
Journal of ELECTRICAL ENGINEERING, VOL. 56, NO. 1-2, 2005, 53–56

REVIEWS - LETTERS - REPORTS

AN ARTIFICIAL INTELLIGENCE SYSTEM PROVIDING
SUPPORT TO SYSTEM ADMINISTRATORS MANAGING

IN A DISTRIBUTED, HETEROGENEOUS ENVIRONMENT

Izabella Lokshina — Richard Insinga
∗

The paper discusses an artificial intelligence system providing a solution to the complex problem of system administration.

It operates in a distributed system management environment that monitors hosts across a network, detects complex problem
conditions, and takes automated, unattended actions to resolve common problems. The system was specifically developed
to support system administrators managing distributed multi-vendor heterogeneous networks in financial services in Russia.

The system intelligence is based on client daemon processes on all hosts of the network that independently can gather system
data into a local database and analyze the data using an expert system. The system can manage problem events and actions;
it distinguishes itself by its scalability and ability to be easily customized by the primary users.

K e y w o r d s: artificial intelligence methods, networks, system administration, distributed heterogeneous environment,
system intelligence, built-in rule-based expert system

1 INTRODUCTION

Distributed systems dominate the computing land-
scape these days. Distributing the processing, databases,
and communications allows companies to move more
quickly and to provide the rapid growth and continual
changes in the e-economy. Although the concepts be-
hind distributed systems were conceived more than 30
years ago, the use of distributed systems moved into a
new era with the advent of the Internet. Previously, the
bulk of distributed systems were in-house and linked sys-
tems within a company. That has changed as the Internet
turned attention outward by providing the infrastructure
for advanced and global distributed systems which have
to support corporate strategies and corporate success [5]
[6] [7]. On the other hand, the Internet challenges the
architecture of distributed systems because these need
to be open and more sophisticated. System administra-
tors have much greater difficulties than ever when man-
aging these networks. Studies indicate that an average
of approximately 40time is spent on fault management
or fixing problems, as opposed to configuration manage-
ment and/or capacity planning. Traditionally, end-users
call a help desk or a system administrator when they
have a problem. Problems include file systems filling up,
printer queues not working, electronic mail not reaching
its destination, or a process getting out of control on
the system. The system administrators try to diagnose
the problem; they look at the system and check various
system statistics; and they consider the time of day and
other issues that are specific to the particular company
or situation. Very different actions could be necessary if
a key end-user has a problem while trying to make a crit-

ical deadline or if a night shift operator has a problem

at 2:00 in the morning. The system administrators of-

ten have to perform their functions in inconvenient and

critical situations [1] [3] [4]. The artificial intelligence sys-

tem SYMON (stands for SYSTEM MONITOR) is a dis-

tributed system management environment that monitors

hosts across the network, detects complex problem condi-

tions, and takes automated unattended actions to resolve

common problems. The system was specifically developed

to support system administrators managing distributed

multi-vendor heterogeneous networks in financial services

in Russia. Using SYMON, system administrators can dis-

cover potential problems prior to their general occurrence.

The system automatically takes actions to fix the prob-

lems without any human intervention. As a result, system

administrators and end-users increase their productivity

and the system down time is reduced [2] [3] [4].

2 AI TECHNOLOGIES

APPLIED IN THE SYSTEM

The system provides proactive monitoring and au-

tomatic actions to fix problems in distributed systems

through the use of the following AI technologies: dis-

tributed relational database management system, rule-

based expert system (ES), alert handler, and action man-

ager. These technologies give the system the ability to

automate system management by replicating some of the

tasks of system administrators. Therefore, these technolo-

gies (as well as computer applications) reside on every

host in the system.

∗ Division of Economics and Business, SUNY Oneonta E-mail: lokshiiv@oneonta.edu, insingrc@oneonta.edu

ISSN 1335-3632 c© 2005 FEI STU



54 I. Lokshina — R. Insinga: AN ARTIFICIAL INTELLIGENCE SYSTEM PROVIDING SUPPORT TO SYSTEM ADMINISTRATORS . . .

Automated problem resolution

Like a human system administrator, each application
collects data about the resource it is monitoring. Unlike a
human, the application collects the data in regular inter-
vals. The expert system provides the ability to monitor
complex practical conditions. For instance, the system
can monitor a particular state that results in impaired
service for the end-users. The data is collected into the
relational database from many locations on the system.
The application uses the expert system rules to test for
various complex conditions. When a set of conditions re-
quiring attention has been met, the application generates
an alert that is managed by the alert handling engine. A
copy of the alert must be sent to the system administra-
tor’s console, thereby advising the system administrator
of the condition. The administrator then can handle the
condition manually or can configure the system to auto-
matically fix the problem.

