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DISTRIBUTED COMPUTER NETWORK FOR COMPUTATION

OF WEIGHT SPECTRA FOR SOME ERROR CONTROL CODES

Martin Rakús — Jozef Oboňa — Peter Farkaš

Ladislav Divinec — Pavol Čižmárik
∗

Error control codes (ECC) are used today in variety of different applications in the area of communications. Recently

some new linear block codes defined over finite fields were constructed. Newly found codes have higher code rate (smaller
redundancy) than widely used Reed Solomon codes constructed over the same finite field. Error correcting capabilities of
ECC is determined by the code distance dm . In order to determine the code distance for proposed codes a complete weight
spectrum has to be calculated, because analytical solution of weight spectra determination for mention codes does not exist.

Since the number of codewords in each of the found codes is very high (up to 16235 , if constructed over GF (16)) direct
calculation of weight spectra of such codes is therefore infeasible. Using the relationships between original code and its dual
significantly simplifies the problem, but computational complexity is still too high to be computed on a single PC. Therefore

to overcome the computational complexity it was necessary to use some structural knowledge and also to built an appropriate
computer network architecture for distributed computing. In this paper the practical approach to calculation of the weight
spectra is described.

K e y w o r d s: distributed computing, linear block code, finite field, Reed Solomon codes, code rate, code distance, error
control code

1 INTRODUCTION

Ever increasing transfer rate of today’s transmission
systems requires high performance ECC in order to sat-
isfy the demanding speed and error rate requirements. To
protect transmitted or stored information against errors,
ECC add redundancy to the transmitted user informa-
tion. For most applications linear block codes (LBC) are
used because they have known coding algorithms with
acceptable complexity. LBC is usually defined as a k -
dimensional subspace of n -dimensional vector space over
a finite field. Error correcting and detecting capability of
ECC is determined by the so-called code distance dm .
For a high speed transmissions besides error correcting
capabilities of chosen ECC another parameter called code
rate denoted as R is important as well. R equals to the
ratio of the number of information symbols to the code-
word length in LBC. It represents the redundancy added
by the ECC to user information. The ideal ECC should
have the number of correctable errors denoted as t as
high as possible and R approaching 1. Those two con-
dition obviously contradict so in a real application some
compromise has to be chosen. Our goal was to find codes
having the highest possible value of R (the smallest re-
dundancy) while maintaining error correcting capabili-
ties comparable to popular Reed Solomon codes (if con-
structed over the same finite field GF (q)). In order to
determine t of newly found codes an accurate calcula-
tion of dm was necessary. Determination of dm for high
speed codes with a high code rate is computationally very

demanding. Carrying out precise calculation of dm for
such codes executable in ”reasonable” time span was the
main motivation for the development of computer net-
work architecture for distributed computing presented in
this paper.

2 BASIC THEORY OF LINEAR BLOCK CODES

Let C = [n, k, dm] be a linear block code defined over
finite field GF (q), where q = 2r . r is the number of
bits contained in one codeword symbol. n denotes the
number of codeword symbols, k denotes the number of
information symbols and dm denotes the code distance.
Important terms in coding theory are Hamming distance

and Hamming weight. Hamming distance of two vectors
v = (v1, v2, . . . , vn) and u = (u1, u2, . . . , un) is the
number of symbols in which these two vectors differ. It
is denoted as d(v ,u). By minimal or code distance is
denoted the minimal Hamming distance between any two
codewords of a given code. The code distance is denoted
as dm . A linear block code (LBC) is capable of correcting
t errors if dm ≥ 2t+1. The hamming weight of vector v =
(v1, v2, . . . , vn) is the number of its non-zero elements. It
is denoted as w(v). The linear block code is completely
defined by its generator matrix G with dimensions k×n .
LBC has a generator matrix in the form of G = [I|A]
where I is the identity matrix with dimensions k×k and
A is parity matrix with dimensions k × (n − k). LBC
generated by such G matrix is called systematic code. In
[1] it was shown that any non-systematic LBC can be
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transformed to a systematic form by appropriate matrix
manipulation on G . In order to systematically encode an
information vector u = (u1, u2, . . . , uk) it is necessary to
perform to following multiplication c = u ·G , where c is
a code word vector:

(u1, u2, . . . , uk) ·











1 0 0 . . . 0 a11 . . . a1n−k

0 1 0 . . . 0 a21 . . . a2n−k

...
0 0 0 . . . 1 ak1 . . . akn−k











= (u1, u2, . . . , uk, vk+1, . . . , vn)

where vector v = (vk+1, . . . , vn) = uA . In the case that
for encoding instead of G matrix the control matrix H is
used, a so called dual code is generated. Control matrix
H has the following property: H =

[

A⊤|I
]

, where A⊤ is
transposed parity matrix A and I is the identity matrix.
H has dimensions (n−k)×n . If the Hamming distance of
two codewords v and v

′ equals d , then w(v − v
′) = d .

