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3-D SCENE RECONSTRUCTION FROM
MONOCULAR IMAGE SEQUENCES

Milan Hanajik *— Paul P. J. van den Bosch "

In this paper we deal with the problem of 3-D scene description reconstruction fram monocular images sequences,
The reconstruction is based on the processing of linear features extracted from the acquired images.

Twa reconstruction algorithms are introduced. The first one formulates the problem as the stochastic filtering
problem and the algorithm computes the scene deseription incrementally waing the Extended Kalman Filter (EKF).
Isaues of the computational complexity of the algorithm are addressed and an algonithm with computation time in
each iteration step linearly proportional to the number of processed line segments is proposed.

The second algorithm formulates the problem as the global optimization problem, and the maximum likelihood
eatimate (MLE} of the scene is numerically computed from all images in one batch.

Results achieved with a sample image sequence are given and conclusions are derived.

Keywords: 3D structure from motion, Extended Kalman Filter, computational complexity

1 INTRODUCTION

Many applications such as acquisition of CAD mod-
els, robot motion planning and object recognition in-
volve recovery of a representation for a three dimen-
sional (3-D) geometrical structure from sensor data.
Reconstruction of 3-D scene description from a se-
gquence of images known as siruclure frem modion has
been a topic of active research in the field of com-
puter vision in recent years. In this paper we deal with
problem of 3-D scene description reconstruction from
monocular image sequences, where the camera path
iz unknown. The reconstruction is based on the pro-
cessing of linear features extracted from the acquired
Images.

For the structure from motion problem of a scene
composed of point features a close form solution was
proposed by Tomasi and Kanade in [14]. Their recon-
struction method is efficient and robust, however, a
drawback of the technique is that it assumes paral-
lel projection, and that it cannot deal with the miss-
ing data problem (occlusions, feature extraction errors,
ete.). The method was later extended for the scaled
parallel projection, which is a better model of the per-
spective projection.

Close form solutions of the structure from motion
problem for linear features have been developed by Lin
and Huang [10], and Spetsakis and Aloimonos [12].
These methods need at least 13 line features in three

frames. In practice these techniques tend to be very
sensitive to errors in measurements.

The above mentioned closed form solutions to the
structure from motion problem fall into a class of daich
algorithms, as they process all data simultanecusly.
Next to these, incrementnl algorithms have emerged,
which subsequently process the images of the sequence
and incrementally update the scene description. Sev-
eral incremental algorithms are based on the Extended
Kalman Filter (EKF) [2,7,6].

Recently, Taylor and Kriegman [13] published a
batch algorithm which processes line features from a
monocular sequence to obtain their 3-D description.
They formulate the problem as the problem of objec-
tive function minimization and propose a numerical
solution to this problem.

In this paper we present two algorithms for the
structure from motion problem for line features. The
proposed algorithms assume (more accurate) perspec-
tive projection, and provide an iterative numerical so-
lution of the problem.

The first of two algorithms presented in section 3
is an incremental algorithm. The scene reconstruction
is provided by stochastic filtering using EKF for the
entire scene at once. Parameters of the 3-D scene de-
scription, and the parameters specifying the camera
position and orientation constitute the state of the sys-
tem to be estimated. Each time an image is captured
and processed, the state estimate is updated, this is
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Fig. 1. Camera model.

called a measurement update. Between the measure-
ment updates, the state estimate is updated due to
the system dynamics (here only the camera motion
dynamics), this is called a time update.

Issues of the computation complexity are addressed
in section 4 where we propose an algorithm with com-
putation time linearly proportional to the number of
processed line segments in each iteration step.

The second algorithm introduced in section 5 is a
batch algorithm. The scene description and the camera
path are computed as a maximum likelihood estimate.
Line segments data from all images are processed in a
single optimization algorithm.

