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EDDY CURRENT LOSSES IN TRANSFORMER
LOW VOLTAGE FOIL COILS

Vladimı́r Zúbek
∗

The paper deals with eddy current losses in transformer low voltage foil coils, where the measured value of the load loss
is usually much higher than the one computed by standard procedures. The work brings results explaining analytically the

source of the discussed loss and formulas, and a procedure allowing to get results of sufficient preciseness.
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1 INTRODUCTION

The eddy current loss in a foil coil has not been ex-
plained in a satisfactory way and there is no analytical
relation known to us for computing the loss in this coil
exactly or with sufficient preciseness. The source of in-
creased eddy current losses is not clear and the radial
part of the magnetic leakage field has been considered to
be the source of the measured additional loss. In design
practice, if the foil coil was used, only empirical constants
and experience helped designers to foresee the test results.
The biggest uncertainties were in those cases, when bigger
transformer innovation was performed.

The market requirements force producers to use the
foil more and more. This fact inspired us to start this
work.

In this paper, all relations, expressions and formulas
are expressed in the basic SI units only. All physical val-
ues used are so well known that we did not make any
comment about what physical units belong to respective
values.

2 TRANSFORMER MEASUREMENTS

IN SHORT RUN CONNECTION

During a short run of the transformer or while mea-
suring the short run values [1], the cable connectors of
the secondary winding are bridged. The values of the sec-
ondary side are marked by lower index s and subscript p
denotes the primary side. Wiring diagrams of single and
three phase transformers are in Figs. 1 and 2.
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Fig. 1. Wiring diagram of a single phase transformer during short
run measurement.
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Fig. 2. Wiring diagram of a three phase transformer during short
run measurement.

In the short run state, the dependences of Ipk =
f(Uk), Pk = f(Uk) and cosϕpk = f(Uk) are measured.
Index k means the short run values. In this state, the
magnetizing current is omitted. The following relation is
valid:

U0 =
Up

np

=
Us

ns

. (1)

U0 is the voltage per turn, Up and Us are induced volt-
ages in primary and secondary windings, and np and ns

are the numbers of turns in primary and secondary wind-
ings. For the currents on the primary and secondary sides,
equation Ipnp = Isns is valid. For the terminal potential
measured on the input side, relation

Uterm = Up + ZpIp (2)

can be written, where Zp represents the input winding
impedance and similarly on the output side Zs represents
the input winding impedance. The equation

ZsIs − Us = 0 (3)

shows that no other voltages are present in the secondary
winding.

The loss generated in the real component of the short
run impedance at rated currents at both sides is called
the load loss, and its symbol is Pk . The load loss at rated
currents means the full load loss [2]. This loss represents
the basic load loss and can be expressed by the following
relation:

Pk = Rk I2
pnom = R′

kIsnomIpnom

=
[np

ns

Rs +
ns

np

Rp

]

IsnomIpnom . (4)
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96 V. Zúbek: EDDY CURRENT LOSSES IN TRANSFORMER LOW VOLTAGE FOIL COILS . . .

Suffix “nom” in the indices descends from nominal, which
is usually used as a synonym for the rated values. Rela-
tion (4) can be modified to a formula that is utilized in
transformer design:

Pk =
np

ns

RsIsnomIpnom +
ns

np

RpIsnomIpnom

= RsI
2
snom + RpI

2
pnom . (5)

3 EDDY CURRENT LOSS INFLUENCE

ON MAGNETIC LEAKAGE FIELD

The additional loss has its origin in the basic physical
nature of conductive materials. These, being put into a
magnetic field, react to every change of the outer field by
arising of eddy currents. These currents act against the
change. Saying in another way, these currents create an
additional magnetic field of opposite direction affecting
the decrease of the basic field. Every change of the field
affects the whole system, thus both sides of the trans-
former. Considering relations (4) and (5) from the point of
view of the physical phenomena taking place in the trans-
former, relation (4) is more authentic. Eddy currents in
the coil act against the current component Is so that the
inequality Is < Isnom is valid. This depression accord-
ing to relation (4) affects both sides, which can be seen
if index substitution is made and Is instead of Isnom is
put into relation (4). The basic loss is decreasing on both
sides but current Ipnom is unchanged.

If any secondary winding parameter causes an increase
of Rs by ∆Rs , the eddy current loss grows up and the
overall load loss can also grow at the same time. Never-
theless, the basic loss falls down by the effect of the eddy
current loss and the value of it is lower than its value
at the rated current. This principle does not allow grow-
ing the eddy current loss to infinity because its source is
reduced simultaneously.

