
Journal of ELECTRICAL ENGINEERING, VOL. 54, NO. 9-10, 2003, 244–249

JOINT OPTIMIZATION OF SERVER LOCATION AND STORAGE
ALLOCATION IN MULTIMEDIA–ON–DEMAND NETWORK

Sun-Jin Kim — Mun-Kee Choi
∗

In this paper, we propose a genetic algorithm (GA) to design a non-hierarchical and decentralized Multimedia-On-Demand
(MOD) network architecture. To optimize the MOD network resource based on cost analysis including installation cost for

servers, program storage cost, and transmission cost, the joint optimization of both server location and storage allocation
was considered. In order to improve solution quality and computational efficiency in applying the proposed methods to the

problem, genetic representation, evaluation function, genetic operators and procedure are devised. The results of extensive

computational simulations showed that the proposed algorithm provided high quality solutions within a reasonable amount

of computation time.

K e y w o r d s: joint optimization, genetic algorithm, multimedia-on-demand, location-allocation problem

1 INTRODUCTION

Multimedia-On-Demand (MOD), which includes wider
concept than Video-On-Demand (VOD) even if VOD has
used pervasively until now, is an interactive service that
provides various contents and programs to users con-
nected to a network anywhere and anytime. It is generally
recognized that MOD service will cover a large region to
provide many of interactive multimedia services. How-
ever, this service will require a high-bandwidth network
and a large amount of storage capacity. So far different as-
pects of VOD optimization have been discussed in [1–6].
Various topologies for VOD networks are proposed, which
can be classified either into hierarchical [2, 3, 6, 7] or non-
hierarchical architecture [4, 8].

In most researches, storage allocation problems have
been studied under the constraint of storage cost and net-
work cost (ie communication cost). This problem in [4]
was also investigated by the decomposition procedure in
which an original problem is divided into smaller prob-
lems. In [8], the problem of server location and storage al-
location in non-hierarchical MOD network has been stud-
ied. In this paper, modifying an approach used in [8],
we deal with the joint optimization of both server loca-
tion and storage allocation subject to the tradeoffs among
installation cost for servers, program storage cost, and
transmission cost. The objective of this problem is to min-
imize the sum of the involved costs. However, the problem
cannot be solved exactly within reasonable computation
time, even for a moderate number of variables. To solve
fairly large-sized problems, we employ a heuristic method
called genetic algorithm (GA), which has been proven to
be efficient and powerful in a wide variety of combina-
torial optimization problems and applications [9, 10]. In
order to for GA to find a high quality solution of the
problem considered, we devise the following components:

genetic representation, evaluation function, genetic oper-

ators and procedure, which are critical for solution qual-

ity and computational efficiency in applying the proposed

GA. Extensive computational simulations are carried out

on various bench-marking problems, showing that the

proposed method provide high quality solutions within

reasonable time periods of computations.

2 THE PROBLEM DESCRIPTION

AND FORMULATION

Consider a non-hierarchical and decentralized archi-

tecture for a MOD network as shown in Fig. 1, where we

assume.

(a) The network consists of n interconnected central of-

fices (COs) and every MOD subscriber is connected to

a CO (usually, the closest one).

(b) For each CO, at most one sever can be installed, so

that the total number of server is less than or equal

to number of COs. COs without server play a role of

switching the required service between subscribers and

servers.

(c) The installation cost of a server in any CO is same.

(d) Transmission and storage cost are linearly propor-

tioned to the transmission distance and amount of

data, respectively.

(e) Storage capacity in a CO has a limitation.

(f) Link capacity for MOD service between two COs are

unlimited.

(g) The expected demand of every program at each CO is

evaluated on the basis of the expected number of the

subscribers and program preference probability.

∗ School of Business, Information and Communications University, 58-4, Hwaam-Dong, Yuseong-Gu, Daejeon, Republic of Korea, 305-

732, E-mails: kimsj@icu.ac.kr, mkchoi@icu.ac.kr

First version of this paper was presented at SympoTIC´ 03, 26-28 October 2003, Bratislava, Slovakia

ISSN 1335-3632 c© 2003 FEI STU



Journal of ELECTRICAL ENGINEERING VOL. 54, NO. 9-10, 2003 245

CO - Central office

CO4

CO3

CO2

CO1

subscribers

subscribers

subscribers

Networking

CO5

Server

Server

Server

Fig. 1. Non-hierarchical MOD network

With a given MOD network, three kinds of network
cost, ie, server installation cost, storage cost and trans-
mission cost, are considered. If the installation cost is
much lower than the other costs, server may be located at
every CO and then the program requested can be served
by the server to which the requester is connected. On the
contrary, if the installation cost is much higher than the
other costs, it is beneficial to install only a few servers
and to transmit programs to the requester from one of
servers that store them. Therefore, it is necessary to de-
sign MOD network architecture considering tradeoffs be-
tween the network costs.