In the presented algorithms, the knowledge of the
camera motion path is not required for scene recon-
struction. The camera path is computed as a side re-
sult by the techniques. However, a number of reference
edges must be present in the viewed 3-D scene to pro-
vide some information for the stochastic filtering or
batch processing algorithms. These edges must be ob-
served in a few initial images of the sequence.

To provide correct input data, correspondences be-
tween line segments in subsequent images have to be
established. This is done by tracking line segments in
the two-dimensional (2-D) image plane. Predictions
of line segments in the next image are computed by
Kalman filters, one separate filter for each line seg-
ment (section 6). This is another layer of stochastic
filtering. Line correspondence is found using stochas-
tic data association.

In section 7, the implementation is described and
results achieved with a sample image sequence are
given. Finally, the conclusions are derived and further
research is proposed in section 8.

2 REPRESENTATION

This section explains parametrization that was used
to represent a 3-D scene, the camera, and 2-D line
segments contained in the acquired images.

2.1 Scene

The 3-D scene is represented by a set of line seg-
ments in the 3-D space. This representation is suffi-
clent, since only straight line segments are extracted
from images, and consequently only straight line seg-
ments are reconstructed in the 3-D space. Each line
segment is specified by a 6-component vector

Sz(xb,yb,zb,l'e,yeyze)t, (1)

where z;, 3, 23 are the coordinates of the segment ini-
tial point, and ., y., z. are the coordinates of the end
point. These coordinates are in the world (absolute)
coordinate system. Let N be the number of recon-
structed scene segments. The scene is then represented
by set S

S ={s1,82,...,5n}, (2)

where s;,i = 1,..., N are vectors specifying the 3-D
line segments.

2.2 Camera

Perspective projection onto the image plane is as-
sumed. The optical center of the camera is identical
with the origin of the camera centred coordinate sys-
tem, and the image plane is placed perpendicularly to
the z-axis at the distance f from the origin, as it is
shown in figure 1. Consequently, the point with coor-
dinates z.,y. and z. in the camera centred system
1s projected onto the image plane at location (u,v),
where u and v are

u:fz—:, v=fI. (3)

c

We use homogeneous coordinates! to represent the

points in the 3-D space. A point with world system ho-
mogeneous coordinates Xy, = (&4, Yw, 2w, 1) is trans-
formed into camera centred homogeneous system coor-
dinates X, = (., Yc, 2¢, 1)! by left multiplication with
a 4 x 4 matrix T':

X.=TX,. (4)

The camera position and orientation in 3-D space, ie
the relation between the world coordinate system and
the camera centred system is completely specified by
siX parameters composing a vector 6:

0:(aaﬂ;7;tzyty)tz)t' (5)

Consequently, the transformation matrix 7 is a func-
tion of camera parameters 6, T = T(6).

!Homogeneous coordinates of a point in R3 is a 4-vector
P = (az,ay,az,a)t, where z, y, z are the coordinates of the
point in a common sense, and a is an arbitrary nonzero real
number. In our case a is always equal to 1.
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Fig. 2. The line segment pa-
rameterized by coordinates of
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Fig. 3. The line segment pa-

rameterized by coordinates of

the midpoint, by the length
and angle.

Let M be the number of images in the image se-
quence. Then the sequence (the ordered set) of camera
parameter vectors

O ={601,0,,...,0u} (6)
specifies the path of the camera used to obtain the
sequence.

2.3 Line segments in the image sequence

Straight line segments are extracted from the cap-
tured grey value images. We have alternatively used
two different parameterizations of a line segment:

1. The line segment on the image plane can be repre-
sented by image plane coordinates of its initial and
end points

q = (up, vp, e, ve)' . (7)

2. The line segment on the image plane can be repre-
sented by image plane coordinates of its midpoint
Um, Um (point in the middle of the line segment),
its length [ and angle ¢ measured with respect to
U axis

q = (um,vm,l,go)' (8)

Although each of the two parameterizations have its
advantages and drawbacks, the choice of parameteri-
zation is not relevant to principles of 3-D reconstruc-
tion techniques developed later. In most cases we will
only refer to ¢ for the sake of generality.

