = 1 , αi ≥ 0 . (8)

The robust stability conditions of closed-loop polytopic
system with output feedback algorithm

u = FCx (9)

Ac =

N
∑

i=1

Aciαi =

N
∑

i=1

(Avi + BviFC)αi (10)

is given by the following lemma (Takahashi, Ramos, and
Peres, 2002).

Lemma 1. Suppose there exist positive definite Lya-
punov matrices Pj , j = 1, 2, . . . , N such that

A⊤

ciPvi + PviAci < −I , (11)

A⊤

ckPvj + PvjAck + A⊤

cjPvk + PvkAcj <
2

N − 1
I ; (12)

i = 1, 2, . . . , N , k = 1, 2, . . . , N − 1 ; j = k + 1, . . . , N

then

P (α) =

N
∑

i=1

Pviαi ,

N
∑

i=1

αi = 1 , αi ≥ 0 (13)

is a parameter dependent Lyapunov function for any

Ac =

N
∑

i=1

Aciαi . (14)

The following performance index is associated with the
system (5)

J =

∫

∞

0

(x(t)⊤Qx(t) + u(t)⊤Ru(t))dt (15)

where Q = Q⊤ ≥ 0, R = R⊤ > 0 are matrices of
compatible dimensions.
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The problem studied in this paper can be formulated
as follows: For a continuous time system described by (5)
design a static output feedback controller with the gain
matrix F and control algorithm

u(t) = Fy(t) = FCx(t) (16)

so that the closed loop system

ẋ = (A(α) + B(α)FC)x(t) = Acx(t) (17)

where

A(α) =

N
∑

i=1

Aviαi

is PDQS with guaranteed cost.

Definition 2. Consider the system (5). If there exists a
control law u∗ and a positive scalar J∗ such that closed
loop system (17) is stable and the closed loop value cost
function (15) satisfies J ≤ J∗ , then J∗ is said to be the
guaranteed cost and u∗ is said to be the guaranteed cost
control law for system (5).

3 THE MAIN RESULTS

In this paragraph we present a new procedure to design
a static output feedback controller for polytopic continu-
ous time linear systems (5) which ensure the guaranteed
cost and PDQS of closed loop system. The one of the
main result can be summarized in the following theorem.

Theorem 1. Consider the closed loop polytopic system
(17). Then the following statements are equivalent.
a. The polytopic system (17) is static output feedback
simultaneously PDQS stabilizable with a guaranteed cost

∫

∞

0

(x⊤Qx + u⊤Ru)dt ≤ max
i

x⊤

0 Pvix0 = J∗ (18)

and P > 0 .
b. There exist symmetric matrices Pvj > 0 , j =
1, 2, . . . , N , R > 0 , Q > 0 , M > 0 and a matrix F

such that the following inequalities hold

(Avi + BviFC)⊤Pvi + Pvi(Avi + BviFC) + Q

+ C⊤F⊤R1FC ≤ −M for i = 1, 2, . . . , N . (19)

A⊤

ckPvj + PvjAck + A⊤

cjPvk + PvkAcj

+ C⊤F⊤R1FC ≤
2

N − 1
M (20)

where i = 1, 2, . . . , N ; k = 1, 2, . . . , N − 1 ; j = k +

1, . . . , N , R1 = N+1

2N
R and M is positive definite ma-

trix which provides at design procedure less conservative
results.
c. There exist matrices Pvj > 0 , R > 0 , Q > 0 , M > 0
and a matrix F that the following inequalities hold

(Avi + BviFC + Pvi)
⊤(Avi + BviFC + Pvi)

− (Avi + BviFC)⊤(Avi + BviFC)PviPvi + Q

+ C⊤F⊤R1FC ≤ −M (21)

and i = 1, 2, . . . , N ,

(Avk + BvkFC + Pvj)
⊤(Avk + BvkFC + Pvj)

+ (Avj + BvjFC + Pvk)⊤(Avj + BvjFC + Pvk)

−
[

A⊤

vkAvk + A⊤

vjAvj + (A⊤

vkBvk + A⊤

vjBvj)FC

+
(

(A⊤

vkBvk + A⊤

vjBvj)FC
)⊤]

− PvkPvk − PvjPvj

+ C⊤F⊤(R − B⊤

vkBvk − B⊤

vjBvj)FC ≤
2

N − 1
M (22)

with condition

R − B⊤

vkBvk − B⊤

vjBvj > 0 (23)

where k = 1, 2, . . . , N − 1 ; j = k + 1, . . . , N .

