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IMPLEMENTATION OF A LEARNING SYNAPSE AND A
NEURON FOR PULSE–COUPLED NEURAL NETWORKS

Pavol Tikovič — Marián Vörös — Daniela Ďuračková
∗

A new architecture of a learning synapse with on-chip learning and a neuron for pulse-coupled neural networks is presented.
The main advantages of the proposed synapse are: continuous learning, easily adjustable parameters, compact design, low
power and area consumption. This paper also contains results obtained from simulations performed with our model of a
leaky integrate-and-fire neuron. The proposed neuron works with both constant or slowly changing input voltage level (input
layer of a neural network) and pulse input (hidden layers and the output layer). Our circuits were designed in HSPICE and
implemented in CAMELEON.

K e y w o r d s: pulse-coupled neural networks, continuous learning synapse, synaptic weight, Hebbian learning rule,
integrate-and-fire neuron, threshold, action potential timing

1 INTRODUCTION

The massive parallelism predetermines artificial neural
networks (NN) for use in non-biological applications. Well
known are applications like pattern recognition, edge de-
tection, sound preprocessing, etc. A very important ques-
tion is the size and topology in those applications. A lot
of authors discuss these problems in their articles. In our
case we try to design a user-configurable system.

The main goal of this work is to model and implement
basic features of biological neurons and synapses. The
biggest advantage of our neuron is the possibility to use
constant or slowly changing input voltage (input layer of
a neural network) as well as spiking input (hidden layers
and the output layer). We reached a maximum spiking
frequency of 165 kHz for a constant input of 3.3 V. All
results presented in this paper are obtained from simula-
tions because our neuron was not fabricated on a chip yet.
The main advantages of the proposed synapse are: con-
tinuous learning, easily adjustable parameters, compact
design, low power and area consumption.

Neural networks contain large amounts of connections
that highly increase the area consumption. This is the
most serious restriction of using neural networks. The
best way to solve this problem is using multi-layer in-
tegrated circuits or using bulk for transistors fabrication.
This technology would allow us to increase the size of the
network and of course its capabilities. Unfortunately this
technology is not available at present time.

2 BIOLOGICAL SYSTEMS

In biological networks two (pre-synaptic and post-
synaptic) neurons are connected through a synapse and

they communicate by firing spikes. There are many differ-

ent types of neurons with a very complex structure. Neu-

rons and their interconnections build a dense net: more

than 104 neuron cells per square millimeter and some

kilometers of interconnections.

Neurons receive input through a dendrite tree. The

body of a neuron (soma) is covered by a membrane. This

membrane has different types of ionic channels across it.

The output part of a neuron is formed by an axon. The

axon can branch to many neurons (axonal arborization)

and build connections in form of synapses. In humans the

axon can be up to 1 m long.

When a neuron is stimulated, the membrane poten-

tial rises. There is a threshold value. When this value

is reached, an action potential is generated at the axon

hillock and propagated along the axon. Immediately after

that, the threshold of excitation rises theoretically to in-

finity and after a small time interval falls down exponen-

tially. During this interval, called the refractory period,

the neuron is not able to fire a spike. For more informa-

tion see [1].

Synapses define the strength of connection between

two neurons. Knowledge, in artificial neural networks, is

stored in form of the synaptic weight. The learning rule

is very important for learning networks. During learning

the synaptic weight is changed. In pulse- coupled (PC)

NN Hebbian learning rule is used. The weight increases,

when synchronized spikes are generated ie a spike fired

by a pre-synaptic neuron is followed by a spike of a post-

synaptic neuron within a small delay called the learning

window. Otherwise the weight decreases. In biological

neural systems a grow effect in synapses causes changes

of efficacy (see [2]).
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Fig. 1. Block schematic of our integrate-and-fire
neuron implementation

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2 2.5 3 3.5
voltage (V)

frequency (kHz)

Fig. 2. Relation between spike frequency at the output
of the neuron and the constant input voltage level at the

excitatory synapse output

3 MATHEMATICAL MODEL OF AN

INTEGRATE AND FIRE NEURON

The basic electric circuit of an integrate-and-fire model
consists of a capacitor C connected in parallel with a
resistor R . If there is a current I(t) that flows through
this circuit, it is divided into two parts. One part will
charge the capacitor and the second part will flow through
the resistor. We will obtain this equation

I(t) =
u(t)

R
+ C

du

dt
, (1.1)

where u is the voltage across capacitor C . We can define
a time constant of a leaky integrator τm = RC and write

τm

du

dt
= −u(t) + RI(t) . (1.2)

Further we refer to u as membrane potential and τm

as time constant of a neuron membrane. Equation (1.2)
is a first order linear differential equation and cannot
describe the behavior of a neuron generating an action
potential. To describe the essence of pulse emission we
add a threshold condition.

