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DISCRETE–TIME VARIABLE STRUCTURE CONTROLLER

SYNTHESIS FOR THIRD ORDER OBJECTS WITH

FINITE ZERO USING DELTA TRANSFORM

Olivera Iskrenović-Momcilović
∗

Analyzed in this paper is the variable structure system (VSS) to control the third order object with finite zero. First, a

discrete mathematical model of the system over the canonical space, using the delta transform, was given for the discussed

VSS system. Then, decomposition of the canonical space to subspaces with and without control by introducing the output
variable delta transform was carried out. Finally, based on the quasi-sliding mode existence conditions, relations to provide

this mode over the canonical subspace with control are derived. One illustrative example is used to demonstrate the discrete-

time variable structure (DTVS) controller synthesis procedure using the delta transform.
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1 INTRODUCTION

The discrete-time variable structure systems (DTVSS)
are in a studying phase. Dote and Hoft [1] are the first to
define the reaching and sliding mode existence conditions
on the switching hyperplane g(kT ) = 0 into the form:
[g(k + 1)T ) − g(kT )]g(kT ) < 0. Milosavljević [2] demon-
strates that this condition is necessary, but not also suf-
ficient, for the quasi-sliding mode existence. Szarpturk et

al [3] define a necessary and sufficient condition in the

following form:
∣∣g

(
(k + 1)T

)∣∣ < |g(kT )| and Furuta [4]
in the form:

∆v(kT ) < 0 ⇔ v
(
(k + 1)T

)
−v(kT ) < 0 ;

v(kT ) =
1

2
[g(kT )]2 .

(1)

Mention should be made here that Gao et al [5] deviate
from the usual procedure to first define the condition of
reaching and sliding mode existence and then to deter-
mine the control. First, they define the “reaching law” in
a discrete form:

g
(
(k + 1)T

)
−g(kT ) = −qT − ξT sgn

(
g(kT )

)
,

q > 0 , ξ > 0 , 1 − qT > 0 ,

which provides all the basic features of the sliding mode
and then define the control. Koshkouei and Zinober [6]
proposed discrete-time sliding mode controllers with a
lattice-wise hyperplane, where sufficient conditions for
the existence of the sliding mode are given by:

g+
(
(k + 1)T

)
< g+(kT ) , g−

(
(k + 1)T

)
> g−(kT ) .

Misawa [7] suggested to use a boundary layer and pro-
posed a discrete-time sliding mode control, which ensures
the attractiveness and invariance of the boundary layer.
Some DTVS controllers were designed with discretizing
continuous-time variable structure controllers [8] or with

observer [9]. Furuta and Pan [10] proposed a PR-sliding

sector for a lazy control and a chattering free controller.

Finally, in [11] and [12], they defined the invariant PR-

sliding sector and proposed the DTVS controller with the

invariant sliding sector.

There were no attempts in the stated papers in the

field of DTVSS to analyze the possibilities of implement-

ing sliding modes (quasi-sliding modes) for objects with

finite zeros. The problem of implementing sliding modes

in analogue VSS, for such objects, has been discussed in

several papers, the results of which have been summed

up in monographs [13, 14]. It was pointed out there that

due to the differentiable features of the object the sliding

mode could not be implemented by the control suffer-

ing from break, which is characteristic of VSS. Because

of that, two methods of implementing VSS with sliding

operating modes were proposed:

(i) the control break signal to be passed through the

first-order low-pass filters cascade [14, 15],

(ii) to decompose the starting system to subsystems

with and without control by introducing the output

variable differentials so that the sliding mode can

be organized in the subspace with control [13].

This paper will make an attempt to define a new and

simple DTVS controller synthesis. The first part of the

paper provides a system mathematical model in the con-

trollable canonical subspace, using the delta transform

for finding the object discrete transfer function. The sec-

ond part of the paper determines conditions of the quasi-

sliding mode existence on the chosen switching hyper-

plane using a Lyapunov function. Then, a method is pro-

posed to improve the DTVSS synthesis and the DTVS

controller robustness to the object parameters uncertain-

ties (matching conditions). At the end of the paper, an

illustrative example to control the third order object with

finite zero is given.

∗ Research&Development Institute IRIN Bulevar Cara Konstantina 80-86, Nis, Serbia and Montenegro

ISSN 1335-3632 c© 2004 FEI STU
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2 PROBLEM STATEMENT

Let us have a continuous-time controlled object con-
trollable, observable and minimum phase. It may be de-
scribed by the state-space model in normal controllable
canonical form by triplet (A,b,d) .