Let M be the number of images in the image se-
quence, let N; be the number of line segments ex-
tracted from the i-th image, and let ¢; ; be the pa-
rameter vector of the j-th line segment extracted from
the i-th 1mage. The ¢-th image is represented by the
set Q;

3 Qi,N.} ) (9)

where ¢; ;,7 = 1,..., N; specify the line segments. The
entire sequence 1s defined by the set

, M}

Qi={¢i1,q2---

Q={Q1,Qs,... (10)

3 SCENE RECONSTRUCTION
BY STOCHASTIC FILTERING

The scene and the camera moving along the path
can be viewed as a dynamic system. The 3-D recon-
struction can be provided by estimation of the state of
this system by stochastic filtering. We shall introduce
the state vector X,

Xt = (Sl‘tysz,t---SN,taeta@f)t: (11)

where S;,, ¢ = 1...N, specify 3-D line segments,
and Oy, E")t are the camera parameters and their time
derivatives ie components of the camera speed and
camera angular speed) at discrete time instants { =
{ti,t2,...,tm}. The state vector (11) is a random vec-
tor, thus reflecting the fact that the true values of vec-
tors $1,82,...,8,, 0 and § are not known to us. The
probability distribution of the random vector X, ex-
presses our knowledge of the scene and the camera
position at time ¢. Although we have assumed that
the scene is static, and only the camera parameters
change over time, random vectors S;;, ¢ = 1,..., N
evolve over time as more images of the sequence are
processed.

The captured images can be viewed as observations
(measurements) of the state vector. We shall define
the measurement vecior as the vector of parameters of
particular image line segments:

Yt = (Qt,l;---;‘It,Ng)t~ (12)

The probability distribution of X; is updated at
time instants ¢;,¢2,...,tps when each new image is
captured and processed, this is called the measurement
update. Also, between the subsequent time instants the
distribution is updated because of the camera move-
ment, this is called the time update. The process of
subsequent measurement and time updates constitutes
stochastic filtering.

We will assume that X; is normally distributed,
X: ~ N(&, P,), and therefore it is fully specified by
its mean vector £; and covariance matrix P;. This as-
sumption considerably simplifies the problem as the
probability distribution updates are then identical to
the updates of the mean vector and the covariance ma-
trix. Technical details of this process are explained in
the following subsections. We will denote by t— the
time instant immediately before observing and pro-
cessing an image at time ¢, and by ¢+ the time instant
immediately after observing and processing the image
at time t.
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3.1 Measurement update

Line segments found in processed images suffer from
random perturbation due to imaging errors, presence
of noise, ete. Therefore, the measurement vector g
ahtained at time £ can be considered (o be the outcome
of a random wvariable ¥,. We may assume that the
perturbations are additive and

Y= MX:- )+ &, £~ N(0, Ry)

where A{X;_) is an ideal projection of line segments
onto the image plane using equations (4) and (3), and
the random perturbation & has a normal distribution
with a zerc mean and covariance matrix R, .

The probability distribution of X,y after ¥; = 3
has been observed can be expressed in terms of prob-
ability density functions {pdf-s} using Bayes rule

(13)

fxop(2) = fx_ (= L 3e) =
_ fx“.h(m:y:]‘ — fy.]x,,_liﬂ: ] I}JFX1—|:::1
T vl Sy dw)

The density fx,_(z) is the density of X before making
the measurement, and it follows from equation (13)
that the likelihood function fiy,1x,_(w | z) is

frax._(wlz) = fe (e — B{z)) -

Due to the fact that the likelihood function (15) iz a
nonlinear function of state and measurement vectors,
the updated distribution of X;; will not be normal.
However, it may be approximated by a normal distri-
bution obtained in the following way:

1. A maximum a posteriori (MAP) estimate of state

x, that is 2 = fu., maximizing fx, (2 | ) is

computed;

(14)

(15)

Emap = argmax{fx,+{x | )} =

= argmax{ fy, x,_ (¥ | ) fx._(z)},. (16)

2. The nonlinear function h(z) is linearized at point
T = Emap, 50 that

(17)

where the matrix V2, ) is the Jacobian of func-
tion h{z} at T = Zmap.