It means that the code distance of LBC dm equals to
the minimal weight of its non-zero codeword. It implies
that the exact knowledge of weight distribution of all
codewords by their weights called weight spectrum allows
to determine exactly dm and thus to know t . Several
methods exist for the calculation of weight spectrum:

– analytical methods. For certain types of codes exact
formulas for the weight spectra calculation based on
[n, k] parameters and type of used GF (q) were de-
rived. A typical example is a group of MDS codes to
which belong the well known Reed-Solomon codes.

– direct calculation of weights of all codewords.

– statistical methods. This approximate method applies
only for certain types of codes.

3 DOUBLE ERROR CORRECTING

CODES WITH HIGH CODE RATE

In this section a new family of codes and one exam-
ple from that family a [235,225,5] code constructed over
GF (16) will be presented. These codes could be con-
structed over any finite fields GF (q), where q = 2r ,
r ≥ 3. They have a higher code rate than Reed Solomon
codes if constructed over the same finite fields. In contrast
to conditionally double error correcting codes defined in
[3], the new codes have a code distances, which allow to
make exact conclusions about their error control capabil-
ities. A family of codes that use polynomial arithmetic
and process r bit symbols was introduced in [2]. Symbols
Q1, Q2, · · · , Qq−2, P0, P1, · · · , Pz−1 are binary strings of
length r and each Qi and Pi can be regarded as a mem-
ber of GF (q) where q = 2r . α is a primitive element of
the finite field GF (q). Qq−2, Qq−3, · · · , Q1 is a message
consisting of q − 2 symbols from GF (2r) and it is en-
coded as a string of n symbols, where n is a codeword
length, by adding the check symbols P0, P1, · · · , Pz−1 .

Check symbols are calculated by equation (3). The new
family of codes is defined by H matrix (1)

H =





















A | · · ·

αq−2 · · · αq−2 αq−2 αq−2 | · · ·

α2(q−2) · · · α2(q−2) α2(q−2) α2(q−2) | · · ·

α3(q−2) · · · α3(q−2) α3(q−2) α3(q−2) | · · ·

α0 · · · α3 α2 α1 | · · ·

αq−3 · · · α1 α0 αq−2 | · · ·

α0 · · · αq−4 αq−3 αq−2 | · · ·

| A | A

| α1 · · · α1 α1 α1 | α0 · · · α0 α0 α0

| α2 · · · α2 α2 α2 | α0 · · · α0 α0 α0

| α3 · · · α3 α3 α3 | α0 · · · α0 α0 α0 I

| αq−3 · · · α1 α0 αq−2 | αq−2 · · · α2 α1 α0

| α0 · · · α3 α2 α1 | αq−2 · · · α2 α1 α0

| α2 · · · αq−2 α0 α1 | α1 · · · αq−3 αq−2 α0





















= [B I] (1)

where submatrix A has form:

A =







1 · · · 1 1 1
αq−2 · · · α2 α1 α0

α2(q−2) · · · α4 α2 α0

α3(q−2) · · · α6 α3 α0






. (2)

P9 =
∑q

m=2

∑v

i=u Qi

P8 =
∑q

m=2

∑v

i=u αiQi

P7 =
∑q

m=2

∑v

i=u α2iQi

P6 =
∑q

m=2

∑v

i=u α3iQi

P5 =
∑q

m=2

∑v

i=u α(q−m)Qi

P4 =
∑q

m=2

∑v

i=u α2(q−m)Qi

P3 =
∑q

m=2

∑v

i=u α3(q−m)Qi

P2 =
∑q

m=2

∑v

i=u α(i+m)−1Qi

P1 =
∑q

m=2

∑v

i=u α(i−m)+1Qi

P0 =
∑q

m=2

∑v

i=u α1−(i+m)Qi

(3)

In order to determine the error correcting capabilities
of the proposed new family of codes it was necessary to
calculate its weight spectra to obtain dm . The proposed
family of codes does not belong to any category of codes
for which an exact analytical formula for calculation of
weight spectra was derived. So the only solution is to
calculate the complete weight spectra by generating all
codewords. The number of codewords to be generated is
in general qk . In our case qk = 16225 . But the existence
of our Universe is estimated to be “only” about 4× 1017

seconds ≪ 16225 . The direct calculation of weight spectra
for such codes is therefore infeasible. The solution is to
use the relationship between weight spectra of the normal
code and its dual. These relationship is determined by
Krawtchouk polynomials or by McWilliams identities [4].
The relationship between weights of the normal code and
its dual defined by Krawtchouk polynomials is defined by
the following equation:

Ak =
1

|C⊥|

nd
∑

i=0

A⊥

i Pk(i) (4)
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where:

Ak is the number of codewords of weight k of normal
code,

A⊥

i is the number of codewords of weight i of dual
code,

nd is the codeword length of a dual code,

|C⊥| is the number of codewords of a dual code

Pk(i) is Krawtchouk polynomial of dimension k of vari-
able x .