ẋ(t) = Ax(t) + bu(t) , x ∈ <3 ,∈ < ,

y(t) = dx(t) , y ∈ < .

The equivalent discrete-time state-space model may be
obtained by different methods. We will choose the delta
transform for the following reasons:

(i) its simplicity,

(ii) unchanged form of the mathematical model in
continuous-time and discrete-time,

(iii) robustness of the VSS algorithms to the object pa-
rameters uncertainties,

(iv) easier DTVS controller synthesis.

Let sampling time (T ) be chosen so that the discrete-
time model of the given object will be minimum phase.
Its delta model is:

δx(kT ) = Aδ(T )x(kT ) + bδ(T )u(kT ) , x ∈ <3 , u ∈ < ,

y(kT ) = dδ(T )x(kT ) , y ∈ < . (2)

δ transform is the Euler approximation of difference. Here
δx(kT ) stands for first difference:

δx(kT ) =
x
(
(k+)T

)
−x(kT )

T
, T 6= 0 .

. Since the pair (A,b) is controllable and (Aδ(T ),bδ(T )

are analytic functions of T , the pair
(
Aδ(T ),bδ(T )

)
is

controllable for almost all choices of T . Matrices A and
Aδ(T ) are square 3×3 matrices in companion form with
elements ai and ai(T ) , i = 0, 1, 2 respectively, where

a0(T ) = 1 +

2∑

i=0

(−1)iaiT
3−i,

a1(T ) = 3 +

2∑

i=0

(−1)iai T 3−i, a2(T ) = −3 + a2T .

Vectors b and bδ(T ) are same (b = bδ(T ) = [0 0 1]> ).
Vector d is a three-dimensional vector with two non-
singular elements. Elements of three-dimensional vector
dδ(T ) are obtained by the following relations:

d0(T ) =

1∑

i=0

(−1)idiT
3−i, d1(T ) = d1T

2 .

The difference p = n − m = 3 − 1 = 2 will be called
the system relative degree. Using the method given in
[13] for the continuous-time systems, successively finding

p times the first difference of the output variable y(kT ) ,
the canonical subspace in the following form:

δy(1)(kT ) = dδ(T )[Aδ(T ) − δI]x(kT ) ,

δy(0)(kT ) = y(kT ) ,

δy(2)(kT ) = dδ(T )[Aδ(T ) − δI]2x(kT )

+ dδ(T )[Aδ(T ) − δI]bδ(T )u(kT )

(3)

will be composed. For simplicity, in the future explana-
tion dδ(T ) , bδ(T ) and Aδ(T ) will be dδ , bδ and Aδ ,
respectively.

The aim of the control system synthesis is to select
control u(kT ) so that for any arbitrary initial condition
the stable discrete-time sliding mode on the hyperplane

g(kT ) = cy(kT ) , (4)

in the two-dimensional subspace will occur, where

c = [c 1] , y(kT ) =
[
y(kT ) δy(1)(kT )

]
.

3 SYNTHESIS OF THE DTVS CONTROLLER

The system type regulator (r = const) is analyzed in
this paper. Let the sliding hyperplane over the canonical
subspace be given by relation (4). To choose the sliding
hyperplane parameter c , let us determine the equivalent
control ueq(kT ) from the condition [4] for the system to

remain on the sliding hyperplane g
(
(k + 1)T

)
= g(kT )

for each k , that is, from the condition that: g(kT ) =
0, δg(kT ) = 0. Finding the first difference δg(kT ) of
the expression (4), then substituting the relation (3) and
rearranging:

δg(kT ) =
[
cdδ(Aδ − δI) + dδ(Aδ − δI)2

]
x(kT )

+ dδ(Aδ − δI)bδu(kT ) (5)

is obtained. The expression in square brackets of rela-
tion (5) is a 3-dimensional vector which will be denoted
geq . Let h = dδ(Aδ − δI)bδ , then relation (5) becomes:
δg(kT ) = geqx(kT ) + hu(kT ) . The equivalent control is

ueq(kT ) = −h−1geqx(kT ) .

Now, the discrete-time system model (2) with the
equivalent control assumes the following form:

δx(kT ) = Aδx(kT ) + bδueq(kT )

=
(
Aδ − bδh

−1geq

)
x(kT ) = Aδ eqx(kT ) .