3. Approximation (17) is substituted into (15) and the
Bayes rule {14} is then evaluated. This leads to a
normal a posterion distribution
Xiy ~ N{Zmap, Fiy). where the mean vector Zqa,
is the MAP estimate obtained from (16), and the
covariance matrix is given by

h(z) = 'h(imnp-:' Hr vh{f-.,‘j(-" = i’mapj !

=1
P;.l_ - P!_-] + vi[im.pjﬂrlvh{fq.p]] : [18}

It follows from formula (18) that after the measure-
ment update the uncertainty of the state has de-

creased.

3.2 Time update

Between two measurements, the evolution of the
state over time can be modelled in the following way:

fori=1,...,n

(19)
(20)
(21)

S-.'.{Hm}— = Si.t+

Brepan- = G + At Ie"t-|i- +
é{:q-.ﬁ.:}_ = IE}z+ + vy

Equations {19) reflect the fact that the scene 1s static,
Random vectors ji; and w; are the perturbations of
the camera position and camera speed, respectively.
Equation (20} states that the camera would stay with-
ol disturbances in movement with a constant speed
and angular speed of its rotation. g, is the deviation of
the camera position from the expected one, and w is
the deviation of the camera speed (and angular speed)
from the previous value.

Equivalently, it can be written

Xf:+m}— = 'I't+ﬁ.!.lXI+ For, W .-“-’{ﬂ.Qc}- (22}

where ®y n: 0 =

(1 ...... oo...0 0 0 Y

0. 10..00 ... 0
o] Lol L {08}

I 00...10 ... At

: — 00...0 1 ... 0

T — 00 ... 0 0 1)

The time update is provided by the following equations

(24)
(25)

i‘l{:{-ﬁ.:]— T q":-i-m.!i'tq-

Piyan- = PrraniPis®iea + Q.

Ziran— and Poyagy- are the mean and the covari-
ance of the updated probability distribution of the
state at time (t + At)—. It follows from (25) that the
uncertainty of the state (namely of the camera param-
eters in the state vector) has increased.
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Fig. 4. The structure of the square root inverse of the covariance
matrix of the state in the case of three line segments. The matrix
size is 30-by-30 elements. White areas represent zero elements.

3.3 State initialization

The a priori covariances of the unknown parame-
ters are set to (some) large values. The uncertainty
of the few initial camera positions is diminished by
the measurement updates, when a known part of the
scene 1s captured. When new lines enter the camera
view, their processing is deferred until the next image,
when the corresponding line pairs are formed. Initial
line parameter estimates are set to values obtained by
triangulation, and the initial covariances are also set
to large values. By processing subsequent images, the
uncertainty of parameters is diminishing.

4 REDUCING COMPUTATIONAL
COMPLEXITY

The most time consuming operations involved in
stochastic filtering are the maximization problem (16),
and the covariance update (18). The dimensions of
the state vector, measurement vector and covariance
matrices might be very large, for instance for 100 lines
the covariance P; has dimensions 612 x 612 elements.

To avoid computation of matrix inversions and
square roots?, we have used a procedure that updates
directly the square root of the inverse of the covariance
matrix [11]. During updates, the square roots of the in-
verses of the covariance matrices are preserved to be
square upper triangular matrices, and in our case they
will be sparse as well. Equation (18) can be rewritten
as

S8 =S5 4 Vienu)Sa Sk Viéme) (26)

where S;y, S:— and Sg are square roots of covariance
matrices as follows: P,_+1 = St]f ,_+1, Pt =875,
and R;' = S;'Sz'. Notation S~! denotes the trans-

pose of the inverse of matrix S.