In order to formulate this problem, the following no-
tations and decision variables are introduced:

Notations

K : number of total programs for service

k : index of MOD programs k = 1, . . . ,K

i, j : index of central office i, j = 1, . . . , n

CF : installation cost of a single server

CS : storage cost per program in a single server

Cij : transmission cost per program between CO i and
CO j

Dk(i) : expected demand of program k in CO i

M : number of multiple accesses

[x]+ : smallest integer greater than or equal to x

Decision variables

xk(i, j) : amount of transmission for program k from
CO i to CO j

y(i) =

{

1 if a server is installed in CO i,

0 otherwise.

Minimize

n
∑

i=1

CF · y(i) +
n

∑

i=1

K
∑

k=1

{

Cs ·
[

n
∑

j=1

xk(i, j)/M
]+}

+

n
∑

i=1

K
∑

k=1

n
∑

j=1
j 6=i

Cij · xk(i, j) (0)

Subject to

n
∑

i=1

xk(i, j) = Dk(j) , k = 1, . . . ,K , j = 1, . . . , n (1)

K
∑

k=1

[

n
∑

j=1

xk(i, j)/M
]+

≤ C(i) , i = 1, . . . , n (2)

y(i) = 0 or 1 i = 1, . . . , n (3)

xk(i, j) ≥ 0 , and Integer k = 1, . . . ,K

i = 1, . . . , n j = 1, . . . , n
(4)

The objective of above formulation is to minimize the
sum of the costs considered. The first, second, and third
term in the objective function represent respectively the
server installation cost, program storage cost in servers,
and program transmission cost between COs. The con-
straint (1) ensures that the expected demands of all the
programs are met. The constraint (2) describes that stor-
age amount in each CO should be restricted to its capac-
ity. The constraints (3) and (4) just restate the definitions
of the decision variables involved.

3 THE PROPOSED GENETIC ALGORITHM

The problem considered belongs to the location-allo-
cation problem. If a vector of location variables y(i) is
specified, the problem is reduced to the transportation
problem so that we easily obtain optimal values of alloca-
tion variables xk(i, j) using well-known methods. There-
fore, the search procedure can be restricted to the space
of location variables. In Section 3, when we refer to a so-
lution, this should be interpreted as an assignment of 0s
and 1s to the location variables. To solve this problem, a
genetic algorithm (GA) is employed.

The GA is a stochastic procedure that imitates the bi-
ological evolutionary process of genetic inheritances and
the survival of the fittest [9, 10]. The GA is an iterative
procedure. During each iteration, a finite set, called a
population, of individuals is maintained. Each individ-
ual represents a potential solution to the problem. The
fitness of each individual is measured according to an
evaluation function (evaluation step). Then, a new pop-
ulation is formed by selecting fitter individuals (selection
step). Some individuals of the new population are altered
by applying genetic operators (recombination step). The
above process is repeated until some termination criteria
are met.

In order to design a GA for a particular problem, the
following components must be determined: 1) a genetic
representation for potential solutions to the problem; 2)
an evaluation function to compute the fitness of each solu-
tion; 3) a selection scheme to generate a new population;
4) genetic operators to alter the individuals; 5) and var-
ious genetic parameters to control the evolutionary pro-
cess.



246 Sun-Jin Kim — Mun-Kee Choi: JOINT OPTIMIZATION OF SERVER LOCATION AND STORAGE ALLOCATION IN . . .

P1 = (0 1 0 1 1 0 0)

O1 = (0 1 1 0 1 0 0)

P2 = (1 0 1 0 1 1 1)

Fig. 2. Two-point crossover

i Nij

j

(i,j)

Fig. 3. Population and neighborhood structure

begin
t ¬0;
begin

initialize P(t);
evaluate P(t);

end
while (not termination condition) do

begin
set N(t) by selecting arbitrary area from P(t);
select N’(t) for reproduction;
recombine N’(t) to yield C(t) by crossover;

evaluate C(t) and replace Ni(t) with C(t);

apply mutation for N(t) to yield C(t);
evaluate C(t) and replace N’(t) with C(t);
t ¬ t+1

end

Fig. 4. The proposed procedure of GA

The representation is an encoding of potential solu-
tions to the problem. The evaluation function reflects the
objective of the optimization. Two kinds of genetic op-
erators are used in most GAs: crossover operators that
combine genetic material from two individuals, and mu-
tation operators which randomly alter some composition
of an individual. These operators, in conjunction with
the representation schemes, greatly influence the perfor-
mance of GAs. The genetic parameters are experimentally
determined to fine-tune the evolutionary process. A GA
should strike a balance between the exploitation of good
individuals to facilitate the search, and the exploration of
search space to prevent a premature convergence to local
optima.