Parameter c of the sliding hyperplane (4) is determined
in such a way that the system

x(kT ) = Aδ eqx(kT ) ,

0 = cx(kT ) ,

c = [c1 c2 c3] = c
[
d>

δ

(
dδ(Aδ − δI)

)>]>
,
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Fig. 1. Step responses of the system for parameters rated values of

the object and for the case without (1) or with (2) the proportional

controller
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Fig. 2. Step responses of the system for parameters borderline

values of the object and for the case without (1) or with (2) the

proportional controller

is stable over the complete canonical space (over the sub-
spaces both with and without control), that is, that the
roots of the system characteristics equation
det(δI − Aδ eq) = 0 are modulo ≤ 1.

To determine control u(kT ) , the same idea as that in
[15] is used. Starting from relations (3), first the expres-

sion for g
(
(k + 1)T

)
is found in the following form:

g
(
(k + 1)T

)
= [cdδAδ + dδ(Aδ − δI)Aδ]x(kT )

+ dδ(Aδ − δI)bδu(kT ) . (6)

The expression in square brackets of relation (6) is a
three-dimensional vector of types which will be denoted
−g . Then, relation (6) becomes:

g
(
(k + 1)T

)
= −gx(kT ) + hu(kT ) . (7)

To fulfil the condition g
(
(k + 1)T

)
= 0, it is necessary

that:
u(kT ) = h−1gx(kT ) . (8)

. Bearing this in mind, the switching part should also be
introduced into the expression (8) for u(kT ) to provide
convergence of the system state trajectories towards the
sliding hyperplane.

To determine the control switching part u(kT ) , the
necessary and sufficient condition of the reaching and
sliding mode existence, defined by Szarpturk et al [3]
or Furuta [4], can be used. Starting from condition (1),
Theorem 1 is reached:

Theorem 1. System (3) is stable if the control

u(kT ) = h−1gx(kT ) + h−1fx(kT ) + h−1βg(kT ) , (9)

where: β is a constant, |β| < 1 , β 6= 0 , f = [f1 f2 f3]
— commutation coefficients such that:

|f+
i | = |f−

i | = fi

=

{
0 |g(kT )| ≤ γ(kT ) ,

−f sgn
(
βg(kT )xi(kT )

)
|g(kT )| > γ(kT ) ,

i = 1, 2, 3 , (10)

γ(kT ) =
f

2|β|

3∑

i=1

|xi(kT )| ,

0 < f < 2|β| max
1≤i≤3

(
c

[
d>

δ

(
dδ(Aδ − δI)

)>]>)
.

(11)

P r o o f . Based on relation (9) it can be concluded
that the sliding area: Φ = {x(kT ) | |g(kT )| ≤ γ(kT )}
has been defined and that the canonical subspace of the
state is divided into two areas:

1) The area outside the sliding area Φ, where
|g(kT )| > γ(kT ) .

Based on relation (9), expression (7) obtains the following
form:

g
(
(k + 1)T

)
= βg(kT ) + fx(kT ) . (12)

Multiplying both sides of relation (12) by βg(kT ) :

βg(kT )g
(
(k + 1)T

)
= β2[g(kT )]2 + βg(kT )fx(kT ) (13)

is obtained. Taking into account relations (10) and (11),
relation (13) becomes:

βg(kT )g
(
(k + 1)T

)
−β2[g(kT )]2 = −2β2γ(kT )|g(kT )| .

If γ(kT ) < |g(kT )| , the βg(kT )g
(
(k +1)T

)
−β2g(kT )2 >

−2β2[g(kT )]2 , that is |g
(
k + 1)T

)
| < |β||g(kT )| .

2) The area within the sliding area Φ, where
|g(kT )| < γ(kT ) .

Based on relations (9) and (10), expression (7) assumes

the following form: g
(
(k + 1)T

)
= βg(kT ) .