For non binary codes Krawtchouk polynomials of degree
k for any positive integer n , where x is a variable are
defined as follow:

Pk(x, n) = Pk(x) =

k
∑

j=0

(−1)j(q − 1)k−j

(

x

j

)(

n − x

k − j

)

,

k = 0, 1, . . . , n . (5)

In order to calculate the weight spectra of a normal
code it is necessary to calculate the weight spectra of its
dual code. Dual code has in general qn−k codewords. In
our case qn−k = 1610 codewords. This number is still too
high to be calculated on a single PC, therefore a system
for distributed computing specialized for the calculation
of weight spectra was developed.

An example of the relevant part of the beginning of
the weight spectra of the proposed [235, 225, 5]16 code is
given bellow:

A0 = 1, A7 = 1792117575
A5 = 746550, A8 = 497616264900
A6 =25247250, A9 =181009559619600

...

Minimal nonzero weight is 5 so the proposed codes are
capable of double error correction.

4 SYSTEM FOR DISTRIBUTED COMPUTING

The backbone of the developed system for distributed
computing are 6 PCs with CPU type AMD Athlon XP
connected to the local LAN through 100Mb Ethernet
switch. The system is working on the server-client basis.
During the design the cost of the complete system had
to be taken into account, therefore we chose Linux for
OS. Thanks to this the client consists only from mother-
board with CPU and RAM, NIC and case with the power
supply. Bootsequence for clients is stored in BootRAM in
their NICs. After boot clients download a simple version
OS from the network. On the server, besides OS Linux
a software LTSP (Linux Terminal Server Project) is in-
stalled. This software provides uploading of OS on clients.
This way we saved on hardware (HDD, graphic cards,
keyboards . . . ) and software. The realized system for dis-
tributed computing is very simply scalable just by adding

new clients to the system. All necessary adjustments are

performed automatically by software.

A complex task in the system for distributed comput-

ing is to efficiently distribute a given task to smaller tasks

which are independent of results from other tasks. If this

requirement can not be fulfilled then it can happen that

one client will be waiting for another to finish its task.

The other limiting factor is the communication between

the server and client. The amount of this communication

has to be kept to minimum in order not to slow down

the computation. The ratio between the useful comput-

ing time and the time spent for communication has to

be ≫ 1. On the other hand if tasks are too small, then

it can happen that sending results to server and down-

loading a new task takes comparable amount of time as

computing of that task itself. Splitting the big tasks to

smaller tasks effectively is therefore a complex problem.

In our case this was fortunately trivial. We need to calcu-
late the weight spectra of 1610 vectors, therefore clients

need only the range of vector for which the weight spec-

trum has to be calculated. Splitting the task into smaller

tasks is performed by the server, where a software gener-

ating an input data for clients is running. Since clients in

our system have the same computing power, the range of

information vectors was set the same for all clients. After

generating an input file of data for the client this file is

sent to the client by means of sockets. Client stores the

input information into a file which servers as an input

parameter for a software performing the actual calcula-

tion of weight spectra. When the client finishes its task

it activates a connection with the server and sends server

the result. The server keeps track about already finished

tasks in a special created table. When all partial tasks

are done, the server combines the complete weight spec-

trum out of the received output files sent from clients.

During calculation of the weight spectra of codes with

long codewords it can happen that variables type long in

which are stored the number of already encoded vectors

as well as particular weights can overflow. To overcome

this problem we are storing those two variables as type

string and then perform addition. This way we can ana-

lyze also codes with really long codewords at the price of

a slight slowdown.

The process of encoding was described in section 2.

This comes down to left multiplication of information

vector with generator matrix G . Elements of matrices

and vectors are symbols of finite fields with the base 2

denoted as GF (2r). The advantage of using the finite

field is their closure property, it means that operations of

multiplication and addition always give an element from

a given field. Therefore pre-computed tables of addition

and multiplication can be used to speed up the calculation

by means of reading out results from the table using a

coordinate system where the intersection gives the results
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Table 1.

