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COMMUNICATIONS

SIMPLE RELATIONSHIPS FOR ESTIMATION OF
THE PERFORMANCES OF SC INTEGRATORS

WITH NON–IDEAL AMPLIFIERS

Nikolay A. Radev — Kantcho P. Ivanov
∗

Simple formulae relating the dc gain, the phase errors and the offset voltage errors of SC integrators with non-ideal
opamps are presented. The validity of the analytical expressions is demonstrated for charge-differencing very-large-time-
constant inverting SC integrators.
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1 INTRODUCTION

The most important frequency limitation in SC filters
is imposed by the operational amplifier gain-bandwidth
restrictions. A finite bandwidth reduces the speed of the
operational amplifiers (opamps) by introducing a limit
on the sampling frequency in order to assure a full charge
transfer during the individual clock phase. But, in SC
circuits the distortion introduced by the finite gain A is
more pronounced than that of the finite bandwidth [1].
On the other hand a nonzero input-referred opamp offset
voltage Vos , which can be considered constant, introduces
an output offset voltage that may become a significant
limitation to the permissible signal swing. To compare
the SC integrators in terms of magnitude error m(ω),
phase error θ(ω) and offset voltage error γ , it is advan-
tageous to use the known αβγ representation defined in
[2]. Moreover the dc gain H(0) of the integrators can also
be an estimation for their performances.

In this paper simple relationships between H(0), θ(ω)
and γ are derived. These analytical formulae can be used
to compare the performances of different SC integrators.

2 THEORETICAL RESULTS

In the analysis it is assumed that the opamps have a
finite dc gain A = 1/µ and an infinite bandwidth. This
supposition is adequate for the analysis of SC circuits
containing fast and relatively low-gain amplifiers.

The αβγ representation is based on writing the in-
put/output relation of the integrators in the form [2]

vo(n) = ∓αkidvin(n − p) + βvo(n − 1) + γVos . (1)

Here, kid is the gain of the ideal integrator, α = 1 + ∆α
represents the change in gain, β = 1 + ∆β is the shifted

pole frequency and γ is the suppression factor of the
offset voltage Vos . In the ideal case, α = β = 1, while
γ = 0. The value of index p depends on the integrator
considered. The upper sign (−) is applied to inverting
integrators, whereas the lower sign (+) is applied to non-
inverting integrators.

For all the integrators satisfying relation (1) the pa-
rameter β is positive and in most cases less than unity
(0 < β < 1, ∆β < 0) when the finite opamp gain is
taken into account.

The output voltage of the non-ideal integrator, with
the input grounded (vin = 0) and 0 < β < 1, is given by

vos(n) = γVos(1+β+β2+· · ·+βn−1) = γVos
1 − βn

1 − β
. (2)

The theoretical steady-state output voltage voss , its lim-
ited excursion being neglected, is

voss = Vos/µ . (3)

From (2), when the number of clock periods n tends to
infinity, the following expression for voss is obtained

voss = γVos/(1 − β) . (4)

Comparing (3) and (4)

1 − β = γµ = −∆β (5)

is found. Then (2) can be rewritten in the form

vos(n) =
Vos

µ
[1 − (1 − γµ)n] . (6)

The z -transform of (1), for Vos = 0, is given by

H(z) = ∓
kidαz−p

1 − βz−1
. (7)
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Table 1. Comparison of SC integrators in terms of H(0) and α

Integr. DC gain H(0) α

Fig. 1 −
k(1−2µ)

µ(5+6k)(1+µ) 1 − 4µ

Fig. 2 −
0.5k(1−2µ)

µ(1+k)[1+(2.5+1.5k)µ] 1 − (4 + 3k)µ

Fig. 3 − 0.5k
µ2(2.5+5.5k) 1 − 2kµ

Table 2. Comparison of SC integrators in terms of γ and θ(ω)

Integr. γ θ(ω)

Fig. 1 k(2.5+3k)(1−µ)
(1+k)(1+1.5k)

µk(1.25+1.5k)
(1+k)(1+1.5k) tan(ωT/2)

Fig. 2 k[1+0.5(1−k)µ]
1+1.5k

0.5µk
(1+1.5k) tan(ωT/2)

Fig. 3 k(2.5+5.5k)µ
(1+k)(1+1.5k)

0.5µ2k(2.5+5.5k)
(1+k)(1+1.5k) tan(ωT/2)

At dc the transfer function of the integrator is reduced to

H(z)
∣

∣

z=1
= H(0) = ∓

kidα

1− β
= ±

kidα

∆β
. (8)