P r o o f . For polytopic system (17) and Lyapunov

function V = x⊤P (α)x it is well known that, cost is

guaranteed if the following inequality holds

A⊤

c P (α) + P (α)Ac + Q + C⊤F⊤RFC ≤ 0 . (24)

Assume, the inequalities (19) and (20) hold, than using

(14) one can obtains

N
∑

i=1

(A⊤

ciPvi + PviAci + Q + C⊤F⊤R1FC)α2
i

+

N−1
∑

k=1

N
∑

j=k+1

(A⊤

ckPvj + PvjAck + A⊤

cjPvk + PvkAcj

+ C⊤F⊤RFC)αkαj . (25)

Hence,

N
∑

i=1

α2
i ∈<

1

N
1 > ,

N−1
∑

k=1

N
∑

j=k+1

αkαj ≤
N − 1

2N
,

for the worst case we obtain
N

∑

i=1

(A⊤

ciPvi + PviAci)α
2
i +

N−1
∑

k=1

N
∑

j=k+1

(A⊤

ckPvj + PvjAck

+ A⊤

cjPvk + PvkAcj)αkαj + Q + C⊤F⊤RFC

= A⊤

c P (α) + P (α)Ac + Q + C⊤F⊤RFC . (26)

Substitute (21) and (22) to (25) we obtain

N
∑

i=1

(−M)α2
i +

N−1
∑

k=1

N
∑

j=k+1

2

N − 1
Mαkαj

or

− M
(

N
∑

i=1

(N − 1)α2
i +

N−1
∑

k=1

N
∑

j=k+1

2αkαj

)

= −M

N−1
∑

i=1

N
∑

j=i+1

(αi − αj)
2 < 0 . (27)

Inequality (27) proves the stability of closed loop poly-

topic systems (17) with PDLF and equality (26) proves

the equivalence of the first and second statement with suf-

ficient conditions. For proof the equivalence of the second

and third statement (19) and (21)) the following equality
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has been used

(Avi + BviFC + Pvi)
⊤(Avi + BviFC + Pvi)

= (Avi + BviFC)⊤(Avi + BviFC) + (Avi

+ BviFC)⊤Pvi + Pvi(Avi + BviFC) + PviPvi . (28)

Substitute the first and second term of (19) from (28) the

inequality (21) has been obtained. The equivalence of the

second and third statement is then evident.

For LMI solution of inequalities (21) and (22) with

(23) the term −PP has to be replaced. In this note two

possibilities are proposed.

(1) − PviPvi ≤ −PviDvi − DviPvi + DviDvi = Fvi (29)

where Dvi = D⊤

vi > 0 is the initial value of matrix

Pvi .

(2) − PviPvi ≤ (̺2 − ̺2
1)I − Zi = Fzi(Z) (30)

where ̺1I < Pvi < ̺I , i = 1, 2, . . . , N ,
[

Zi P

P I

]

> 0 , 0 ≤ Zi ≤ ̺2 .

Zi = Zt
i > 0 is any positive definite matrix, a new

LMI variable that satisfies the condition (30).

From (21) and (29) the following LMI condition results




Li C⊤F⊤ (Aci + Pvi)
⊤

FC −(R1i)
−1 0

Aci + Pvi 0 −I



 < 0 ,

0 < Pvi < ̺I , i = 1, 2, . . . , N

(31)

where R1i = R1 − B⊤

viBvi > 0 , Li = −
[

A⊤

viAvi

+ A⊤

viBviFC + (A⊤

viBviFC)⊤
]

+ Q + M + Fvi ,

i = 1, 2, ..., N . Equation (22) results to following LMI

problem










Lkj C⊤F⊤ Skj Sjk

FC −(Rkj)
−1 0 0

S⊤

kj 0 −I 0

S⊤

jk 0 −I 0











< 0

Lkj =−
[

A⊤

vkAvk+A⊤

vjAvj +(A⊤

vkBvk+A⊤

vjBvj)FC (32)

+((A⊤

vkBvk + A⊤

vjBvj)FC)⊤
]

+ Fvk + Fvj −
2

N − 1
M ,

Skj = (Avk + BvkFC + Pvj)
⊤ ,

Sjk = (Avj + BvjFC + Pvk)⊤

with condition

Rkj = R − B⊤

vkBvk − B⊤

vjBvj > 0

and

k = 1, 2, . . . , N − 1 , j = 1, 2, . . . , N

f the LMI solutions of (6) and (32) are feasible with re-
spect to matrices F, Pvi , i = 1, 2, . . . , N and M then the
uncertain system (5) is parameter dependent quadrati-
cally stable with a guaranteed cost control algorithm

u = Fy and J∗ = max
i

x⊤

0 Pvix0

is the guaranteed cost for the uncertain closed loop sys-
tem.