There are infinitely many solutions of (26) with

respect to St]_l. One solution which can be readily
computed is

(27)

This solution does not have the same (square) dimen-
sions as the matrix S; !, however, it can be converted
by QR-decomposition into a form

5 5—1
¢+1 :Q< B+ >)

where @) is an orthogonal matrix, and S;rl 1s a square

(28)

upper triangular matrix. Hence, St_+1 1s the requested
solution of (26).

The matrix on the right hand side of equation (27)
is a (10N + 12) x (6N + 12) matrix, where N is
the number of processed line segments. The number
of floating point operations (FLOPS) needed to QR-
factorize this matrix by eg Householder transforma-
tions [5] is roughly 400 N3. QR-factorization (28) can
be performed in time linearly proportional to N, if
the sparsity of the matrices is exploited. Consider the
structure of matrices on the right hand side of equa-
tion (27), [_1, S};l and Vj(z,,,)- In the presented
algorithm the structure of S;.! is kept as it is shown
in figure 4. The depicted matrix is for the case of three
line segments with the size 30-by-30 elements (three
times 6 for each line segment plus 12 for camera pa-
rameters). The sparse structure of matrix Sp' (see
figure 5) is due to the independence of the observa-
tion noise for the different line segments. Similarly, the
sparse structure of the Jacobian Vs, ) is due to the
fact that the central projections onto the image plane
are independent of each other for two different line
segments. The factorization is performed in N pro-
cessing steps (see figure 6 for the case of three lines).
In each step a submatrix having a fixed size 22-by-18
elements is selected from the entire matrix (as indi-
cated in figure 6 by bold lines), and the submatrix is
QR-factorized as it is shown in figure 7. In this way
zeros are selectively introduced in the bottom part of
the entire matrix, and after N processing steps factor-
ization of the matrix is accomplished. The structure of
the top square part of the matrix is identical with the
structure of St (figure 4). The number of FLOPS
needed for the computation is roughly 4000 NV, thus it
is linearly proportional to the number of line segments.

Equation (26) is solved (and the above mentioned
algorithm is applied) repetitively in each iteration,

2The square root of matrix P is matrix S such that P =
S§S* . If some matrix S is a square root of P, then matrix SQ,
where Q is an orthogonal matrix, is also a square root of P.
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22x18

Fig. 7. QR-factorization of the fixed size (22-by-18 elements)
submatrix.

Fig. 8. Image of the scene.

been discussed already in section 3.1. The term fy(8)
is the probability density of the camera path. The
estimate of the parameter vector is obtained by the
maximization of the likelihood

& = arg gle«'g(fnx(y | z), (32)

which leads to a minimization problem that can be
solved numerically using the Gauss-Newton method.

Batch processing presents an increase in the number
of parameters and measurements processed in one step
when compared with the number of state variables and
measurements in each update of stochastic filtering,
and computational complexity problems have to be
addressed in a similar way as in section 4.

6 TRACKING LINE SEGMENTS

The correspondence between line segments in sub-
sequent images is provided by tracking 2-D line seg-
ments in the 2-D image plane. If the time difference

between images from a smoothly moving camera is suf-
ficiently small, the movement of line segments on the
2-D image plane is smooth too. This can be used to
predict the next position of the 2-D line segment by
a Kalman filter (see also [3] and [4]). A state vector
of a 2-D line segment contains information about the
line segment’s position, velocity and acceleration. The
predictions of the line segment’s position in the next
image are made using an assumption that 2-D lines
are moving with a constant acceleration. An actually
observed line segment is assigned to the predicted one,
if the Mahanalobis distance between the predicted and
the observed line is smaller than some threshold.

