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ROBUST POWER SYSTEM STABILIZERS:
A FREQUENCY DOMAIN APPROACH

Alena Kozáková — Vojtech Veselý
∗

In this short paper a robust frequency domain-based approach to the power system stabilizer (PSS) parameter design is
proposed. The principle of the proposed PSS design technique is the application of the sufficient condition for robust stability
of uncertain systems in combination with direct controller synthesis.
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1 INTRODUCTION

Presently, there are two main aspects which allow to
reduce the operating as well as the cold reserve power to
be kept ready by individual network partners in order to
maintain the power system reliability. First, the transmis-
sion lines, generators and loads are interconnected into
large-scale and complex integrated systems. An impor-
tant benefit brought about by the interconnected oper-
ation is that occurring power system disturbances, eg

power plant failures, are jointly intercepted and tem-
porarily compensated for by all participating power sys-
tems. Secondly, due to economy and consumers demands,
multimachine power systems are being operated closer
than ever to their stability limits.

Due to stochastically distributed switching actions,
electromechanical transients continuously occur in elec-
trical grids. They manifest themselves through local oscil-
lations of individual generators or through interarea oscil-
lations. In case of local oscillations (within the frequency
range of 0.7–2.2 Hz) one or several local synchronous gen-
erators are involved. Oscillations associated with several
generators in one part of the system with respect to the
rest of the system are referred to as interarea oscillations .
The frequency of these oscillations typically ranges from
0.1 to 0.7 Hz. Multimodal oscillations represent energy
exchange between rotors and are characterized by low
frequencies (around 0.1–0.2 Hz). Increased power tran-
sits are limited on one hand by thermal limit ratings
of coupling lines and on the other hand by increasing
endangering of the power system stability indicated by
poorly damped or even increasing interarea oscillations
[4]. Unstable or poorly damped electromechanical oscilla-
tion modes in a power system cause stability problems. As
one of the most cost-effective methods of enhancing the
stability and damping power swings in the power system,
power system stabilizers (PSS) are added to the auto-
matic voltage regulator (AVR) subsystem [2, 3, 4, 5, 6].
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Fig. 1. PSS — supplementary control loop for the AVR system
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Fig. 2. Block scheme of a PSS

A considerable research effort is being devoted to the
design of Power System Stabilizers (PSS). In general, the
properties of a particular PSS depend on the choice of in-
put quantities, the most commonly used being generator
real power, current, rotor speed- or frequency deviation.
Figure 1 depicts a supplementary PSS control loop for
the AVR system.

There are a large number of PSS structures applied
in practice. Typically, a PSS is a differentiating element
with lead-lag corrective elements. One of the possible
structures is in Fig. 2.

PSS designs are usually based on linearized system
models where the actual PSS parameter settings depend
on various quantities (generator load, impedance of trans-
mission network, etc). However, as the system parameters
may vary considerably during the operation, in the PSS
parameters setting usually a trade-off has to be made.
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In this paper, a novel frequency domain robust ap-
proach to the PSS parameter design is proposed. The
starting point for the robust control design is definition
of a set of operating conditions for which the control has
to be effective. For example, consider N various oper-
ating conditions determining N linearized models of the
generator closed loop, obtained from experimental data
measured in the power system under each of the N vari-
ous operating conditions. Let each linearized model be a
transfer function between the setpoint Us and the change
of an appropriately chosen generator output, denoted π

in the closed loop generator — AVR (Fig. 1). The problem
to be solved is to design a robust controller guaranteeing
stability and a required performance for all N operating
conditions represented by the N transfer functions.

The paper is organized as follows. Formulation of the
problem to be solved is given in Section 2. Section 3
provides theoretical basis of the robust control frequency
domain approach. A case study in Section 4 illustrates
the proposed approach. Conclusions are deduced in the
last Section 5.

2 PROBLEM FORMULATION

Consider a set of N transfer functions representing the
N operating conditions

Gi(s) =
∆π

∆Us

=
Bi(s)

Ai(s)
i = 1, 2, . . . , N (1)

where

Ai(s), Bi(s) are polynomials in the complex variable s ,

∆π is the deviation of a chosen generator output
applied as the PSS input

Us is the setpoint change of the closed-loop con-
sisting of the generator under the AVR.

