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DISLOCATED TOPOLOGIES

Pascal Hitzler — Anthony Karel Seda
∗

We study a generalized notion of topology which evolved from applications in the area of logic programming semantics.
The generalization is obtained by relaxing the requirement that a neighbourhood of a point includes the point itself, and by
allowing neighbourhoods of points to be empty. We show that it is meaningful to discuss neighbourhoods, convergence, and
continuity in these spaces. A generalized version of the Banach contraction mapping theorem can also be established. We
will also show how the generalized metrics studied here can be obtained from conventional metrics.
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1 INTRODUCTION

In recent years, the role of topology in Logic Program-
ming has come to be recognized (see e.g. [1,2,6]). In par-
ticular, topological methods are employed in order to ob-
tain fixed-point semantics for logic programs. The dislo-

cated metric spaces which we wish to present in this paper
are motivated by such considerations.

The plan of the paper is as follows. In Section 2, we will
first define dislocated metrics and state a generalization
of the Banach contraction mapping theorem which has
found applications in the area of programming language
semantics. In Section 3, we will study dislocated topolo-

gies which generalize conventional topologies and can be
understood as underlying the notion of dislocated metric.
In Section 4, we will further investigate dislocated met-
rics and their relationships with the concepts introduced
in Section 3 and with conventional metrics. Finally, in
Section 5, we will conclude with a short discussion.

2 A GENERALIZED BANACH

FIXED–POINT THEOREM

We will define dislocated metrics and present a gen-
eralization of the Banach contraction mapping theorem,
Theorem 2.2, for these spaces. This theorem has been
applied in the area of logic programming semantics, and
the interested reader can find details of this in the long
version of the paper1 .

Let X be a set and let ̺ : X × X → R
+

0
be a func-

tion, called a distance function. Consider the following
conditions:
(Mi) For all x ∈ X , ̺(x, x) = 0.

(Mii) For all x, y ∈ X , if ̺(x, y) = 0, then x = y .
(Miii) For all x, y ∈ X , ̺(x, y) = ̺(y, x).

(Miv) For all x, y, z ∈ X , ̺(x, y) ≤ ̺(x, z) + ̺(z, y).
(Miv′)For all x, y, z ∈ X, ̺(x, y) ≤ max{̺(x, z), ̺(z, y)} .

If ̺ satisfies conditions (Mi) to (Miv), then it is called

a metric. If it satisfies conditions (Mi), (Miii) and (Miv),
it is called a pseudo-metric. If it satisfies (Mii), (Miii)

and (Miv), we will call it a dislocated metric (or simply
d-metric). If a (pseudo-, d-) metric satisfies the strong
triangle inequality (Miv ′ ), then it is called a (pseudo-,

d-) ultrametric.

Dislocated metrics were studied under the name of

metric domains in the context of domain theory in [3],
where proofs of the results of this section can be found.

The slightly less general notion of partial metric was also
studied in [4]. We proceed now with the definitions needed

for stating the generalized Banach contraction mapping
theorem. As it turns out, these notions can be carried

over directly from conventional metrics.

A sequence (xn) in a d-metric ̺ converges with respect

to ̺ (or in ̺) if there exists an x ∈ X such that ̺(xn, x)

converges to 0 as n → ∞ . In this case, x is called the
limit of (xn) (in ̺) and we write xn → x . A sequence

(xn) in a d-metric space is called a Cauchy sequence if
for each ε > 0 there exists n0 ∈ N such that for all

m,n ≥ n0 we have ̺(xm, xn) < ε . A d-metric space
(X, ̺) is called complete if every Cauchy sequence in X

converges with respect to ̺ . A function f : X → X is
called a contraction if there exists 0 ≤ λ < 1 such that

̺(f(x), f(y)) ≤ λ̺(x, y) for all x, y ∈ X .

2.1 Proposition. The following statements hold.
(a) Limits in d-metric spaces are unique.
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(b) Every converging sequence in a d-metric space is a
Cauchy sequence.

2.2 Theorem. Let (X, ̺) be a complete d-metric space
and let f : X → X be a contraction. Then f has a unique
fixed point.

A proof of this theorem was given in [3]. We will give an
alternative proof in Section 4 which is more in the spirit
of the proof of the original Banach contraction mapping
theorem.

3 DISLOCATED TOPOLOGIES

We are interested in investigating dislocated metrics
from a topological point of view following the inspiration
provided by Section 2. Since constant sequences do not in
general converge in d-metric spaces, a conventional topo-
logical approach is not feasible, and the conventional no-
tions of neighbourhood, convergence and continuity need
to be modified.

3.1 Definition. An (open ε-)ball in a d-metric space
(X, ̺) with centre x ∈ X is a set of the form Bε(x) =
{y ∈ X | ̺(x, y) < ε} , where ε > 0.

Note that a ball may be empty in a d-metric space. In
fact, the above definition of ball does not imply that the
centre of a ball is contained in the ball itself: the point
may be dislocated from the ball, and hence our usage of
the term “dislocated” in this paper.