In this problem, a vector of location variables y(i) is
an individual as a potential solution and the objective
function (0) in the formulation is used as an evaluation
function. It is important to make a genetic operator in
order to transmit good genetic characteristics of parents
to their offsprings. Here, the two-point crossover operator,

which is usually used in evolutionary algorithms [9, 10],
is employed as follows:

• Two crossover points are randomly selected in both
parents.

• The elements in the fore and back parts of the two
crossover points in one parent of P1 are copied into an
offspring in the same position as they appear in P1.

• And then, the elements between the two crossover
points in the other parent of P2 are copied into an
offspring in the same position as they appear in P2.

• The other offspring can be created by switching the
roles of the two parents.

An example is given in Fig. 2, where crossover points
are marked by ‘

∣

∣ ’. In evolutionary algorithms, a muta-
tion operator acts on a single parent and produces an
offspring by introducing small changes in order to en-
sure the diversity of potential solutions and to prevent
a premature convergence to local optima [9, 10]. For this
problem, some individuals are randomly chosen with the
individual mutation rate of Pm and mutation operation
is applied to the individuals with the gene mutation rate
of Pg .

Suppose P (t) is the parents in the current genera-
tion t . In the evolutionary process, maintaining diverse
populations is necessary for the long-term success of any
evolutionary algorithm. A genetic search with a diverse
population can continue utilizing recombination to pro-
duce a new structure, and thus avoid becoming trapped at
local optima. To promote diversity and search efficiency,
in this paper, the evolutionary system is based on the
localized neighborhood interactions within populations.
Population forms a two-dimensional toroidal square lat-
tice. Although the size and shape of a neighborhood can
of course be defined in many different ways, the structure
of 3×3 neighborhood is used here for localized evolution.
Therefore, the neighborhood area of N(t) at the current
generation t should be set when Nij denote the neighbor-
hood including individual (i, j) and its eight neighbors in
population such as Fig. 3.

Based on fitness, a roulette wheel method, ie , the bet-
ter individual has the larger survival probability in the
next generation, is used for the selection of parents and in-
dividuals for replacement [9, 10]. N ′(t) is selected for the
reproduction process according to the fitness in N(t) , and
the new offspring, C(t) , are created by applying crossover
operation for N ′(t) according to the crossover rate and by
applying mutation operation for N(t) according to mu-
tation rate. When N ′(t) or N(t) is replaced with C(t) ,
the elite individual is not replaced during the reproduc-
tion process. The procedure of the proposed algorithm is
shown in Fig. 4.

4 SIMULATION DESIGN AND RESULTS

To verify the performance of the proposed GA, com-
putational simulations were carried out on various bench-
marking problems. In constraint (1), the expected de-
mands of program k in CO j , Dk(j) , should be com-



Journal of ELECTRICAL ENGINEERING VOL. 54, NO. 9-10, 2003 247

Table 1. Problem parameter setting

Parameters Values

Storage cost per program (Cs ) 1

Transmission cost per program (Cij )
Randomly chosen

from 2,3 and 4

Installation cost per server (CF ) 1000, 2500, 4000

Number of multiple accesses (S ) 1

Number of programs for service (K ) 200

Mean service time 1.0

Busy hour request attempts per user 0.1

Service blocking probability 0.005

puted. For this purpose, we have used the Erlang B

model. In the model, traffic intensity can be calculated by
the multiplication of MOD subscribers, busy hour request
attempts per users, program preference probability, and
mean service time, divided by service time unit. Blocking
probability to a program stored in a server is also needed
in order to determine the demands.