If, for both areas over the canonical subspace of the
state, a discrete Lyapunov function in the form
v(kT ) = [g(kT )]2 is chosen, then v

(
(k + 1)T

)
≤ β2v(kT )

for |β| < 1. Based on this relation, it can be concluded
that g(kT ) decreases, that is lim

k→∞
g(kT ) = 0. The vector

components x(kT ) are stable. Thus, system (3) is stable
both inside and outside the sliding area Φ.
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4 DTVS CONTROLLER SYNTHESIS

IMPROVEMENT METHOD

Applying the given algorithm, the process of establish-
ing the assigned value is slowly implemented. To speed
up the process, a combination of parallel action of the
conventional proportional controller and the given DTVS
controller is recommended as a possible variant. To deter-
mine control u(kT ) , the same idea (relation (7)) as in the
previous section is used. Starting from the necessary and
sufficient condition (1) of the reaching and sliding mode
existence, Theorem 2 is reached:

Theorem 2. System (3) with proportional controller is
stable if the control is

u(kT ) = h−1gx(kT ) + h−1fx(kT ) + h−1βg(kT )

+ h−1prege(kT ) , (14)

where: preg is a proportional gain preg > 0 ,
e(kT ) — error signal e(kT ) = r− y(kT ) = r−dδx(kT ) ,
f = [f1 f2 f3] — commutation coefficients such that:

|f+
i | = |f−

i | = fi

=

{
0 |g(kT )| ≤ γ(kT ) ,

−f sgn
(
βg(kT )xi(kT )

)
|g(kT )| > γ(kT ) ,

i = 1, 2, 3 ,

γ(kT )=
(f + d)

2|β|

3∑

i=1

|xi(kT )| , d = −pregdδ = [d1 d2 d3] ,

|di| < d , i = 1, 2, 3 , d < f < 2|β| max
1≤i≤3

ci − d .

The proof of Theorem 2 is the same as that of Theo-
rem 1, so that there is no need to repeat it.

5 DTVS CONTROLLER ROBUSTNESS

Let the system be given in the perturbed condition in
the following form:

δx(kT ) = Aδx(kT ) + ∆Aδx(kT ) + bδu(kT ) + f (kT ) ,

(15)
where: Aδ and bδ — the matrices obtained using the
delta transform, ∆Aδ — the system parameter varia-
tions, and f(kT ) — the external disturbance.

The matching conditions are assumed by [16]:

∆Aδ = bδÃ , Ã — a row vector,

f (kT ) = bδ f̃ (kT ) , f̃ — a scalar.

Then, relation (15) becomes:

δx(kT ) = Aδx(kT ) + bδ

(
u(kT ) + Ãx(kT ) + f̃(kT )

)
.

(16)

Based on relation (16) it can be concluded that the con-
trol and disturbance vectors are co-linear, that is the in-
variance property applies to the parametric and external
disturbances. Now, the control (9) becomes:

u(kT ) = h−1gx(kT ) + h−1fx(kT )

+ h−1βg(kT ) − h−1
Ax(kT ) − h−1f̃(kT ) . (17)

In relation (17), Ã and f̃ are unknown, so that the con-
trol in this form cannot be implemented and the invari-
ance property does not apply any more. Let the values

Ã , f̃ be replaced with Ac and fc , respectively, for which
the reaching and existence condition of the sliding mode
is fulfilled, the control (4) is

u(kT ) = h−1gx(kT ) + h−1fx(kT )

+ h−1βg(kT ) − h−1
Acx(kT ) − h−1fc(kT ) . (18)

To determine Ac and fc , the expression for g
(
(k + 1)T

)

is found in the following form:

g
(
(k+1)T

)
= (−g +∆g)x(kT )+hu(kT )+ef (kT ) (19)

where: ∆g = dδ1(Aδ + ∆Aδ) + g , e = dδ1 + dδ2 ,

dδ1 = cdδ + dδ(Aδ + ∆Aδ − δI) , dδ2 = cdδ .

Using relations (18), expression (19) becomes

g
(
(k + 1)T

)
= fx(kT ) + βg(kT )

+ ∆gx(kT ) − Acx(kT ) + e f (kT ) − fc(kT ) . (20)

To simplify expression (20), the following new parameter
uncertainties and external disturbances:

A(x(kT ) = ∆g x(kT ) , Ac

(
x(kT )

)
= Acx(kT ) ,

f(kT ) = e f (kT ) , f c(kT ) = fc(kT ) .

are defined. Let the boundaries A and f be known and
respectively given:

Amin < A < Amax , fmin < f < fmax .

The choice of Ac and fc is done to ensure that the sign
of the incremental g(kT ) of (20) is opposite to the sign
of g(kT ) . Therefore a practical choice is

for g(kT ) > 0

Ac = Amax , f c = fmax or Ac = Amax , f c = fmax ,

for g(kT ) < 0

Ac = Amin , f c = fmin or Ac = Amin , f c = fmin .