7 IMPLEMENTATION AND RESULTS
7.1 Implementation

The 3-D scene reconstruction has been implemented
in Matlab, a numeric computation and visualization
software package. Both approaches, stochastic filter-
ing and batch processing, have been implemented and
tested. The 3-D reconstruction is performed off line
and requires as an input the measurement vectors ex-
tracted from the images and the correspondence be-
tween the line segments in the images. For the 3-D re-
construction to converge correctly, there must be some
reference 3-D line segments imaged in a part of the
sequence, eg in the first two or three images. The pa-
rameters (the 3-D coordinates) of the reference line
segments are also supplied as an input.

7.2 Acquisition and preprocessing

The 3-D scene reconstruction has been tested with
an image sequence of a scene acquired in our labora-
tory. The sequence has been acquired by a black-and-
white CCD camera which was attached to a carriage
moving on a rail along a straight path. The rail was
placed slantwise above the scene, so that objects in the
scene were about 4 m far from the camera. The images
have been taken each 0.5 m of the camera trajectory.
The number of acquired images was 8. The camera was
also rotating around its axis with the speed 2 degrees
per image. As a consequence, the scene was followed
by the camera, and scene objects stayed longer in the
camera field of view when compared with a sequence
without camera rotation. The resolution of images was
512 by 512 pixels, the quantization was 256 grey value
levels.

From the acquired images, straight line segments
were extracted in the following way:

1. First, edges were detected with a Lee edge detector
[8,9]. Since the Lee edge detector is a special case
of Canny edge detector and is capable to detect
the image intensity changes along one direction, the
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Fig. 10. The result of the 3-D scene reconstruction depicted from two different viewpoints. Solid lines are the reconstructed lines,
and dotted lines are the line segments of the actual scene.

detector has been applied twice, in horizontal and
in vertical directions.

2. Straight line segments have been extracted by
search for chains of edge points in the pair of edge
detected images. The applied straight line segment
extraction algorithm has been described in [1] and
resembles the algorithm of Deriche [4]. The param-
eters of the extracted line segments are inputs of
the 3-D reconstruction algorithms.

Then, correspondences between line segments in dif-

ferent images have been established to eliminate the

effect of errors of the line tracking algorithm.

In figure 8 a grey value image of the scene is shown.
In figure 9 the extracted sequence of line images is
shown.

7.3 3-D reconstruction results

The ground through data (dimensions) of the scene
were available. The edges of the largest cube in the

scene were given accurately and served as reference
lines. The reconstructed 3-D lines are shown in fig-
ure 10, together with the lines of the actual scene. The
elements of the covariance matrix of the state were
decreasing rapidly, the standard deviations of line pa-
rameters were below 50 mm after processing the im-
ages. However, a few lines were not estimated correctly
(notice eg the bottom line of the white rectangle in the
bottom right corner of the image). The large pertur-
bation is caused by occlusions at the edge of the image
which occur in the last 4 images of the sequence, in
combination with the fact that the direction of the
camera movement 1s parallel with the line segment di-
rection. For such lines the technique is less accurate.

8 CONCLUSIONS AND FUTURE WORK

In this paper the problem of 3-D scene reconstruc-
tion from a monocular image sequence is treated. The
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problem is viewed as a problem of unknown parame-
ters estimation. T'wo techniques are presented: the first
one estimates the unknown parameters incrementally
by stochastic filtering using EKF, and the second one
estimates the parameters in a single batch as an MLE
estimate,

We have proposed an algorithm which reduces the
computation time linearly with the number of line seg-
ments in the images, in each iteration step. As a con-
sequence, it should be possible to implement the first
of the technigues in real time (this technique is incre-
mental and processes the images one at a time).

In the derivations we have made the assumption
that the distribution of random perturbations can be
approximated by a jolntly normal distribution. This
assumption iz valid when the perturbations are caused
by inaccuracy of image processing and feature extrac-
tion, however 1t 1s violated when the perturbations are
due to occlusions in the scene or at the edge of the
image plane, Such occlusions lead to rude estimation
errors, and their detection would improve the results.

The application of the techniques is not limited to
the processing of line segments, and potentially any
features which can be parameterized and extracted
from images can also be 3-D reconstructed by the tech-
Tigques.
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