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DESIGN OF ROBUST OUTPUT FEEDBACK
CONTROLLER VIA LMI APPROACH
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In this paper, the linear matrix inequality (LMI) conditions for output feedback control problems are presented. The
underlying theory is based upon the necessary and sufficient conditions for static output feedback quadratic stabilizability
of continuous time-invariant polytopic systems. The proposed two computationally simple LMI-based algorithms (the V-K
iterative and non-iterative one) are tightly connected with the Lyapunov stability theory and the LQR state feedback design.
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1 INTRODUCTION

One of the most frequently mentioned open problems
in the control theory is the robust output feedback sta-
bilization problem (ROFSP). Various approaches have
been used so far to study the two aspects of the stabi-
lization problem, namely the conditions under which a
linear system described in the state-space can be stabi-
lized via output feedback, and the respective procedure
to obtain a robust stabilizing controller. The authors of
the hitherto results surveyed in [1, 2, 3, 4, 5, 6, 8, 9,
10, 11] and references therein basically conclude that de-
spite the availability of many approaches and numerical
algorithms, the ROFSP is still open. The necessary and
sufficient conditions for output feedback stabilizability of
linear time-invariant continuous-time and discrete-time
systems are given in [5] and [12], respectively. However,
the results given in these two papers are existential and
do not solve the computational aspects of the problem.
Recently it has been shown that an extremely wide range
of output feedback controller design problems can be re-
duced to the problem of finding a feasible point under a
Biaffine Matrix Inequality (BMI) constraint. However, it
is well-known that the BMI problems are NP-hard [13].
The concept of NP completeness is related to the im-
possibility of finding a polynomial time algorithm for the
problem in question. Therefore it is rather unlike that for
NP-complete and NP-hard problems there is a polyno-
mial time solution procedure. It has been shown [13] that
simultaneous stabilization via static output feedback is a
NP-hard problem, namely, given N plants, the problem
of checking the existence of a static gain matrix F which
stabilizes all the N plants, is NP-hard.

In this paper, the BMI problem of the output feed-
back controller design has been reduced to a linear matrix

inequalities (LMI’s) problem. The LMI theory has been
used for output feedback controller design in [1, 3, 8]. Most
of these works present iterative algorithms. The LMI
based V-K iteration algorithm proposed in [4] is based
on an alternative solution of two convex LMI optimiza-
tion problems obtained by fixing the Lyapunov matrix
or the gain controller matrix. This algorithm is guaran-
teed to converge, however not necessarily, to the global
optimum.

Two computationally simple LMI-based algorithms for
the design of robust static output feedback control of
linear continuous-time systems are presented. Both pro-
posed algorithms are LMI-based, the first one applying
the V-K iteration and the second one a non-iterative pro-
cedure. The paper is organized as follows. In Section 2,
problem formulation and some preliminary results are
presented. The main results are given in Section 3. In
Section 4, they are applied to some examples.

2 PROBLEM FORMULATION

Consider the simultaneous stabilization of a plant G
described as follows:

G : ẋ =

N
∑

i=1

αi(Aix + Biu) y = Cix

N
∑

i=1

αi = 1 for αi ∈ 〈0, 1〉 and i = 1, 2, . . . , N

(1)

where the state x ∈ Rn , the input u ∈ Rm , the output

y ∈ Rl and n is the order of G .

The problem dealt with in this paper can be formu-
lated as follows. For a continuous linear time invariant
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system described by (1) a robust static output feedback
controller is to be designed with the control algorithm in
the form

u = FCx (2)

such that the closed loop system

ẋ =
N

∑

i=1

αi(Aix + BiFCi)x =
N

∑

i=1

αiACix (3)

ACi = Ai + BiFCi

is stable. The cost function associated with the system
(1) is

J =

∞
∫

0

(

x
>Qx + u

>Ru
)

dt (4)

where Q = Q> ≥ 0 and R = R> > 0 are matrices of
compatible dimensions.

Definition. Consider the uncertain system (1). If there
exists a control law u∗ and a positive scalar J∗ such that
for all admissible uncertainties the closed-loop system is
stable and the cost function (4) satisfies J ≤ J∗ , then
J∗ is said to be guaranteed cost and u∗ is said to be
guaranteed cost control law for the uncertain system (1).

The following Lemma is well known.

Lemma 1. Suppose P > 0 to be a solution to the Lya-

punov matrix equation

A>P + PA + Q = 0 . (5)

Then A is stable if and only if Q > 0 .

If such P and Q exist, the matrix A is said to be quadrat-
ically stable.

Corollary 1. The closed-loop system (3) is quadrati-

cally stable if and only if there exists a positive definite

matrix P > 0 such that the following inequalities hold

A>

ciP + PAci < 0 , i = 1, 2, . . . , N . (6)

The system described by (1) is a polytope of linear
systems. With respect to Corollary 1, it can be described
by a list of its vertices, ie

{(A1, B1, C1), (A2, B2, C1), . . . , (AN , BN , C1)} . (7)

3 ROBUST OUTPUT FEEDBACK

CONTROLLER DESIGN

The main results are summarized in the following the-
orem.