Now, the control (18) can be fully implemented because
all the parameters are known. The previous analysis of
the system robustness has shown that the ideal slid-
ing mode is invariant to parametric and external distur-
bances, while the real sliding mode does not possess that
property of invariance because system (15) with control
(18) is always dependent on the disturbances.
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6 ILLUSTRATIVE EXAMPLE

To verify the relations obtained for the DTVS con-
troller synthesis, regulation of a third order object with
finite zero, the parameters of which have optional val-
ues 5 ≤ a0 = a2 ≤ 7, 10 ≤ a1 ≤ 12, 0.5 ≤ d0 ≤ 1.5,
19.5 ≤ d1 ≤ 20.5 has been simulated on a PC. The dis-
cretization period T = 30 ms is chosen so that:

– the Theorem of sampling will be fulfilled

– the discretization period will be less of minimum ob-
ject time constants (T < T1 = 1 s, T < T2 = 0.5 s,
T < T3 = 0.33 s)

– the discrete-time model of the object will be minimum
phase.

Applying the Euler method for the selected discretization
period, the DTVSS model with the parameters: −0.86 ≤
a0(T ) ≤ −0.79, 2.58 ≤ a1(T ) ≤ 2.71, −2.85 ≤ a2(T ) ≤

−2.79, −8.235 ·10−4 ≤ d0(T ) ≤ 1.035 ·10−4 , 4.5 ·10−4 ≤

d1(T ) ≤ 13.5 · 10−4 is obtained. Based on (3), the system
model over the two- dimensional subspace is

δy(1)(kT ) = [3.6 − 12.6 9] 10−4x(kT )

δy(2)(kT ) = [3.867642 − 7.6491 3.78] 10−4x(kT )

+ 9 · 10−4u(kT ) .

The control u(kT ) according to Theorem 1 in the form
(9), where:

h = 9 · 10−4, f = 72 · 10−6, β = 0.045 ,

g = [−7.467642 27.4491 − 30.78] · 10−4
(21)

is determined.

As a possible improvement variant, a combination of
parallel action of the conventional proportional controller
and the given DTVS controller is recommended. The

proportional gain preg = 0.04 is determined in such a

way that the system is stable over the complete canoni-

cal space, that is the roots of the system characteristics

equation are modulo ≤ 1. The control u(kT ) according

to Theorem 2 has the form (14), where: f = 0.4 · 10−4

and g , h and β are as those in relation (21). The sim-

ulation results are shown in the form of step responses

(Fig. 1), controls (Fig. 3) and sliding hyperplanes (Fig. 5)

of the system for the case DTVSS without (settling time

is 3.49 s) and with the proportional controller (settling

time is 2.069 s). Based on the results obtained, it can be

concluded that the process of establishing the assigned

value is sped up.

For the parameters borderline values of the object, the

simulation results are shown in the form of step responses

(Fig. 2), controls (Fig. 4) and sliding hyperplanes (Fig. 6)

of the system for the case of DTVSS without (settling

time is 3.544 s) and with the proportional controller (set-

tling time is 2.071 s). Based on the results obtained it can

be concluded that the system is still stable and that the

changes in step responses of the system are only reduced

to a slower establishment of the balanced state. Also, it

can be said that DTVSS with the proportional controller

is more robust because its output variable changes for

the borderline values are less with reference to the rated

parameter values of the object.

The impact of the external disturbance has been con-

sidered supposing that the external disturbance of the

constant intensity 0.1 over the interval from 4.0 s to 4.4 s

affects the object. The results obtained show that the

external disturbance effects are relatively quickly elimi-

nated. Also, it can be said that DTVSS with the propor-

tional regulator is more robust because the changes on

the output variable diagram are lesser.
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7 CONCLUSION

The paper analyzes the conditions of generation of the
quasi-sliding (zigzag) mode movement in DTVSS in the

case of a 3rd order object. In an illustrative example, the
DTVSS synthesis procedure is shown with and without
the classical proportional controller, that is, reaching and
sliding mode existence relations have been derived. Based
on a check-up, it has been concluded that the proposed
control method is possible and that it yields good results
(zero error in the steady state, stability robustness) as
well as that the DTVSS characteristics in combinations
with the conventional proportional controller are better
than those of the traditional DTVSS. Thus, it means that
parallel combination of the variable structure algorithms
and the proportional type classical algorithm is possible.
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