The sensitivity of the integrator’s output to the opamp
offset voltage Vos (the offset caused drift) can be eval-
uated by the number of clock periods nq for which the
output voltage vos(nq) reaches the value qVos (q < 1)
with the amplifier operating linearly. Thus, from (5), (6)
and (8) we obtain

nq =
ln(1 − q)

ln
(

1 ± kidα/H(0)
) ≈ ±

H(0)

kidα
ln(1 − q) (9)

for ln(1 ± x) ≈ ±x .
The phase error of the integrator is given by [2]

tan θ(ω) ≈ −
∆β

2
cotan(ωT/2) (10)

where T is the sampling period.
Combining (10) with (5) and (8) we have

tan θ(ω) ≈ ∓
kidα

2H(0)
cotan(ωT/2) =

γµ

2
cotan(ωT/2)

(11)
and

H(0)γµ/α = ∓kid . (12)

This relationship which for α ≈ 1 is reduced to

H(0)γµ ≈ ∓kid (13)

enables us to calculate the suppression factor γ if the dc
gain H(0) is preliminarily known.

Let us consider two SC integrators with the same gain
kid and with the same opamp dc gain A = 1/µ . Then,
from (9) and (11) the following relationships are obtained

H1(0)

H2(0)
=

α1 tan θ2(ω)

α2 tan θ1(ω)
=

nq1α1

nq2α2
=

α1γ2

α2γ1
. (14)

For α1 ≈ 1, α2 ≈ 1 and θ � 1, formula (14) can be

rewritten as

H1(0)

H2(0)
≈

θ2(ω)

θ1(ω)
≈

nq1

nq2
≈

γ2

γ1
. (15)

The above formulae suggest that the preliminary knowl-

edge of the values Hi(0) can be used to compare the per-

formances of different SC integrators in terms of phase

error, offset error and offset caused drift.

3 COMPARATIVE STUDY OF SOME

INVERTING SC INTEGRATORS

In order to demonstrate the validity of relationships

(12) and (15), three charge-differencing (CD) very-large-

time-constant (VLT) inverting SC integrators are consid-

ered:

1. the basic uncompensated Lin-92 integrator [3];

2. the gain-and-offset compensated (GOC) Lin-92 inte-

grator [3];

3. the GOC integrator proposed in [4].

Figures 1 to 3 show the above integrators. In addition

to the clock phase 1 and 2, the integrator from Fig. 3

requires two non-overlapping clocks, e and o , shown in

Fig. 3b. The output voltage Vo is sampled in phase 2o =

2+ o . The derived approximate expressions for H(0), α ,

γ and θ(ω) of the three integrators are summarized in

Table 1 and Table 2, for Ca1 = 1.5, C1 = Ca2 = Ch = 1

and k = C1/CA .

Substituting the corresponding expressions for H(0), α

and γ from these tables into (12), we get for µ � 1 and

k < 1:

H1(0)γ1µ/α1 ≈ −kid(1 + 6µ2) ≈ −kid , (16a)

H2(0)γ2µ/α2 ≈ −kid(1 + kµ) ≈ −kid , (16b)

H3(0)γ3µ/α3 ≈ −kid(1 + 2kµ) ≈ −kid . (16c)

From (15) and tables 1 and 2 we obtain

H2(0)

H1(0)
≈

θ1(ω)

θ2(ω)
≈

γ1

γ2
≈

2.5 + 3k

1 + k
= 2.53 , (17a)

H3(0)

H1(0)
≈

θ1(ω)

θ3(ω)
≈

γ1

γ3
≈

2.5 + 3k

µ(2.5 + 5.5k)
= 474 , (17b)

H3(0)

H2(0)
≈

θ2(ω)

θ3(ω)
≈

γ2

γ3
≈

1 + k

µ(2.5 + 5.5k)
= 187 (17c)
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Fig. 1. Basic Lin-92 VLT integrator
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Fig. 2. Lin-92 GOC VLT integrator
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Fig. 3. Novel GOC VLT integrator and clocking scheme, a. GOC
VLT integrator, b. Clocking scheme.

for A = 500 and k = 1/16.77949. These results confirm
the validity of relationships (12) and (15).

4 CONCLUSION

Simple formulae relating the phase errors and the off-
set voltage errors of SC integrators with non-ideal opamps

have been derived. It was shown that the dc gain of the in-

tegrators H(0) could be used as a criterion for comparing

their performances. On the other hand the dc gain H(0)

is more easily calculated than the other performance pa-
rameters. The validity of the analytical expressions has
been demonstrated for CD VLT inverting SC integrators.
The given approach can be applied to other types of SC
integrators as well.
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