Let us substitute the eddy currents by the dummy
longitudinal current Iloss having the same effect upon
the magnetic field and Is current. In resistor Rs , current
Iloss generates in the same loss as eddy currents and there
is a 90◦ electrical angular shift between current Is and
current Iloss . The rated current Isnom is a vector sum
of Is and Iloss so that relation of I2

snom = I2
s + I2

loss is
valid. It gives the following result:

Ps = P k
s + P k

loss = RsI
2
s + RsI

2
loss = RsI

2
snom . (6)

According to relation (4), the basic loss in the winding

of the secondary side is not P k
s = RsI

2
s but it assumes a

value in accordance with relation (7), where the variable
is Is .

P k
s = RsIs

np

ns

Ipnom = RsIsIsnom . (7)

Let us define a dimensionless factor of the loss increment
by the following expression:

χ =
RsI

2
snom − RsI

2
s

RsI2
snom

=
I2
snom − I2

s

I2
snom

. (8)

This directly yields

Is = Isnom

√

1 − χ . (9)

After substituting relation (9) into relation (7), the de-
pendence of the basic loss in the secondary winding on
the loss increment factor can be expressed:

P k
s = RsI

2
snom

√

1 − χ = P k
snom

√

1 − χ . (10)

Loss P k
snom is the load loss in the secondary winding at

zero point of eddy current losses. Analyses and deriving
relations for eddy current losses [1, 3, 4, 5, 6] come out

from the P k
snom state and lead to the factor of added

losses χ0 . But there are no regards to the changes of the
initial conditions later on. As a result, the value χ0 can
exceed the value of 1 even couple of times. The validity is,
therefore, limited to χ0 ≤ 0.2. In the range of the limited
validity of the added loss factor χ0 , expression (11) is
valid:

χ0 =
∆RsI

2
snom

RsI2
snom

=
∆Rs

Rs

=
∆ρs

ρs

. (11)

Value ∆Rs (∆ρs ) is an increase of the winding resistance
for alternating current. It is analytically derived from the
magnetic leakage field shape, wire sizes and their layout
in the leakage field. The loss increment factor is lower
because the winding current is Is < Isnom .

χ =
∆RsIsnomIs

RsI2
snom

=
∆RsI

2
snom

√
1 − χ

RsI2
snom

= χ0

√

1 − χ .

(12)
Quadratic equation (13) is derived from relation (12) and
in this way the loss increment factor χ is obtained in
terms of the added loss factor χ0 :

χ2 + χ2
0χ − χ2

0 = 0 . (13)

One of the roots of the quadratic equation is the solution
allowing to compute the eddy current loss:

χ =
χ2

0

2

[√

1 +
4

χ2
0

− 1

]

. (14)

Factor χ is a better approximation of the real increase
of the loss in comparison with factor ?0. It involves the
change of initial conditions automatically. The value χ for
χ0 → ∞ is converging towards 1. For low values of χ0 ,
formula (14) can be modified to χ = χ0 identity. Factor
χ0 used in formula (14) has a wider range of validity than
interval 0 ≤ χ0 ≤ 0.2. The overall loss in the secondary
winding is computed from relation (15).

Ps = (1 + χ)RsI
2
snom = (1 + χ)P k

snom . (15)

Factor χ is not additive. During computing, the first
step is to make the sum of all partial added loss factors
χ0 =

∑

i

χ0i and then to compute χ factor.
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Fig. 3. Axial magnetic leakage field in
transformer window.
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Fig. 4. The axial cross-sectional foil coil
with m parallel windings.

Fig. 5. The axial cross-sectional foil coil
with m parallel windings.

4 LOAD LOSS TEMPERATURE DEPENDENCE

Since the real part of the short run impedance depends
on temperature, the values measured in the transformer
at the short run state are temperature dependent. The
value depending on temperature in the strongest way is
the load loss value. According to standard [7], the values
of load loss must be converted to those for temperature
75 ◦C in the case of oil transformers and for a temperature
according to general requirements for tests in IEC 726 in
the case of dry transformers. For dry transformers, the
loss is converted to that for temperature 75 ◦C every time
in order to get a compatibility of all types of transformers.
The procedure for load loss conversion to the reference
temperature is normative and is described in detail in
appendix E [7].