3.2 Proposition. Let (X, ̺) be a d-metric space.

(a) The following three conditions are equivalent:

(i) For all x ∈ X , we have ̺(x, x) = 0 .

(ii) ̺ is a metric.

(iii) For all x ∈ X and all ε > 0 , we have Bε(x) 6= ∅ .

(b) The space (X ′, ̺) , where X ′ = {x ∈ X | ̺(x, x) =
0} , is a metric space.

P r o o f . (a) That (i) implies (ii) is obvious, as is (ii)
implies (iii). We show (iii) implies (i). Since Bε(x) 6= ∅
for all ε > 0, there exists, for each ε > 0, some y ∈ X

with ̺(x, y) < ε . But, for all y ∈ X , we have ̺(x, x) ≤
2 ·̺(x, y), and hence ̺(x, x) < ε for all ε > 0. Therefore,
̺(x, x) = 0.

(b) Obviously, (X ′, ̺) is a d-metric space. The assertion
now follows immediately from (a).

We proceed next with the investigation of dislocated
metrics from the topological point of view. If X is a set,
then a relation <◦ ⊆ X×P(X) (written infix) is called a
d-membership relation (on X ) if it satisfies the following
property for all x ∈ X and A,B ⊆ X : whenever x<◦ A

and A ⊆ B , we have x<◦ B . We say x is below A if
x<◦ A . The “below”-relation is a generalization of the
membership relation from set theory, which will allow us
to define a suitable notion of neighbourhood.

3.3 Definition. Let X be a set, let <◦ be a d-mem-
bership relation on X and let Ux 6= ∅ be a collection
of subsets of X for each x ∈ X . We call (Ux, <◦ ) a
d-neighbourhood system (d-nbhood system) for x if it sat-
isfies the following conditions.
(Ni) If U ∈ Ux , then x<◦ U .
(Nii) If U, V ∈ Ux , then U ∩ V ∈ Ux .
(Niii) If U ∈ Ux , then there is a V ⊆ U with V ∈ Ux

such that for all y<◦ V we have U ∈ Uy .
(Niv) If U ∈ Ux and U ⊆ V , then V ∈ Ux .

Each U ∈ Ux is called a d-neighbourhood (d-nbhood) of
x . Finally, let X be a set, let <◦ be a d-membership
relation on X and for each x ∈ X let (Ux, <◦ ) be a d-
nbhood system for x . Then (X,U , <◦ ) (or simply X ) is
called a d-topological space, where U = {Ux | x ∈ X} .

Note that points may have empty d-nbhoods and also
that Definition 3.3 is exactly the definition of a topo-
logical neighbourhood system if <◦ is the membership
relation ∈ . Proposition 3.4, next, shows that d-nbhood
systems arise naturally from d-metrics.

3.4 Proposition. Let (X, ̺) be a d-metric space. Define
the d-membership relation <◦ as the relation {(x,A) |
there exists ε > 0 for which Bε(x) ⊆ A} . For each x ∈
X , let Ux be the collection of all subsets A of X such
that x<◦ A . Then (Ux, <◦ ) is a d-nbhood system for x .

P r o o f . It is easy to see that <◦ is indeed a d-
membership relation.

(Ni) is obvious. Note that we also have the reverse prop-
erty: if x<◦ U , then U ∈ Ux .

(Nii) If x<◦ U, V , then there are balls A,B with centre x

such that A ⊆ U and B ⊆ V . Without loss of generality
let A be the smaller of the balls A and B . Then A =
A ∩B ⊆ U ∩ V .

(Niii) Let U ∈ Ux , that is, x<◦ U . Then there is a ball
B with centre x such that B ⊆ U and B ∈ Ux . Now let
y<◦ B be arbitrary. We have to show that y<◦ U . But
y<◦ B implies that there is a ball B′ with centre y such
that y<◦ B′ ⊆ B ⊆ U . So y<◦ U .

(Niv) This is obvious since x<◦ U ⊆ V implies x<◦ V .

We note that if (X, ̺) is a metric space, then the
construction above yields the usual topology associated
with a metric.

Once the notion of d-nbhood is defined, it is straight-
forward to adapt the notion of convergence to d-topolog-
ical spaces, as follows.

3.5 Definition. Let (X,U , <◦ ) be a d-topological space
and let x ∈ X . A (topological) net (xλ) d-converges to

x ∈ X if, for each d-nbhood U of x , we have that xλ is
eventually in U , that is, there exists λ0 such that xλ ∈ U

for all λ > λ0 .

Note that if for some x ∈ X we have ∅ ∈ Ux , then
the constant sequence (x) does not d-converge. In fact,
if ∅ ∈ Ux , then no net in X d-converges to x . Note also
that the notion of convergence obtained in Definition 3.5
is a natural generalization of convergence with respect to
a d-metric, and we investigate this next.
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3.6 Proposition. Let (X, ̺) be a d-metric space and
let (X,U , <◦ ) be the d-topological space obtained from
it via the construction given in Proposition 3.4 . Let (xn)
be a sequence in X . Then (xn) converges in ̺ if and only
if (xn) d-converges in (X,U , <◦ ) .