Alert handler

A special ability of the system is the sophistication of
the alert handler. The alert can be escalated in priority
over time and different actions can be performed at each
priority level. This corresponds to the different actions
human administrators may perform when faced with a
problem of changing significance. The application sends
an alert to the system administrator’s console when the
problem is resolved. This way the system increases pro-
ductivity of the system administrator and the end-users.

Scalable architecture

The system architecture is scalable, which means that
it can be deployed across a large number of machines
across multiple networks. The design considerations for
scalability are divided into three main areas.

The first, there is no dependence on central servers or
object brokers. The advantage is that the primary users
can manage a large number of systems across multiple
networks, even with wide-area connections, and can min-
imize the impact on the overall network performance. All
processing must be performed at the client level in the
system architecture. Contrary to the old-style console-
polling model, clients are able to operate even if no con-
sole is alive or the network is down. Consoles are only used
to display alerts generated by the clients. Old-style con-
sole polling is the standard polling of data agents from
one or more monitoring consoles. The consoles periodi-
cally send data request messages to the agents and the
agents gather the requested data and send it back in data
messages across the network. The console then processes
the data and initiates the simple action requests on the
local agent systems (if that capability exists). The disad-
vantage of this model is that traffic is repeatedly going
across the network and that network traffic grows linearly
as workstations are added. If 15% of the network capac-
ity is used to monitor 200 workstations, then at least 30%
of the network will be used to monitor 400 workstations.
Consoles can become bottlenecks themselves, limiting the
total number of systems that can be managed from any

one console. If no one console is available or alive, no

monitoring occurs. Likewise, if the network is down, no

monitoring occurs [1] [3]. Client-centric processing is a

step forward in performance optimization and memory

utilization of relational databases and expert systems. It

is based on placing a fully capable relational database and

a standard rule-based expert system onto each client sys-

tem with minimal performance impact. All the data anal-

ysis tasks that used to require powerful server systems to

manage the data and to perform problem analysis are lo-

cated on each of the clients. Therefore no raw data has to

go across the network to be processed. The only messages

sent from clients to consoles are qualified alert notifica-

tions and responses to deliberate requests by a system

administrator for data to be used for historical reporting

and real-time network status displays.This architecture

scales across large and wide-area networks, and alleviates

the requirement for dedicated console server systems.

The second, the primary users can have different

groups of system administrators monitor the same client

hosts without causing undue network traffic or system

load on each of the clients. This is important for compa-

nies that have corporate-wide operations groups or after-

hour support centres in addition to the local day-time

system administrators. The system can adjust to the or-

ganizational structure when more that one individual or

group is responsible for managing a particular group of

systems. There are two key aspects to this class of scal-

ability: Peer Consoles and Super Consoles. Workstations

need to be managed by multiple peer administrators who

can work cooperatively. This is usually the case. When

hundreds of workstations are managed by two or three

system administrators, each of them may have a differ-

ent focus or specialization, yet each system administrator

can manage any system in that group. This capability is

supported by Console application which directly man-

ages client workstations. To assist help desk operations,

the system supports the Problem Dispatch Queues and

Individual Work Queues concepts, where alerts can come

into a central dispatch desk to be assigned to individual

specialists on the team. Often companies at the corpo-

rate level provide back-up support or after-hour support

which is not local to the installation site and is connected

to the local network by slower wide area connections. It

would be cost prohibitive in network traffic if all individ-

ual client workstations were to report directly to consoles

at a central support group. Also it would require too much

administrative overhead to inform the central support of

any additions and removal of client systems on the local

networks. Therefore super consoles only talk directly to

one or more standard consoles. They do not know about

specific client hosts and never talk to clients directly. Su-

per consoles consolidate all the alerts from the attached

consoles, and system administrators at the super consoles

can still take the same actions that someone at a regular

console can.