Threshold crossing u
(

t(f)
)

= ϑ is used to define the

firing time t(f) . The shape of the action potential is not

described explicitly. Immediately after t(f) the potential
is reset to a new value of ur ,

lim
δ→0

u
(

t(f) + δ
)

= ur . (1.3)

For t > t(f) the circuit dynamics is described by (1.2)
until a new threshold crossing occurs. The combination of
threshold crossing (1.2) and reset (1.3) defines the basic
integrate- and-fire model. To show the function of the
model we assume a modeled neuron with constant input
current I0 and resting potential ur = 0. We assume the

first spike occurred at t = t(0) . We can find the trajectory
of the membrane potential by integrating (1.2) with the

initial condition u
(

t(0)
)

= ur = 0.

The solution is

u(t) = RI0

[

1 − exp
(

−
t− t(0)

τm

)

]

. (1.4)

For RI0 < ϑ no more spikes can occur. For RI0 > ϑ
the membrane potential will cross the threshold ϑ at the

time t(1) which can be seen from the threshold condition

ϑ = RI0

[

1 − exp
(

−
t(1) − t(0)

τm

)

]

. (1.5)

The solution of (1.5) for time interval T = t(1) − t(0) is

T = τm ln
RI0

RI0 − ϑ
. (1.6)

After the spike is fired at time t(1) , the membrane poten-
tial is reset to ur = 0 and the integration process starts
again. With a constant input current I0 a neuron of the
integrate-and- fire type fires regularly with a period of T
given by (1.6).

In the next step we add an absolute refractory period.

After a spike is fired at time t(f) we clamp the membrane
potential to ur = 0 and we hold this value for a time

period of δabs . At time t(f) + δabs we continue with
integrating (1.2) with an initial value of u = ur . This
is a modification of the biological behavior. Other neuron
models set the value of the membrane potential u equal to
−K < 0 or to a value lower than the resting potential (for
biological neurons). Our modification is based on the fact
that we use only non-negative voltages and the resting
potential is set to zero.

Like before, we can derive the dynamics of the model
for a constant input current I0 . If RI0 > ϑ , our neuron
will fire regularly. For an absolute refractory period the
inter-spike interval will be longer by δabs compared with
(1.6). Usually we determine the average firing frequency
as υ = 1/T , so

υ =

[

δabs + τm ln
RI0

RI0 − ϑ

]

−1

. (1.7)
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Fig. 3. The shape of a spike generated at the output of our neuron

4 NEURON IMPLEMENTATION

Since in real neural networks synapses are excitatory
or inhibitory, we use two different kinds of synapse out-
puts connected to our neuron. We performed our simu-
lations with one excitatory synapse output and one in-
hibitory synapse output as it is shown in Fig. 1. The
implemented neuron can work with both constant and
slowly changing input signals. The value of the membrane
potential depends on the input signal. It should be ap-
proximately equal to the sum of excitatory and inhibitory
inputs. This value is stored as charge on a capacitor. For
constant or slowly changing input signals our neuron fires
with a frequency given by the input signal level. Figure 2
shows the relation between spike frequency at the output
of the neuron and the value of the constant input voltage
at the excitatory input.

In a biological neuron the membrane potential de-
creases to the value of the resting potential when no exci-
tatory spikes arrive. This is achieved by slowly discharg-
ing the membrane capacitor. In our case it is a benefit
that the parasitic leak-current that discharges the capac-
itor does not have a bad influence on the function of the
circuit. It is obvious that we do not need to add a re-
fresh circuit to refresh the voltage across the membrane
capacitor.

The supply voltage of 3.3 V allows low energy con-
sumption of the circuit. Our neuron implementation
fires spikes when constant input voltage in the range
0.48 V–3.3 V is connected to the output of the excita-
tory synapse. Figure 3 shows the shape of the generated
spikes. There is no hyper-polarization included here (we
assume only nonnegative voltages). Typical action poten-
tial in biological neural networks lasts for 1–2 ms [6]. Our
action potential lasts approx. 200 ns (half amplitude du-
ration). Amplitude of the spike was chosen to be nearly
equal to the supply voltage. Synapses used in artificial
neural networks together with our neurons should mod-
ify the amplitude of spikes only downwards.

Input voltage lover than 0.48 V is not able to charge
the membrane capacitor above the threshold level of
1.5 V, which was the value used for our simulations. There
is a minimum frequency for a given amplitude. Spikes can
be generated only above this frequency.

For constant input voltage level and for pulse input
there is a saturation of the output spikes frequency. The
maximum frequency of the output spikes is given by the
refractory period.