We want to design PSS parameters (k, T, T1, T2) guar-
anteeing stability and a required performance of the
above specified system (1) in the whole prescribed operat-
ing range specified by means of the N transfer functions.

3 THEORETICAL BACKGROUND

3.1 Robust Stability (RS)

Linear time-invariant models describe actual plant dy-
namics only approximately. The “model uncertainty” can
have several different sources, among others it occurs due
to

1. linearization — the linearized process model is accu-
rate only in the neighborhood of the reference state
chosen for linearization,

2. different operating conditions — these can lead to
changes in the parameters of the linear model.

Uncertainty associated with a physical system model
can be described in many different ways. We will assume

the controlled plant dynamics to be described in the fre-
quency domain not by a single linear time-invariant model
but by a family of plants. This approach assumes that
the transfer function magnitude and phase at a particu-
lar frequency is not confined to a point but can lie in a
disk region around this point. Algebraically, the family Π
of plants is defined by

Π =
{

G :
∣

∣

∣
G̃(jω) − GN (jω)

∣

∣

∣
≤ `am(ω)

}

(2)

where GN (jω) is the nominal plant or the model defining

the center of all disk-shaped regions, G̃(jω) denotes any
member of the plant family which satisfies

G̃(jω) = GN (jω) + `a(jω)

with the bound |`a(jω)| ≤ `am(ω) .
(3)

Equation (3) is referred to as an additive uncertainty
description.

In the complex plane, the family Π can be viewed
as a “fuzzy” Nyquist plot, or a Nyquist band. To derive
conditions for the robust stability of the whole set Π of
plants defined by (3), the Nyquist stability criterion has
been applied. According to it, it is first necessary that
the nominal plant be closed-loop stable (stability of the
nominal plant under the nominal controller is denoted
nominal stability), then it is to ensure that the Nyquist

band comprising all G̃(jω) ∈ Π does not include the
point (−1, 0). Based on this consideration, the following
theorem states the sufficient condition for robust stability
(ie stability of the uncertain system under the nominal
controller) [3].

Theorem 1 (Robust Stability). Assume that all

plants G̃ in the family Π (2) have the same number

of unstable poles and that a particular controller GR

stabilizes the nominal plant GN . Then the system under

the controller GR is robustly stable if the nominal closed-

loop transfer function H(s) = GN (s)GR(s)
1+GN (s)GR(s) satisfies the

following bound

∣

∣

∣

∣

H(jω)
`am(jω)

GN (jω)

∣

∣

∣

∣

< 1 ∀ω . (4)

P r o o f . If we factor the characteristic polynomial of
the the uncertain system (3) in terms of the nominal
system, we obtain (s is omitted for the sake of simplicity):

1 + G̃GR = 1 + GNGR + `aGR

= (1 + GNGR)
(

1 +
GNGR

1 + GNGR

`am

GN

)

. (5)

The first polynomial is actually the characteristic polyno-
mial of the nominal system which, according to Thm. 1 is
supposed to be stable. Applying the Small Gain Theorem
[5] for the second term we obtain (4).
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Fig. 3. Graphical representation of `am(ω) and M0(ω)
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Fig. 4. Robust stability test for W (s)

Obviously, the term `am(jω)
GN (jω) depends on plant descrip-

tion only and not on a particular controller.

For the rest of the paper the following notation will be
adopted

1
`am(jω)
|GN (jω)|

= M0(ω) (6)

and for the design purpose the condition (4) will be used
in the following form

|H(s)| < M0(ω) ∀ω (7)

or

∣

∣

∣

∣

GNGR

1 + GNGR

∣

∣

∣

∣

< M0(ω) ∀ω . (8)

Thus, to ensure stability of the considered uncertain sys-
tem (3) in the whole operating range, a controller is to
be designed which guarantees fulfillment of (8).

3.2 Uncertain System Modelling

To be able to apply the derived RS condition (7), it
is necessary to have the uncertain systems described in

the form (3). If the particular plant is specified by a set
of N transfer functions (1), the nominal model is taken
as the model of mean parameter values and the additive
uncertainty is computed as the maximum of differences
between the nominal model magnitude and magnitudes
of each of the N transfer functions, evaluated for each
frequency [2].