Journal of ELECTRICAL ENGINEERING, VOL. 56, NO. 1-2, 2005 55

The third, the primary users can create configuration
templates for different machine classes, operating sys-
tems, hardware configurations, and end-user applications.
Each individual client system determines which classes it
belongs to and constructs its own database. The configu-
ration templates can be arranged hierarchically to match
a company’s organizational structure and to provide cor-
porate default and mandatory configurations. The system
supports its ability to configure system clients from a cen-
tral configuration database. Network-wide defaults apply
to most configuration categories and can be overridden
for individual hosts. This capability allows for configu-
ration of a fairly homogenous group of clients on a cen-
trally managed mid-sized network. On the other hand,
large companies with complex organizational structures
and several thousands of workstations often have mul-
tiple autonomous business units that manage their own
networks and applications. Usually a central corporate
group providing support to the business units sets certain
company standards. Each of the business units may have
subgroups responsible for certain areas. Large companies
usually have a technical hierarchy for managing systems
across their networks and frequently have systems from
multiple vendors and are running different versions of
the operating system. The construction of a configuration
database for such a variety of system combinations in a
corporate management hierarchy with a fairly indepen-
dent organization structure should be done at the local
level. The system allows the primary users to perform
self-configuration or create configuration templates for
each system type, operating system, off-the-shelf appli-
cation, and in-house proprietary application. Each group
can set default and mandatory configuration templates
for its sub-groups, and each sub-group has the ability to
override individual non-mandatory configuration param-
eters in each of the templates. When any of the templates
are changed, each client host determines on its own what
type of system it is, what application it has installed, and
to which group it belongs, and then constructs its own
configuration database from the templates. The system
uses object-oriented technologies to allow distributed self-
configuration. The system architecture consists of three
layers of technology: core, open problem management de-
sign, and applications. The core layer contains the dis-
tributed database management system, the rule-based ex-
pert system, the communication capabilities, and C pro-
gramming language environment (since the core layer is
implemented in C). Above the core layer is the open prob-
lem management design, which uses the core layer to im-
plement a set of services including configuration manage-
ment, alert handling, action management, report gener-
ating, rule execution, and communication between client,
consoles, and super console processes to pass data and ex-
ecute remote procedures. Individual applications rely on
services provided by open problem management design
and add functionality specifically to applications such as
defining databases, generating and analyzing data, gen-
erating alerts, and defining application specific actions.

Everything else is handling by the open problem manage-
ment design. The primary users can add their own spe-
cific site applications at run-time or compile them into an
execution system using a rapid application development
environment.

Expert system

The forward chaining rule-based expert system uses a
particular algorithm to automatically prioritize its rules.
Similar to an integrated database, the ES contains new
and unique features that are useful in automating system
administration tasks. Rules are grouped by functional-
ity. System monitoring consists of three main tasks: data
gathering, data analysis, and problem resolution. The in-
tegrated ES associates each rule with one of the tasks.
This allows the expert system to gather all the data neces-
sary to make decisions, analyze and process the data, and
resolve the problems by posting alerts to the alert man-
ager which causes actions to be performed automatically.
Rules are automatically ordered by complexity. Proper
resolution of a problem may be dependent on several ex-
ternal factors. For instance, if a system is running out of
swap space, it is generally desirable to allocate additional
swap space on the local disk. However, it may not be de-
sirable if the local disk space is also a critical resource. In
this case, additional swap space could be allocated from
the remote file server. However, if network resources are
limited as well, the optimal solution might be to shut
down less critical applications. Because the expert system
automatically uses the most specific rule for a given situ-
ation, there is no need to be concerned with complex rule
sequencing when developing new applications. There is a
need to write only one rule for each case. The expert sys-
tem will choose the proper rule automatically. Each rule
can operate on a separate schedule. Some system adminis-
tration tasks are performed more frequently than others.
Then the rules which automate them need to be executed
more frequently, too. The expert system understands this
and allows each rule to specify its own schedule and even
dynamically change its schedule as needed. By limiting
execution of rules in this manner, the system maximizes
its efficiency and minimizes system resource usage.

Problem Management Concepts

The open problem management design provides so-
phisticated problem management capabilities. The key
problem management concepts and design requirements
are given below. Most of the engines are controlled di-
rectly from the configuration database, which means that
the behaviour of alerts can easily be changed through sim-
ple configuration changes. The most important require-
ment is one alert for one problem. Many problem man-
agement systems create a multitude of alerts for different
symptoms of the same problem. Open problem manage-
ment design promises alert uniqueness and does not al-
low the same alert to be generated twice for the same
underlying resource. Problem hierarchies are used to pre-
vent a problem from triggering several overlapping alerts.