Table 2. Bench-marking problems

x-COs1)

Number Difference
Problems of multiple in #of

accesses subscribers

Nx1) -11 1 No2)

Nx-12 10 No
Nx-13 20 No
Nx-14 30 No
Nx-21 1 Medium3)

Nx-22 10 Medium
Nx-23 20 Medium
Nx-24 30 Medium
Nx-31 1 Large4)

Nx-32 10 Large
Nx-33 20 Large
Nx-34 30 Large

1) x: the number of COs, which has 5, 7, 10, 20, 30 and 50
respectively

2) No: the number of subscribers per CO is 10,000

3) Medium: 10,000 and 2,500 are alternatively assigned as the

number of subscribers in each CO

4) Large: 20,000, 15,000, 10,000, 5,000 and 2,500 are alterna-

tively assigned as the number of subscribers in each CO

The preference probability for the program with pref-
erence order k is denoted by pk and calculated by (5)
proposed by [2]. The parameter DHP is the ratio between
the preference probability (k − 1)-th and k -th. DHP is
greater than one because all the programs are sorted in
a decreasing order with respect to their preference prob-
ability. In this paper, DHP is set to 1.3 on an average

even though it differs according to the number of COs.

pk =
pk−1

DHP

, k > 1 , p1 =
1 − (1/DHP )

1 − (1/DHP )k
. (5)

The problem parameters for MOD networks are first set,
as shown in Tab. 1. Bench-marking problems are made
according to the number of COs, installation cost per
server and difference in the number of subscribers such
as Tab. 2.

Table 3. Parameters for GA

Parameters Values

Crossover rate 0.7
Mutation rate (Pm, Pg ) 0.1, 0.1
Population Size 100
Neighborhood Size 9
Termination criteria for algorithm 70 / 120 /
(# of generations 180 / 400 /

according to # of COs) 700 / 1500

The GA was coded in C++ and each experiment
was repeated 10 times for every bench-marking problem.
Preliminary experiments were performed to determine a
proper parameter value, different values are taken with
respect to the bench-marking problems such as Tab. 3.

The enumeration method, which is used as a reference
method, is that the best solution is selected after evaluat-
ing all possible solutions. The proposed GA is compared
with it in terms of solution quality and computation time.
Relatively small-sized problems were implemented, since
enumeration method failed to find a solution to large-
sized problems within reasonable computer time.

The representative results are shown in Tab. 4. The
first column identifies the bench-marking problems. The
next four columns show the total costs, which are the
values of dividing every resulting objective value by 100.
The sixth column indicates the standard deviation (SD)
of solutions obtained by using GA. The computation time
for enumeration method and GA appears in the seventh
and the eighth column, respectively. A comparison in
solution quality between GA and enumeration method
is shown in the last column. Efficiency is calculated by
{1−(average of the GA − optimal solution) / optimal
solution}×100. The computation time and efficiency are
graphed in Figs. 5 and 6, respectively, when the network
consists of 10 and 20 COs. The results show that the
proposed GA finds out an optimal solution in almost all
the trials for small-sized problems.

In order to investigate the performance of the GA for
relatively large-sized problems, simulations were also per-
formed. The result is shown in Tab. 5. In the sixth col-
umn, difference is calculated by {(the worst solution −
the best solution) / the best solution} × 100. In results,
the standard deviation of the solutions is relatively small,



248 Sun-Jin Kim — Mun-Kee Choi: JOINT OPTIMIZATION OF SERVER LOCATION AND STORAGE ALLOCATION IN . . .

Table 4. Performance comparison between Enumeration and GA

Problems E Proposed GA Computational time (sec.) Efficiency

Best Worst Average SD E GA (%)

N5-1 133.9 133.9 133.9 133.9 0.0 0.0 0.1 100.0
N5-2 208.9 208.9 208.9 208.9 0.0 0.0 0.1 100.0
N5-3 267.6 267.6 267.6 267.6 0.0 0.0 0.1 100.0
N5-4 115.1 115.1 115.1 115.1 0.0 0.0 0.1 100.0
N5-5 178.2 178.2 178.2 178.2 0.0 0.0 0.1 100.0
N5-6 218.6 218.6 218.6 218.6 0.0 0.0 0.1 100.0
N5-7 133.7 133.7 133.7 133.7 0.0 0.0 0.1 100.0
N5-8 198.3 198.3 198.3 198.3 0.0 0.0 0.1 100.0
N5-9 243.3 243.3 243.3 243.3 0.0 0.0 0.1 100.0