5 NEURAL CODING

The problem of coding in biological neural networks
has not been solved yet. We assume that the signal in
a neural network is not only coded by the mean firing
rate. Many biological neural systems use the timing of
single action potentials to encode information [7, 8]. Re-
sults from experiments performed on monkeys show that
mainly in the optical nerve there is not enough time to
encode information by spike frequency. We performed a
simulation to show the relation between the time a neu-
ron needs to fire the first spike (time to first spike, TFS)
and the inter-spike interval (ISI).

In biological neural networks the amplitude of spikes
arriving at the neuron’s membrane is not constant. We
performed this simulation only to show the linear char-
acter of the relation between inter-spike interval and the
time to first spike for a non-changing stimulus.
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Fig. 4a. The amplitude of input spikes used in simulation was
2 V, input spike frequencies were chosen from the range. 166.7 kHz–

3.3 MHz.
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Fig. 4b. The frequency of input spikes used in simulation was
625 kHz, input spike amplitude was swept within the range 1 V–
3.3 V (at this frequency, input spikes with an amplitude lower than

1 V are not able to fire the neuron).
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We used two different approaches:

• We changed the frequency of input spikes from the ex-
citatory synapse with a constant amplitude (amplitude
chosen for our simulation = 2 V)

• We changed the amplitude of input spikes from the ex-
citatory synapse with a constant frequency (frequency
chosen for our simulation = 600 kHz)

In Fig. 4 it is easy to see that the relation between
ISI and TFS is linear in both cases, which confirms our
assumption that the information about the analog signal
is encoded in TFS as well as in ISI.

6 MATHEMATICAL

DESCRIPTION OF LEARNING

The strength of connections between neurons in the
brain is permanently changed according to the Hebbian
learning rule. When the axon of cell A has an exciting
influence on cell B and it causes cell B to fire repetitively,
the efficacy of cell A will rise. We can write this rule as the
product of activities of both neurons times the learning
rate

∆wij = ηok+1
i ok

j

where η is the learning rate, ok+1
i is the output of the

i-th neuron from the k + 1-th layer and ok
j is the output

of the j -th neuron from the k -th layer.

Assume that a neuron receives input from N > 1
synapses with an efficacy Ji (describing the influence of
weight on a signal), where 1 ≤ i ≤ N and the learning
window W (s) is a real function. The Hebbian learning
rule is described by three basic assumptions:

• tmi is the time when the m-th action potential reaches
the i-th synapse. The action potential causes a weight
change win that can be positive or negative

• tn is the n-th action potential at the output of a
neuron, that causes a weight change wout that can
be also positive or negative

• the time difference s = tmi − tn between an action
potential at the input and an action potential at the

output of a neuron causes a function change W (s)
during the learning window W

If at time t the efficacy is Ji(t), than the difference

∆Ji(t) = Ji(t + τ) − Ji(t)

during the time interval τ is calculated as a sum of con-
tributions from input and output spikes across the time
interval [t, t + τ ] . For the spike-train at the input we can
write the following equation

Sin
i (t) =

∑

m

(

t − tmi
)

.

and similarly for the spike train at the output

Sout(t) =
∑

n

(

t − tni
)

.

Then the efficacy is

∆Ji(t) =

t+τ
∫

t

dt′
[

winSin
i (t′) + woutSout(t′)

+

t+τ
∫

t

dt′′W [t′′ − t′]Sin
i (t′′)Sout(t′)

]

.

Functions Sin
i and Sout are called firing rates and τ is

the time duration of the learning window.

7 A LEARNING SYNAPSE

We simulated this synapse connected between two neu-
rons in order to know its behavior. We assume that the
neuron presented by Ota and Wiliamowski [3] is suitable
for our synapse. Figure 5 shows the main idea of this
neuron. This neuron works in current mode. The charge
stored on capacitor C1 corresponds with the charge of
sodium ions accumulated on the outer side of neuron
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Fig. 5. Principle of the neuron used (redrawn
according to [3]
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Fig. 6. Block diagram of the designed learning synapse
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membrane. The charge stored on capacitor C2 corre-
sponds with the charge of potassium ions inside the neu-
ron. The time constant C1R1 is smaller than time con-
stant C2R2 , because the potential of sodium ions changes
faster than the charge stored on capacitor C2 .

In a stable case transistors M1–M3 are off. When the
potential on capacitor C1 exceeds the potential on capac-
itor C2 plus threshold voltage of transistor M1 (threshold
of excitation), transistors M2 and M3 that are connected
as a current mirror switch to the active region. Positive
feedback through transistors M1–M3 causes charging of
capacitor C2 and the potential between emitter and gate
of transistor M1 falls down. This will switch all transis-
tors off. The neuron does not respond to any incoming
spikes till the potential on C1 exceeds the threshold of
excitation. Unfortunately, output frequencies of the pre-
sented neuron are bigger than frequencies used in biolog-
ical systems. The response to maximum constant voltage
is about 750 kHz (in biological systems it is around hun-
dreds of Hz).