56 I. Lokshina — R. Insinga: AN ARTIFICIAL INTELLIGENCE SYSTEM PROVIDING SUPPORT TO SYSTEM ADMINISTRATORS . . .

Problem hierarchies are specified in the system configu-
ration database and are completely customizable by the
primary users. Each alert within the system has an associ-
ated priority, which is used to determine the seriousness of
the detected problem. Currently, alerts are classified into
one of five priority levels. The system provides a unique
engine for assigning the priority of an alert over time.
This engine can either promote or demote the priority.
Escalation is useful since it may be necessary for an ini-
tially insignificant problem to escalate if it is not resolved
within a specified period of time. The action manager al-
lows automatic actions to be taken at each new priority
level. The system allows alerts to expire automatically
after a specified period of time. This feature is useful be-
cause it allows informational messages to be posted only
while such messages are relevant. By expiring alerts when
they are no longer relevant, the system reduces the occur-
rence of information overload. The system allows system
administrators to assign ownership of an alert to one or
more people or groups. This feature is used to implement
Problem Dispatch Queues and Individual Work Queues.
When an alert has at least one owner, the alert can es-
calate or time out. The alert remains active within the
alert handler, however, and will not be removed until it
is cleared. Often alerts are generated for certain special
conditions that are acceptable on certain hosts. For in-
stance, it may be all right for the end-user on the specific
host to be at 98%, since the file system space on that
host never increases. Instead of having to create a special
configuration entry for that host to prevent an alert for
that file system to be reported from the host, it is possi-
ble to simply ignore the alert at the console display. The
alert, however, is not suppressed forever at this point.
Each time an alert is ignored, it is suppressed for an in-
creasing period of time, until it becomes blocked forever.
The primary user can define the intervals of the ignore
engine that lets the system learn the alert preferences of
system administrators.

Action Management Concepts

The open problem management design integrates the
action manager, which allows system administrators to
perform actions from the console. In addition, actions can
be initiated automatically upon creation and escalation
of alerts. The system provides numerous system manage-
ment actions. Predefined actions cover file system man-
agement, process management, adding temporary swap
space, controlling daemon processes, or managing the sys-
tem itself. These actions are often driven from defaults
specified in the system configuration database. System
administrators can easily define actions and register them

with the system. User-defined actions commonly call pro-
grams with arguments from the configuration database,
the command line, or any alerts that the actions have
been triggered against. Manual actions are usually per-
formed on remote hosts. The system administrator has
the ability to specify a single host, or a named list of
hosts, on which the actions could be executed. Most built-
in actions are platform independent and allow the system
administrators to take multi-host actions on a heteroge-
neous group of systems. The system administrators are
informed at all times; and action results and errors are
automatically displayed as action alerts on the console
displays.

3 FINDINGS AND CONCLUSIONS

In this paper, an artificial intelligence system that pro-
vides a unique solution to the complex problem of sys-
tem administration is considered. Specifically this system
automates system administration tasks in a distributed
multi-vendor environment; identifies potential problems
before they affect end-user productivity; presents problem
information to system administrators in a useful manner
through the open problem management design; automat-
ically acts to resolve problems while keeping system ad-
ministrators informed of its progress. This system is scal-
able; and it uses minimal system and network resources
to avoid affecting end-user performance.

References

[1] GELMAN, A. D.—HALFIN, S. : Analysis of Resource Shar-

ing in Information Providing Services, IEEE GLOBECOM’90

(1990), 312-316.

[2] Introduction to SYMON Concepts, Hotline-Telecom, Moscow,

1998.

[3] DEEV, V. V.—LOKSHINA, I. V. : AI - Monitoring Systems,

PROGRESS, Moscow, 1998.

[4] RADEV, D.—RADEVA, S. : Intelligent methods for traffic

prognoses, Proceedings of the 12th conf. Transport’02 (2002),

Sofia, 29-34.

[5] STEFFERUD, E.—FARBER, D.—DEMENT, R. : SUMURU

- Network Configuration for the Future, Mini-Micro Systems

(1982), 311-312.

[6] WEILL, P.—BROADBENT, M. : Leveraging the new Infras-

tructure - How Market Leaders Capitalize on Information Tech-

nology, Harvard Business School Press, Boston, MA, 1998.

[7] WETHERBE, J. C. : IS - To Centralize or to Decentralize,

SIM Network, Society for Information Management, Chicago,

IL, (1987).

Received 29 October 2004