The standard presupposes implicitly the correctness of
the load loss conversion to a temperature different from
the temperature at the measurement. According to the
discussed theory, this is not true. The result of compu-
tation or measurement represents the loss correctly only
at the temperature at which appropriate works are done.
To make the result of computing comparable with trans-
former measurement protocols, some procedure must be
utilized as with the measured values. Computations must
be executed at the temperature of measurement and the
result shall be converted according to the standard pro-
cedure. In transformer design, computations should be
made for the expected measured temperature.

5 VERIFICATION EXAMPLES

Examples of utilizing the loss increment factor χ in
transformer design are in Tab. 1 and they are presented
to verify the discussed theory.

All examples are real machines selected to cover a cer-
tain range of power. In all cases the material of both
windings was aluminium. In the procedure presented in

Tab. 1, the value of P kt=75
◦
C

pnom+p was increased by a fac-

tor of 1.05 in all cases to respect the added loss in the

primary winding. The overall load loss was computed by

the formula P t=75
◦
C

k = P t=75
◦
C

pnom+p +P t=75
◦
C

snom +P t=75
◦
C

p . In

the last column, P t=75
◦
C

km values represent the measured

values.

6 EDDY CURRENT LOSS IN

TRANSFORMER WITH FOIL COIL

As it can be seen above, solving the problem of eddy

current losses in foil coils and at the same time the prob-

lem of the added losses factor χ0 means finding the

main source of these losses correctly. The cross-sectional

eddy currents that arise because of the radial gradient of

the magnetic leakage field do not seem to be a powerful

source. It is also supposed that the influence of the radial

part of the magnetic leakage field, especially in the case

of high and slim coils, and of the skin effect at frequencies

50–60 Hz in thin foils is negligible.

The foil coil has one special feature that makes it

unlike others. The turns look from the top view look like a

spiral and they grow up constantly along with the outer

magnetic field. Direction of this growth is not changed

within the whole length of the foil. It leads us to the

model, where the magnetic field grows along with the

foil length dimension. The winding can be represented

by a thin straight line of certain thickness. This length

and thickness determine the area whereto the magnetic

field is perpendicular. This model, assuming the magnetic

field within the thickness to be constant, simplifies the

following calculations below.

Figure 3 shows a typical trapezoid of the axial mag-

netic leakage field in the transformer window. Only the

increasing part of the magnetic field is transformed to our

model. Figure 4 describes the most important parameters

of the foil coil and Fig. 5 shows the spiral shape of the

foil coil. The legend of symbols is in Tab. 2.
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Table 1.

P P kt=20
◦
C

vnom P kt=20
◦
C

nnom P kt=75
◦
C

vnom+p P kt=75
◦
C

nnom χt=20
◦
C

0 χt=20
◦
C P kt=20

◦
C

p P kt=75
◦
C

p P t=75
◦
C

k P t=75
◦
C

kmer

(kVA) (W) (W) (W) (W) (W) (W) (W) (W)

630 3218 2243 4139 2747 0.296 0.255 573 468 7354 7231
1000 3175 2527 4084 3095 1.498 0.75 1895 1547 8726 8778
1600 4539 3268 5838 4003 2.776 0.896 2928 2390 12231 12502

Table 2.

Symbol
Symbol meaning

(Symbol=Expression)

Dave = (Dmax +Dmin)/2 average (mean) coil diameter

a = nπDave foil length

σ basic current density

n number of current turns
(foil turns in radial direction)

m number of parallel coils
in axial direction

Lc foil highness

L ∼= mLc coil highness

h foil thickness

Lmf
∼= L mean length of induction force line

Bmax =

√
2µ0mnhLcσ

Lmf

induction maximal value
in leakage canal

b = Bmax/a magnetic field foil length density

Now it is possible to express the magnetic field as a
function of variable x .

B(x) =
Bmax

a
x = bx . (16)

The magnetic flux that is bound to little area dS = hdx
of foil and in interval 〈x0, x〉 can be written as follows:

Φ(x) =

∫ x

x0

B(x)hdx = bh
(x2

2
− x2

0

2

)

. (17)

Similarly, an induced voltage arises around the flux area.