# of operations
dual code parameters [n, k] original algorithm modified algorithm ratio

(55,6) over GF(8) 154 140 672 33 029 430 4.7
(57,8) over GF(8) 13 153 337 344 2 113 928 306 6.2

(228,3) over GF(16) 5 529 600 2 087 100 2.6
(230,5) over GF(16) 2 359 296 000 534 771 000 4.4

of the operation above particular elements. Eg. table for
addition over GF (8):

−1 0 1 2 3 4 5 6
0 −1 3 6 1 5 4 2
1 3 −1 4 0 2 6 5
2 6 4 −1 5 1 3 0
3 1 0 5 −1 6 2 4
4 5 2 1 6 −1 0 3
5 4 6 3 2 0 −1 1
6 2 5 0 4 3 1 −1

where elements of the table represent the powers of prim-
itive element α , (−1 represents 0). Eg. α2 ⊕ α3 = α5 .

The algorithm for determining the code distance dm

has the following steps:

– generation of information vector,

– encoding of information vector by its left multiplica-
tion with generator matrix,

– determining the weight of codeword,

– incrementing the particular weight in weight spectrum.

The main problem of this algorithm is its exponentially
growing complexity, since the number of codewords is
growing exponentially with the number of information
symbols qk . Therefore we looked for the way how to make
this algorithm more efficient. The number of additions
and multiplications necessary to encode one information
vector is 2kn . If we take into account that an identity
matrix of G only copies the information vector, then the
number of operations can be reduced to 2k(n−k). Out of
this number one half of operations belong to addition and
the other half to multiplication. Since both operations
can be performed as a simple access to 2d field, they
require the same amount of time for execution. Since it is
necessary to encode all information vectors, we tried to
reduce the number of operations necessary to encode each
single information vector. The reduction of operations
will be illustrated on the following example. Let k = 6
and let GF (q) = GF (8). The first information vector

is α−1, α−1, α−1, α−1, α−1, α−1 . The first 6 elements of
code word is the information vector itself. In the next
the information vector is multiplied only with the parity
matrix P of G :

α−1p11 + α−1p21

+α−1p31 + α−1p41 + α−1p51 + α−1p61 = vk+1

...
α−1p1(n−k) + α−1p2(n−k) + α−1p3(n−k)

+α−1p4(n−k) + α−1p5(n−k) + α−1p6(n−k) = vn

The next information vector is
α−1, α−1, α−1, α−1, α−1, α0 . At the multiplication with
the parity matrix P can be seen that the first 5 elements
remained unchanged that means their multiplication with
P is identical as is in the step before. The change will
take place after addition of α0p61 . Therefore we store
temporary sums:

α−1p11

+α−1p21 + α−1p31 + α−1p41 + α−1p51 = temp1

...
α−1p1(n−k) + α−1p2(n−k)

+α−1p3(n−k) + α−1p4(n−k) + α−1p5(n−k) = tempn−k

from the calculation of the previous codeword. In this way
we save 4 additions and 5 multiplications per each symbol,
because in order to calculate vk+1 we only need to add
α0p61 to temp1 to get the result. We used a similarity
of successive information vectors. This way we can easily
encode information vectors:

α−1 α−1 α−1 α−1 α−1 α−1

α−1 α−1 α−1 α−1 α−1 α0

α−1 α−1 α−1 α−1 α−1 α1

α−1 α−1 α−1 α−1 α−1 α2

α−1 α−1 α−1 α−1 α−1 α3

α−1 α−1 α−1 α−1 α−1 α4

α−1 α−1 α−1 α−1 α−1 α5

α−1 α−1 α−1 α−1 α−1 α6

The next vector is α−1, α−1, α−1, α−1, α0, α−1 . Since
the 5th position has been changed, we can not use
temp1, . . . , tempn−k from the previous encoding. The
next step is a calculation of temp for the new infor-
mation vector. This operation can be simplified as well
if we add to the previous temp1 again α−1p51 , we get:
temp1 = α−1p11 + α−1p21 + α−1p31 + α−1p41 . If we add
to this temp1 α0p51 , we get a new temp1 , what enables
us to encode the next 8 vectors. This is possible because
in finite fields of base 2 the operation of addition is iden-
tical to subtraction. Table 1 proves the advantages of
the proposed algorithm. Flowcharts for server and client
applications are shown in Fig. 1 and Fig. 2 respectively.

5 CONCLUSION

Design and realization of the system for distributed
computing enabled us to calculate exact weight spectra of
codes with big codeword length for which this calculation
on a single PC would be out of reasonable time bounds.
The next step in the development will be the modification



Journal of ELECTRICAL ENGINEERING 56, NO. 5–6, 2005 155

Start and

initialization

Request for

connection?

no

yes

Connect

Received

data?

yes

no

Receive a

result

Process the

result

Request for

connection?
If new client

register it

no

yes

Is anything

to calculate?

no

yes

Send new data

Mark the task

in the table

Go to the

beginning

Is it last

result?

no

yes

Write the

result

Go to the

beginning

End

Fig. 1. Flowchart of server application
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of the existing system for use in a heterogenous network
of PCs connected together through distant LANs.
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