4 EXAMPLES

In this example we consider the linear model of two
cooperating DC motors. The problem is to design two
PI controllers for a laboratory MIMO system which will
guarantee PDQS of a closed loop uncertain system with
guaranteed cost. The system model is given by (5) with
a time invariant matrix affine type uncertain structure,
where

A0 =































0 −.2148 0 0 0 0 0 0 0 0
1 −1.014 0 0 0 0 0 0 0 0
0 0 0 −.2605 0 0 0 0 0 0
0 0 1 −.9107 0 0 0 0 0 0
0 0 0 0 0 −.1639 0 0 0 0
0 0 0 0 1 −.8137 0 0 0 0
0 0 0 0 0 0 0 −.2279 0 0
0 0 0 0 0 0 1 −.8251 0 0
0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0































A1 =































0 −.025 0 0 0 0 0 0 0 0
0 −.1395 0 0 0 0 0 0 0 0
0 0 0 −.0938 0 0 0 0 0 0
0 0 0 −.2911 0 0 0 0 0 0
0 0 0 0 0 .0188 0 0 0 0
0 0 0 0 0 .0208 0 0 0 0
0 0 0 0 0 0 0 −.0333 0 0
0 0 0 0 0 0 0 −.1173 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0































A2 =































0 .0125 0 0 0 0 0 0 0 0
0 .0594 0 0 0 0 0 0 0 0
0 0 0 .0116 0 0 0 0 0 0
0 0 0 .0308 0 0 0 0 0 0
0 0 0 0 0 −.0188 0 0 0 0
0 0 0 0 0 −.0156 0 0 0 0
0 0 0 0 0 0 0 .0208 0 0
0 0 0 0 0 0 0 −.0333 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0































B0 =































.3148 0

.0478 0
0 −.1028
0 −.0091
−.0841 0
−.0287 0
0 .3676
0 .2448
0 0
0 0































B1 =































.0625 0
−.0798 0
0 −.0462
0 −.0449
.0016 0
.0072 0
0 .077
0 −.005
0 0
0 0






























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B2 =































−.0094 0
.0151 0
0 .0019
0 −.003
−.0121 0
−.03 0
0 −.064
0 .0189
0 0
0 0































C⊤ =































0 0 0 0
1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1































The number of polytope systems is equal to 4 and the
polytope vertices are computed for different permutations
of the two variables θ1, θ2 alternatively taken at their

maximum θi and minimum θi , i = 1, 2. The decentral-
ized control structure for the two PI controllers can be
obtained by the choice of the static output feedback gain
matrix F structure. It is given as follows

F =

[

f11 0 f13 0
0 f22 0 f24

]

The results of calculation of a static output feedback gain
matrix F for PDQS for different Q = qI , R = rI ,
θm = |θ1| = |θ2| , ρ and ρ1 are summarized as follows.

• Eqs. (30), (31) and (32).
For θm = 1, q = .0001, r = 1.15 and ρ = 75 after 100

repeated calculations, that is D
j+1

vi = P
j
vi , i = 1, 2, 3, 4

and j = 1, 2, . . . gain matrix F , maximal closed-loop
eigenvalue of all four polytopic systems maxeig(CL)
and the value of guaranteed cost λM (Pvi)

max
i

x⊤

0 Pvix0 ≤ max
i

‖x0‖
2λM (Pvi)

are equal

F =

[

−2.5498 0 −.5549 0
0 −6.124 0 −2.3094

]

,

maxeig(CL) = −.1882 and λM (Pvi) = 69.2702. For
the same case, V-K iterative method (El Ghaoui and
Balakrishnan, 1994) gives maxeig(CL) = −.173,

F =

[

−2.0672 0 −.4318 0
0 −2.0108 0 −.4594

]

.

• For the parameters θm = 1.8, q = .0001, r = 1 and
ρ = 75 after 100 repeated procedures the results of
calculation are as follows.

F =

[

−2.1272 0 −.4462 0
0 −4.6625 0 −1.3408

]

,

maxeig(CL) = −.1278 and λM (Pvi) = 71.2643. V-K
iterative procedure gives maximal closed-loop eigen-
value of all four polytopic systems maxeig(CL) =
−.0075 and λM (Pvi) = 71.9258.

• For the parameters θm = 1, r = .57 and ρ = 100 and
different q after 100 repeated procedures the results
of calculation are as follows.
a. q = .1,

F =

[

−3.51 0 −.8393 0
0 −10.9463 0 −5.1024

]

,

maxeig(CL) = −.1915 and λM (Pvi) = 91.7532. V-K
iterative procedure gives maximal closed-loop eigen-

value of all four polytopic systems maxeig(CL) =
−.1659 and λM (Pvi) = 91.799.
b. q = 1,

F =

[

−4.6478 0 −1.1418 0
0 −12.8322 0 −5.6151

]

,

maxeig(CL) = −.192 and λM (Pvi) = 94.8176. V-K
iterative procedure gives infeasible solution. All LMI
solutions are feasible.