`am(ω) = max
i

{||Gi(jω)| − |GN (jω)||} ∀ω

i = 1, 2, . . . , N .
(9)

4 CASE STUDY

In this case study, a PSS has been designed guaran-
teeing robust stability of the AVR subsystem (Fig. 1) in
face of working point changes. As the controlled plant, a
real power station operated within the Power System of
the Slovak Republic has been considered. The N various
operating conditions are represented by N = 2 different
working points given by the synchronous generator ac-
tive power output (220, 125) MW. System identification
in these two working points yielded the following transfer
functions:

1st working point (220MW):

G̃1(s)=
∆PG(s)

∆Us(s)
=

0.3672s2 + 81.0413s− 21.1442

s3+6.646s2+75.4311s+387.122
,

(10)

2nd working point (125MW):

G̃2(s) =
∆PG(s)

∆Us(s)
=
−17.4847s2+457.5781s−172.9092

s3 + 64.1s2 + 141.8s + 3217.4
.

(11)

The nominal model of mean parameter values (12) is
stable with eigenvalues (−33.737,−0.818± 7.2633j)

GN (s) =
G1(s) + G2(s)

2

=
−8.2451s2 + 267.8097s− 97.0267

s3 + 35.4s2 + 108.6s + 1802.3
. (12)

Manipulating the transfer function (12) into the time
constant form yields

GN (s) =

−0.0046s2 + 0.1486s− 0.0538

(0.02964s + 1)(0.13682s2+2×0.1368×0.1119×s+1)
.

(13)
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Fig. 5. Bode plots of the (ideal) PSS

According to (13), the damping factor of the nominal

model is b = 0.1119s . A required performance improve-

ment in terms of an increased b = 0.4 yields a desired

(reference) transfer function

W (s) =

−0.0046s2 + 0.1486s− 0.0538

(0.02964s + 1)(0.13682s2 + 2×0.1368×0.4×s+ 1)
.

(14)

The plots of M0(ω) and `am(ω) obtained using (6) and
(9), respectively, are depicted in Fig. 3, Fig. 4 shows the
result of the stability robustness test (7) for the reference
dynamics W (s). As |W (jω)| < M0(jω) the closed-loop
system is robustly stable.

To determine the PSS transfer function GR(s), the
direct synthesis method has been applied. Comparing the
closed-loop transfer function according to Fig. 1 with the
reference W (s) (15)

GN (s)

1 + GN (s)GPSS(s)
= W (s) (15)

allows to express GR(s) guaranteeing robust stability of
the controlled system:

GPSS(s) =
1

W (s)
−

1

GN (s)
. (16)

Bode plots of the (ideal) PSS corresponding to (16) are
depicted in Fig. 5.
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and without the designed PSS
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Implementing the “ideal” PSS transfer function (16)
would ensure an exact fulfillment of the required perfor-
mance improvement. However, due to a fixed structure
of the commercially available PSS’s, the problem now re-
duces to finding real parameters of a fixed-structure PSS
(17) which would approximate in the best possible way
the Bode plots in Fig. 4.

GPSS(s) = k
Ts

Ts + 1
·
T1s + 1

T2s + 1
. (17)

The following results have been obtained applying the
classical frequency domain approach:

k = −0.216 , T = 6s , T1 = 2s , T2 = 0.05s (18)

The above design results have been verified using the
model of the Power System of the Slovak Republic de-
veloped at the Department of Automatic Control Sys-
tems, FEI STU in Bratislava, under the program system
MODES. The active power time responses to a 2.5 % step
change in generator setpoint during 0.5 s for both work-
ing points (10), (11) are plotted in Fig. 6.

5 CONCLUSION

In this paper a novel frequency domain robust con-
trol based approach to the power system stabilizer (PSS)
parameter design has been proposed. Sufficient condition
for robust stability has been derived, which underlies the
proposed PSS design procedure. A combination of robust
control strategy and direct controller synthesis allows to
incorporate performance requirements in the design. The
design results have been verified using the model of the
Power System of the Slovak Republic developed at the
Department of Automatic Control Systems, FEI STU in
Bratislava, under the program system MODES. The ob-
tained responses have proved a significant beneficial effect
of the PSS on damping and the active power oscillation
amplitudes as well.
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