N7-1 182.3 182.3 182.3 182.3 0.0 0.1 0.4 100.0
N7-2 287.3 287.3 287.3 287.3 0.0 0.1 0.4 100.0
N7-3 350.6 350.6 350.6 350.6 0.0 0.1 0.4 100.0
N7-4 154.5 154.5 154.5 154.5 0.0 0.1 0.4 100.0
N7-5 225.0 225.0 225.0 225.0 0.0 0.1 0.4 100.0
N7-6 282.7 282.7 282.7 282.7 0.0 0.1 0.4 100.0
N7-7 201.2 201.2 201.2 201.2 0.0 0.1 0.4 100.0
N7-8 289.8 289.8 289.8 289.8 0.0 0.1 0.4 100.0
N7-9 356.1 356.1 356.1 356.1 0.0 0.1 0.4 100.0

N10-1 273.0 273.0 273.0 273.0 0.0 0.9 0.7 100.0
N10-2 423.0 423.0 423.0 423.0 0.0 1.1 0.7 100.0
N10-3 526.2 526.2 530.6 526.6 1.4 1.0 0.7 99.9
N10-4 223.2 223.2 226.1 223.5 0.9 1.0 0.7 99.9
N10-5 326.9 326.9 326.9 326.9 0.0 1.0 0.7 100.0
N10-6 387.1 387.1 387.1 387.1 0.0 1.0 0.7 100.0
N10-7 273.2 273.2 273.2 273.2 0.0 0.9 0.7 100.0
N10-8 404.0 404.0 404.0 404.0 0.0 1.0 0.7 100.0
N10-9 490.7 490.7 494.6 491.1 1.2 0.9 0.7 99.9
N20-1 552.1 552.1 552.1 552.1 0.0 1739.1 7.3 100.0
N20-2 852.1 852.1 852.1 852.1 0.0 1739.4 7.3 100.0
N20-3 1048.1 1048.1 1053.9 1049.7 2.0 1739.1 7.7 99.9
N20-4 454.9 454.9 461.4 456.9 2.4 1739.1 7.4 99.6
N20-5 655.8 655.8 661.8 656.4 1.9 1739.1 7.6 99.9
N20-6 770.7 770.7 770.7 770.7 0.0 1739.2 7.8 100.0
N20-7 354.7 354.7 354.7 354.7 0.0 1739.1 7.4 100.0
N20-8 490.5 490.5 494.6 492.8 1.4 1739.4 7.5 99.5
N20-9 537.7 537.7 545.2 538.9 2.6 1739.1 7.6 99.8

and the difference between the worst and the best case is

less than 1% in addition to computation time does not

increase exponentially as the number of COs increases.

One can conclude that, for large-sized problems, the pro-

posed algorithm is able to achieve a high quality solution

with a modest growth in computational effort.

Results in case of 10 COs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9
Problems

Computation Time(s)

99.0

99.2

99.4

99.6

99.8

100.0

Efficiecy(%)

E
GA

Efficiency

Fig. 5. The results in case of 10 COs

Computation time(s)

Problems
0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

99.6

99.8

100.0

Results in case of 20 COs

1 2 3 4 5 6 7 8 9

Efficiecy(%)

E*

GA

Efficiency

* : values by subtracting 1700 from every resulting computation

time value

Fig. 6. The results in case of 20 COs



Journal of ELECTRICAL ENGINEERING VOL. 54, NO. 9-10, 2003 249

5 CONCLUSIONS

In this paper, a genetic algorithm application to non-

hierarchical and decentralized MOD network design was

proposed. Both server location and storage allocation

were considered under network resource optimization,

based on cost analysis including server including instal-

lation cost for servers, program storage cost, and trans-

mission cost. The comparisons made for various problem

modifications were used for verifying the efficiency of the

proposed methods. High quality solutions were received

within reasonable time periods of computations. The sim-

ulations produced have shown improved the quality of

solution as well as the efficiency of computation.

Although the GA to design MOD network is devel-

oped, it can be used to reallocate resource when network

is affected by factors such as the release of new programs,

increase or decrease of subscribers and the changes of

involved network costs. Therefore, the amount of pro-

gram stored in server can be adjusted periodically with-

out changing the location of server, or the location of

newly installed server can be decided in any case.

Additionally, the attractive feature of the proposed

algorithm is its reasonable flexibility. It can be applied

to solve many variants of optimization criteria and re-

strictions. as well as multiple location-allocation types of

problems.

Table 5. Performance analysis of the proposed method

Problems Proposed GA Computation

Best Worst Average SD Difference(%) time (sec.)