Theorem 1. Consider the linear uncertain system (1) .
Then, the following statements are equivalent:

– the system (1) is robust static output feedback quad-

ratically stabilizable.

– there exist a positive definite matrix P = P> > 0 and

a matrix F satisfying the following matrix inequality

(Ai + BiFC)>P + P(Ai + BiFC) < 0 , i = 1, 2, . . . , N
(8)

Theorem 2. Consider the system (7) . The following

statements are equivalent:

– The system (7) is static output feedback simultane-

ously stabilizable with a guaranteed cost

∞
∫

0

(

x
>Qx + u

>Ru
)

dt ≤ x
>

0
Px0 = J∗ (9)

and P > 0 .

– There exist matrices P > 0 , Q > 0 , R > 0 and a

matrix F such that the following inequalities hold

(Ai + BiFC)>P + P(Ai + BiFC) + Q

+ C>F>RFC ≤ 0 , i = 1, . . . , N . (10)

– There exist matrices P > 0 , Q > 0 , R > 0 and a

matrix F such that the following inequalities hold

A>

i P + PAi − PBiR
−1BiP + Q ≤ 0 (11)

(B>

i P + RFC)Φ−1

ui
(B>

i P + RFC)> − R ≤ 0 (12)

where

Φui
= −(A>

i P+PAi−PBiR
−1B>

i P+Q) , i = 1, . . . , N .

For system (7) theorems 1 and 2 yield the following
two design procedures (A, B) for a simultaneous static
output feedback stabilization with a guaranteed cost of
the system (7).

Procedure A (iterative algorithm)

1. j = 1, F0 = 0.

2. Compute Pj = P>

j > 0 from the following inequality

using the LMI-based algorithm

(Ai+BiFC)>Pj +Pj(Ai+BiFC)+Q+C>F>

j−1RFj−1C

≤ 0 , i = 1, . . . , N , Pj > 0 , Pj ≤ ρI

where ρ is some positive constant and I is the identity
matrix.

3. Compute the matrix Fj using the LMI-based algo-
rithm from the following inequality�
(Ai + BiFjC)>Pj + Pj(Ai + BiFjC) + Q C>F>

j R

RFjC −R � ≤ 0 .

(13)
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4. Compute er = ‖Fj − Fj−1‖ . If er<error then stop,
otherwise go to Step 2

In Step 2, ρ can be minimized and in Step 3, also
a bound can be imposed on the norm of the controller
matrix requiring

F>F < Fmax .

Table 1. Computation results obtained using Procedures A and B

No r q ρ γ MaxEig

Procedure A Procedure B

1 1 1 1/γ 0.01 −0.0256 0.1984

2 1 5 1/γ 0.001 −0.0518 0.7266

3 1 5 1/γ 0.01 0.285 −0.1349

4 1 10 1/γ 0.001 −0.0496 1.2416

5 1 10−7 1/γ 0.001 −0.0029 −3.614× 10−4

6 1 1 106 0.03 −0.0207 −0.0484

7 1 1 106 0.03 −0.2543 −0.1689

8 1 0.01 106 0.03 −0.0198 −0.0152

9 1 0.0001 106 0.03 −0.0205 −0.0132

10 2 1 106 0.03 −0.0209 −0.047

11 5 1 106 0.03 −0.0207 −0.0162

12 10 1 106 0.03 −0.0247 −0.055

13 10 1 103 0.03 −0.0331 −0.055

14 1 1 104 0.03 −0.0231 −0.0484

Procedure B (non-iterative algorithm):

1. Compute S = S> > 0 from the following inequality
using the LMI based algorithm

[

SA>
i + AiS − BiR

−1B>
i SQ

QS −Q

]

< 0

γ < S , i = 1, . . . , N

(14)

where γ ≥ 0 is some non-negative constant and S =
P−1 .

2. Compute F from the following inequality using the
LMI based algorithm

[

−R B>

i P + RFC

(B>
i P + RFC)> −Φui

]

< 0

i = 1, . . . , N .

(15)

In the Step 1, γ can be maximized and in the Step 2,
a norm bound can be imposed on the static output
feedback F . If the solution results (12)–(15) are not
feasible, either the system (7) is not stabilizable with a
prescribed guaranteed cost, or it is necessary to change

Q , R , ρ and γ in order to find a feasible solution. If
the solution (12)–(15) is feasible then u = Fy is the
guaranteed cost control law and

J∗ = x
>

0
Px0 ≥

t
∫

0

(

x
>Qx + u

>Ru)dt

is said to be a guaranteed cost.

4 EXAMPLES

Example 1.

To illustrate the two proposed approaches, consider
the design of a PI controller to control the speed of a small
DC motor. A continuous-time model of the DC motor is
as follows:

Ai = A0 + ε1AV 1 + ε2AV 2

Bi = B0 + ε1BV 1 + ε2BV 2

i = 1, . . . , 4 (16)

where

A0 = �� −0.9235 1 0
−0.2363 0 0

1 0 0

��
, B0 = �� 0

0.4221
0

��
, C = � 1 0 0

0 0 1 � ,

AV 1 = �� 0.11 0 0
−0.0172 0 0

0 0 0

��
, BV 1 = �� 0

−0.0529
0

��
,

AV 2 = �� −0.4065 0 0
−0.06433 0 0

0 0 0

��
, BV 2 = �� 0

0.2522
0

��
.