During the learning process synaptic weights are set to
get the desired function of NN. In this work the synapse
learns during a time interval that is called “learning win-
dow”. The duration of a learning window was set to 39µs.
If the number of synchronized spikes within the learning
window is bigger than the threshold of learning (repre-
sented by the NMDA signal), the weight increases. Oth-

erwise it decreases. The weight is modified in both di-
rections in steps of approximately. 15 mV. NMDA and
the duration of the learning window are parameters of
learning and are adjustable externally.

As a memory element we use a capacitor because float-
ing gate transistors need a high voltage to change the
amount of stored charge. It means to design a special
circuit which would enlarge our synapse’s area consump-
tion. The gate oxide of a floating gate transistor is de-
graded after a few thousand learning cycles, which is not
acceptable for a continuously learning synapse. Certainly
we have to design a refresh circuit to hold the charge
stored on the memory capacitor. The weight is stored as
a charge on the memory capacitor in 256 levels, which
corresponds to 8 bit precision. The maximal potential of
the weight is 5 V and minimal is 1.2 V. The maximal
current through our synapse is 100 µA. We use the maxi-
mum supply voltage and therefore we use transistors con-
nected in sub-threshold region as loads. This has reduced
the maximal synapse current. Figure 6 shows a block di-
agram of the presented synapse. It is connected between
one pre-synaptic and one post-synaptic neuron.

The learning synapse shown in Fig. 6 has four inputs:
activity of pre-synaptic and post-synaptic neuron, NMDA
and clock. The period of clock signal defines the weight
update rate. The memory capacitor is charged and dis-
charged by current pulses during half amplitude duration.

Fig. 7. Simulation results on weight adaptation of a synapse. Pre-synaptic neuron was stimulated with constant voltage level of
5 V. NMDA was set to 0.75 V and the initial voltage across the memory capacitor was 2.2 V.
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The function of blocks in the block diagram is explained
below.
• Hebbian rule is the implementation of the Hebbian

learning rule. There is a spike generated at the output
of this sub-circuit when the delay between activity of
post-synaptic and pre-synaptic neuron is smaller than
350 ns. If there is a bigger delay at the output, spikes
are narrower and when the delay is too big (about
700 ns), there are no spikes at the output.

• f/V converter converts the spike rate at the output
of the Hebbian rule block to the corresponding voltage.

• Comparator compares the voltage at the output
of the f/V converter with NMDA and determines
whether the weight should increase or decrease. The
weight increases when voltage from f/V converter is
bigger than NMDA.

• Weight update changes the weight stored on the
memory capacitor. The weight is changed always when
the clock signal is active.

• Refresh sub-circuit compensates the leakage current.
• Multiplier relays effect of weight on signal between
neurons by multiplying the output spike of the pre-
synaptic neuron with the weight.

Figure 7 shows simulation results of a synapse and two
neurons. Parameters for simulations were: half amplitude
duration of clock signal = 1 µs, the period = 40 µs, volt-
age at the input of pre-synaptic neuron = 5 V and initial
voltage on memory capacitor = 2 V. At the bottom of
the figure is the output from the f/V converter and the
NMDA signal ie inputs of the comparator. The voltage
change across the memory capacitor is shown in the up-
per part of the picture. A stable state of weight is shown,
which lasts for more than 75 learning windows. Simula-
tions were done in the HSPICE from Metasoft.

The implementation of our learning synapse was real-
ized in 0.7 µm Alcatel MIETEC technology. The whole
area occupied by synapse is about 104 square µm, with-
out supply and GND wires.

8 CONCLUSIONS

A new learning synapse and a neuron for pulse cou-
pled neural networks have been presented. The proposed
neuron works with both constant or slowly changing in-
put voltage level (input layer of a neural network) and
pulse input (hidden layers and the output layer). It is

around 104 -times faster than the biological neuron. Its
applications could be in the field of image processing. For
medical applications the neuron’s parameters need to be
changed.

The behavior of the presented synapse is very close
to its biological counterpart. Learning is realized using
the Hebbian learning rule and the weight is stored on a
memory capacitor in more than 256 levels. Advantages
of the presented synapse are: continuous learning, low
area consumption, low power consumption, easy and fully
externally adjustable learning parameters and low cost.

The presented synapse has a smaller area and power
consumption than the synapse presented in [7]. Lehman’s
synapse uses leakage current for its activity and therefore
does not need a refresh circuit.
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