N30-1 817.8 817.8 817.8 0.0 0.0 9.1

N30-2 1267.8 1272.9 1268.3 1.6 0.4 9.1

N30-3 1528.3 1530.8 1528.6 0.8 0.2 9.6

N30-4 673.1 679.1 674.6 2.1 0.9 9.2

N30-5 969.5 969.5 969.5 0.0 0.0 9.4

N30-6 1119.1 1124.7 1120.0 1.7 0.5 9.7

N30-7 822.8 825.8 823.4 1.2 0.4 9.1

N30-8 1196.1 1196.1 1196.1 0.0 0.0 9.3

N30-9 1442.9 1442.9 1442.9 0.0 0.0 9.5

N50-1 1384.6 1384.6 1384.6 0.0 0.0 35.4

N50-2 2134.6 2140.3 2135.7 2.4 0.3 35.3

N50-3 2601.1 2606.9 2602.5 1.8 0.2 38.2

N50-4 1136.5 1142.8 1137.7 2.1 0.6 35.6

N50-5 1648.5 1651.6 1649.0 1.0 0.2 36.9

N50-6 1889.2 1894.8 1892.2 1.9 0.3 38.3

N50-7 1390.8 1395.4 1392.5 2.2 0.3 35.5

N50-8 2024.7 2026.2 2025.0 0.6 0.1 36.3

N50-9 2435.0 2438.7 2435.7 1.4 0.2 37.3

References

[1] GELMAN, A. D.—HALFIN, S. : Analysis of Resource Shar-

ing in Information Providing Services, IEEE GLOBECOM’90,

312–316, 1990.

[2] De GIOVANNI, L.—LANGELLOTTI, A. M.—PATITUCCI, L.

M.—PETRINI, L. : Dimensioning of Hierarchical Storage for

Video on Demand Service, IEEE ICC’94, 1739–1743, 1994.

[3] HWANG, R. H.—SUN, Y. C : Optimal Video Placement for

Hierarchical Video-on-Demand Systems, IEEE Transaction on

Broadcasting 44(4) (1998), 392–401.

[4] OUVEYSI, I.—WONG, K. C.—CHAN, S.—KO, K. T. : Video

Placement and Dynamic Routing Algorithms for Video-On-

Demand Networks, The Bridge to Global Integration, IEEE, 2,

658–663, 1998.

[5] PETIT, G. H.—DELODDERE, D. VERBIEST, W. : Band-

width Resource Optimization in Video-On-Demand Network Ar-

chitectures, IEEE GLOBECOM’94, 91–97, 1994.

[6] WONG, E. W. M.—CHAN, S. : Modeling of Video-on-Demand

Networks with Server Selection, The Bridge to Global Integra-

tion. IEEE, 1, 54–59, 1998.

[7] SCHAFFA, F.—NUSSBAUMER, J. P. : On Bandwidth and

Storage Tradeoffs in Multimedia Distribution Networks, IEEE

INFORM’95, 1020–1026, 1995.

[8] KIM, Y. K.—KIM, J. Y.—KANG, S. S. : A Tabu Search Ap-

proach for Designing a Non-Hierarchical Video-on-Demand Net-

work Architecture, Computers & Industrial Engineering 33 No.

3-4 (1997), 837–840.

[9] GOLDBERG, D. E. : Genetic Algorithm in Search Optimization

& Machine Learning, Addison-Wesley, Readings, 1989.

[10] MICHALEWICZ, Z. : Genetic Algorithm + Data Structures =

Evolution Programs (2nd edn), Springer-Verlag, Berlin, 1994.

Received 22 August 2003

Sun-Jin Kim has received the BS and MS degrees in In-
dustrial Engineering from Chonnam National University, Ko-
rea, in 1996 and 1998, respectively. She is currently working
toward the PhD degree in IT Business department at ICU
(Information and Communications University), Korea. Her re-
search interests include resource management, combinatorial
optimization, telecommunication network analysis in commu-
nication network and evolutionary algorithms.

Mun-Kee Choi has received BS degree in Applied Math-
ematics from Seoul National University, Korea, MS degree in
Industrial Engineering from Korea Advanced Institute of Sci-
ence and Technology and PhD degree in Operations Research
from North Carolina State University, USA at 1974,1978,1989
respectively. From 1978 to 1999, he worked network as a senior
research staff in Electronics and Telecommunications Research
Institute (ETRI). He is currently a professor of IT Business
department at ICU (Information and Communications Uni-
versity), Korea. His current research interests are telecommu-
nication system and networking technology, Network services
and business model, and performance analysis of related is-
sues.