The second example has been borrowed from (Benton
and Smith, 1999) to demonstrate the use of the algorithm
given by (6) and (32). It is known that the presented sys-
tem is static output feedback stabilizable. Let (A,B,C)
in (1) be defined as

A =







−0.036 0.0271 0.0188 −0.4555
0.0482 −1.010 0.0024 −4.0208
0.1002 q1(t) −0.707 q2(t)

0 0 1 0






,

B =







0.4422 0.1761
q3(t) −7.59222

−5.520 4.490
0 0






, C = [ 0 1 0 0 ]

with parameters bounds −0.6319 ≤ q1(t) ≤ 1.3681,
1.22 ≤ q2(t) ≤ 1.420, and 2.7446 ≤ q3(t) ≤ 4.3446. Find
a stabilizing output feedback matrix F . The four vertices
are calculated. The nominal model of (A,B) is given by
the above matrices when we substitute for the entries
A(3, 2) = 0.3681, A(3, 4) = 1.32 and B(2, 1) = 3.5446.
The affine model uncertainty (5) (A1, A2, B1, B2) are ma-
trices with the following entries A1(3, 2) = 1, A2(3, 4) =
0.1 and B1(2, 1) = 0.8, B2 = 0 with θi ∈< −1, 1 >, i =
1, 2 . Other entries of the above uncertain matrices are
equal to zero. The nominal model is unstable with eigen-
values:

eig{−2.0516, 0.2529 ± 0.3247i,−0.2078} .

Let the structure of F be defined as

F⊤ = [F (1, 1) F (2, 1)] .

• Eqs. (30), (31), (32).
For Q = q ∗ I , q = .00001, R = r ∗ I , r = 246.2,
̺ = 100 and θm = 1 one obtains the following results.

F⊤ = [−1.502 2.726] ,

maxeig(CL) = −.0683 , λM (Pvi) = 98.02 .

• For θm = 2, r = 264.2 results are as follows.

F⊤ = [−1.3167 2.6816]

maxeig(CL) = −.0676 , λM (Pvi) = 98.72 .

• For θm = 2.5, r = 273.86 results are as follows.

F⊤ = [−1.2879 3.0857] ,

maxeig(CL) = −.0684 , λM (Pvi) = 99.83 .

• For θm = 1, r = 246.2, ̺ = 100 and different q the
following results are obtained.
a. q = .1

F⊤ = [−1.1071 2.699] ,
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maxeig(CL) = −.0719 ; λM (Pvi) = 98.16 .

Note, that eigenvalues of matrix M are eig(M) =
[.9984; .8902; .6963; .1222]. Hence, they are different
and are not equal to 1 as supposed in Lemma 1 (Taka-
hashi, Ramos, and Peres, 2002). We can conclude that
using the matrix M in the design procedure the less
conservative results could be obtained.

b. q = 1

F⊤ = [−1.5033 2.8373] ,

maxeig(CL) = −.0689 ; λM (Pvi) = 99.346 .

c. q = 6

F⊤ = [−2.3635 2.8861] ,

maxeig(CL) = −.0616 ; λM (Pvi) = 99.926 .

All LMI solutions are feasible. Note that for the above
parameters the V-K iterative method does not give any
reasonable solutions. Usually, the repeated procedure
generates less conservative results than first one. The
convergence of the above special repeated procedure
has not been proven yet, however if the reasoning of
(El Ghaoui and Balakrishnan, 1994) is taken account
we can conclude that the proposed algorithm is guar-
anteed to converge but not necessarily to the global
optimum of the problem, depending on the starting
conditions.

5 CONCLUSIONS

In this paper, we have proposed a new procedure for
robust output feedback controller design for linear sys-
tems with affine parameter uncertainty. The feasible so-
lution of the proposed output feedback controller design
procedure with sufficient conditions guarantees the pa-
rameter dependent Lyapunov function quadratic stabil-
ity and guaranteed cost. The proposed design procedure
pursue the idea of (Takahashi, Ramos, and Peres, 2002).
Examples show that proposed approach gives the less con-
servative results as could be obtained from quadratic de-
sign procedure.
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[14] VESELÝ, V. : Design of Robust Output Affine Quadratic Con-

troller, 15th Triennial World Congress, Barcelona, CD, 2002.
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