U(x) = −2πf√
2

Φ(x) = −2πf√
2

bh
(x2

2
− x2

0

2

)

. (18)

As the terminal voltage of U(x) must be zero and no
other induced voltage except of Us can be between the
coil terminals, the mean value of U(x) along the whole
foil must be zero. For U(x) satisfying the condition above,
the following expression is obtained:

U(x) = −2πfbh

2
√

2

(

x2 − a2

3

)

= −k
(

x2 − a2

3

)

. (20)

A simple substitution is used to simplify this expression:

k =
2πfbh

2
√

2
. (21)

The electric resistivity is marked by symbol ρ in the next
relations. The eddy current density in element dx can be
expressed as

σcurldx = −1

ρ

∂U(x)

∂x
dx =

k

ρ
2xdx . (22)

To make a difference between the current density σcurl

arising from the local gradient and the current density
σcirc due to the gradient between two different points,
the second one is called the circulating current density. It
has its origin in different voltage levels between position

x and position with zero voltage level x0 = a/
√

3, which
for current density in dx element gives

σcircdx = −1

ρ

∆U(x)

∆x
dx =

k

ρ

(

x +
a√
3

)

dx . (23)

The sum of these two parts of current density causes the
added load loss in the foil winding. The overall current
density can be expressed as follows:

σ(x)dx =
k

ρ

(

3x +
a√
3

)

dx . (24)

The loss in a unit volume is

ρσ(x)2dx =
1

ρ

[k

3

(

9x + a
√

3
)

]2

dx

=
1

ρ

[k2

3

(

27x2 + 6a
√

3x + a2
)

]

dx (25)

and the mean value of eddy current loss in a unit volume
is

pk
p =

1

a

∫ a

0

ρσ(x)2dx =
1

ρ

k2a2(9 + 3
√

3 + 1)

3

= 1.266
(2πµ0fmLcnh2σ

Lmf

)2 1

ρ
. (26)

Taking into account that Lmf
∼= mLc and pk

snom = ρσ2 ,
the added loss factor can be expressed as follows:

χ0 =
pk

p

pk
snom

= 1.266
(2πµ0fh2mLcn

ρLmf

)2

= 1.266
(7.9fh2n

106ρ

)2

. (28)

Now we take into account perpendicular, cross-sectional
eddy currents and because they are normal to the length
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Table 3.

Power P (kVA) 630 1000 1000 1500 1600 2000 2500 2500 1000 1600

Foil material cu cu cu cu cu cu cu cu al al
No. of turns n 24 16 16 15 27 15 22 22 18 14
Foil thick. h (m) 0.0006 0.0012 0.0012 0.0022 0.0007 0.0014 0.0009 0.0009 0.0009 0.0018

P 20
p (W) 2581 2536 2513 3730 7875 11780 13343 10106 3825 4615

P 20
s (W) 2865 2561 2561 2736 5747 6621 8719 8796 3416 3673

χ20
0 0.048 0.338 0.338 3.355 0.111 0.550 0.202 0.202 0.050 0.483

χ20 0.046 0.286 0.286 0.924 0.105 0.419 0.183 0.183 0.049 0.380
P 75

k-computed (W) 6699 6772 6745 9914 16983 24560 28012 24200 9006 11294

P 75
k-measured (W) 6830 6875 6839 10157 16500 24279 27809 23757 9016 12052

of the foil, the factors can be derived separately and the
results are additive. The next relation is published in
[1, 3, 4, 5, 6].

χ0 =
n2 − 0.2

9

(

2πh

√

f

107ρ

)4

= 0.0278
(7.9fh2n

106ρ

)2

. (29)

Hence, the final added factor is

χ0 = 1.3 ·
(7.9fh2n

106ρ

)2

. (30)

As it can be seen according to our presupposition, the
effect of cross-sectional eddy current makes a negligible
error.

7 COMPUTED VERSUS MEASURED VALUES

In Tab. 3, the values from an archive of transformer
test protocols are used to compare them with computed
values.

The computed values given in Tab. 3 match with the
measured values satisfactorily. There is lot of tolerance
and production factors that affect the resulting resis-
tance. For example, in a 630 kVA transformer a foil of
h = 0.6 mm was used. The computed overall load loss is
6699 W. If the thickness is changed to h = 0.55 mm, then
the value of 6990 W is achieved.

8 CONCLUSION

The last table above shows that the goal to find a the-
ory and explanation of eddy current loss in foil coils was
achieved. The computed results correspond with mea-
sured ones well enough. On this basis we can state that
the source of the eddy current loss in the foil coil is the
axial magnetic leakage field and the radial part of the
magnetic leakage field plays a negligible role in the shape
of coil. The presented theory brings a new concept in the
form of a loss increment factor. It is added to the loss
factor. Although the new factor was derived for the sec-
ondary winding, it is valid for the primary winding, too.

Of course, if the eddy current loss is small enough, then
there is no need to use any correction.

As we hope, the presented theory is a contribution to
the transformer theory and it gives the missing tool for
transformer designers.
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