εi ∈ 〈εi , εi〉 , i = 1, 2 , |εi| = 1 .

According to (7), there are 4 polytope systems which
vertices are computed for different permutations of the
two variables εi , i = 1, 2 considered alternatively at their
maximum and minimum, ie

A1 = A0 + ε
1
AV 1 + ε

2
AV 2 ,

A2 = A0 + ε1AV 1 + ε2AV 2 ,

A3 = A0 + ε1AV 1 + ε
2
AV 2 ,

A4 = A0 + ε1AV 1 + ε2AV 2 .

(17)

Expressions for B1 through B2 have been obtained by
analogy. The computation results are given in Tab. 1
where Q = Iq , R = Ir , ε1 = ε2 = 1. MaxEig denotes the
maximum real part of closed loop eigenvalues considering
all 4 polytopic systems.

According to Tab. 1, for the results in the row 3 ob-
tained using the algorithm B (ie 3/B), (similarly 7/A
and 7/B), the computed gain matrices F are as follows

3/B: F = [−4.8696 − 0.8469]

7/A: F = [−2.2403 − 0.6094]

7/B: F = [−0.0544 − 0.0852]
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In addition, Tab. 1 implies that:

1. the robust static output feedback controller design is
NP-hard,

2. choice of ρ and γ in general changes the design results
(see items 1, 2, 3, 6, 12, 13),

3. there are local solutions to the LMI optimization (see
items 10, 11, 12).

The transfer function pertinent to the polytopic sys-
tem (16) is

G(s) =
(

0.4229+ε1(−0.0529)+ε2(0.2522)
)/(

s2+0.9235s

+ 0.2363 + ε1(0.11s− 0.0172) + ε2(−0.4065s− 0.0643)
)

.

Results of the frequency domain PI controller design
are

FR1(s) =
2.5s + .5

s
with MaxEig = −0.111 or

FR2(s) =
4.87s + 0.85

s
with MaxEig = −0.12 .

Bode plots of the uncertain system without and with
the PI controller FR2 are given in Fig. 1.

Example 2.

The second example deals with the robust controller
design for a linearized power system. Numerical parame-
ter values of the linearized model of a synchronous gen-
erator with exciter and the operating point (per units on

generator rating) have been taken from [14]. The poly-
topic system has been obtained according to (16) where

A0 = 103×��
�
�
�
�
�
�
�
�
��

0.0403 -0.04 -0.0093 0.0377 -0.0001 0.0163 -0.0409 -0.0061
0.0602 -0.0797 -0.0215 0.0746 -0.0001 2.8733 -0.06 -0.0147

0 0 0 0 1 0 0 0
1.2085 -1.0788 -0.1958 0.961 -0.0014 0.0112 -1.0795 -0.1646
-0.3021 0.2895 -0.0226 -0.3533 0.0007 0.0043 0.2892 0.0106

0 0 0 0 0 -0.0021 0 0
0.9688 -1.1518 -0.3461 1.201 -0.0014 -2.8454 -1.1733 -0.2366
0.6006 0.063 0.2872 -0.3979 -0.0002 -0.0085 0.0635 0.1268

�
�
�
�
�
�
�
�
�
�
�

�
B>

0 = � 0 0 0 0 1.9896 0 0 0
0.2 669 0 0 110 0 0 0 �

C =
��
�� 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

�
�
�

�

x
> = [vt ifd δ it ω vfd ikd ikq ]

y
> = [vt ifd δ it] u

> = [∆vi ∆Pm]

A1 = 0.1A0B1 = 0.1B0 ε1 = 1, ε2 = 0

Q = 10−5I R = I

Bode envelopes for system Bode envelopes for system and controller
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Fig. 1. Bode plot of the uncertain system and of the uncertain system under the PI controller FR2 .
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Computation results obtained via Procedure A:

F =

[

−15.9037 −2.6736 −25.3321 0.7755
−1.2949 0.1602 0.8665 1.6986

]

MaxEig = −1.6952

Guaranteed cost:

J∗ =

∞
∫

0

[

x
>(Q + C>F>RFC)x

]

dt ≤ 9.1069× 103‖x0‖
2

Computation results obtained via Procedure B

F =

[

−0.0087 −0.0196 −0.0414 −0.0106
−0.068 0.0089 −0.1028 −0.0057

]

MaxEig = −0.8669

Guaranteed cost:

J∗ =

∞
∫

0

[

x
>(Q + C>F>RFC)x

]

dt ≤ 624.9463‖x0‖
2

5 CONCLUSION

In this paper, new procedures for the robust control de-
sign via static output feedback for linear continuous-time
system have been proposed. The first procedure (Algo-
rithm A) applies the LMI-based V-K iteration whilst the
second procedure (Algorithm B) uses a non-iterative LMI
approach.

Both proposed algorithms are computationally simple.
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