P r o o f . Let (xn) be convergent in ̺ to some x ∈ X ,
so that ̺(xn, x) → 0 as n → ∞ , and let U be a d-nbhood
of x . Then there exists ε > 0 with Bε(x) ⊆ U . Since
̺(xn, x) → 0, there exists n0 such that xn ∈ B ⊆ U for
all n > n0 and hence (xn) d-converges to x .

Conversely, let (xn) be d-convergent to some x ∈ X .
Thus, for each d-nbhood U of x there exists n0 such
that xn ∈ U for each n > n0 . For each ε > 0, Bε(x) is a
d-nbhood of x . Since ε can be chosen arbitrarily small,
we must have ̺(xn, x) → 0 for n → ∞ .

We proceed with defining continuity on d-topological
spaces.

3.7 Definition. Let X and Y be d-topological spaces
and let f : X → Y be a function. Then f is d-continuous
at x0 ∈ X if, for each d-nbhood V of f(x0) in Y , there
is a d-nbhood U of x0 in X such that f(U) ⊆ V . We
say that f is d-continuous on X if f is d-continuous at
each x0 ∈ X .

The following theorem shows that the notion of d-
convergence can be characterized in terms of nets, by
analogy with conventional topology.

3.8 Theorem. Let X and Y be d-topological spaces
and let f : X → Y be a function. Then f is d-continuous
if and only if for each net (xλ) in X which d-converges
to some x0 ∈ X , (f(xλ)) is a net in Y which d-converges
to f(x0) ∈ Y .

P r o o f . Let f be d-continuous at x0 and let xλ be
a net which d-converges to x0 . Let V be a d-nbhood of
f(x0). Then there exists a d-nbhood U of x0 such that
f(U) ⊆ V . Since xλ is eventually in U , we obtain that
f(xλ) is eventually in V , and hence f(xλ) d-converges
to f(x0).

Conversely, if f is not d-continuous at x0 , then for
some d-nbhood V of f(x0) and for all U ∈ Ux0

we
have f(U) 6⊆ V . Thus for each U ∈ Ux0

there is an
xU ∈ U with f(xU ) 6∈ V . Then (xU ) is a net in X which
d-converges to x0 whilst f(xU ) does not d-converge to
f(x0).

4 DISLOCATED METRICS

In Section 3, we have generalized convergence from d-
metrics to d-topologies. However, we still lack a notion
of continuity for d-metrics. We will investigate this next,
and this will enable us to give a proof of Theorem 2.2
which is analogous to the standard proof of the Banach
contraction mapping theorem.

4.1 Proposition. Let (X, ̺) and (Y, ̺′) be d-metric
spaces, let f : X → Y be a function and let (X,U , <◦ )
and (Y,V , <◦ ′) be the d-topological spaces obtained from
(X, ̺) , respectively (Y, ̺′) , via the construction in Propo-
sition 3.4 . Then f is d-continuous at x0 ∈ X if and
only if for each ε > 0 there exists a δ > 0 such that
f(Bδ(x0)) ⊆ Bε(f(x0)) .

P r o o f . Let f be d-continuous at x0 ∈ X and let
ε > 0. Then Bε(f(x0)) is a d-nbhood of f(x0). By
definition of d-continuity, there exists a d-nbhood U of
x0 with f(U) ⊆ Bε(f(x0)). But since U is a d-nbhood
of x0 , there exists a ball Bδ(x0) ⊆ U and therefore
f(Bδ(x0)) ⊆ f(U) ⊆ Bε(f(x0)).

Conversely, assume that the ε -δ -condition on f holds
and let V be a d-nbhood of f(x0). Then there exists
ε > 0 with Bε(f(x0)) ⊆ V and δ > 0 with f(Bδ(x0)) ⊆
Bε(f(x0)) ⊆ V . Since Bδ(x0) is a d-nbhood of x0 we
obtain d-continuity of f .

4.2 Proposition. Let (X, ̺) be a d-metric space, let
f : X → X be a contraction and let (X,U , <◦ ) be the
d-topological space obtained from (X, ̺) via the con-
struction in the proof of Proposition 3.4 . Then f is d-
continuous.

P r o o f . Let x0 ∈ X and let ε > 0 be arbitrar-
ily chosen. For δ = ε

λ+1
, we obtain d(f(x), f(x0)) ≤

λd(x, x0) ≤ λ ε
λ+1

< ε for all x ∈ Bδ(x0), and therefore

f (Bδ(x0)) ⊆ Bε(f(x0)) as required.

P r o o f o f T h e o r e m 2.2 . With our preparations,
the proof follows the proof of the Banach contraction
mapping theorem on metric spaces, and we only sketch
the details here.

Let x ∈ X be arbitrarily chosen. Then the sequence
(fn(x))n∈N

is a Cauchy sequence and converges in (X, ̺)
to some point y . Since f is a contraction, it is also
d-continuous by Proposition 4.2 from which we obtain
y = lim fn(x) = f(lim fn−1(x)) = f(y) by Theorem 3.8.
Uniqueness follows since if z is a fixed point of f , then
̺(x, z) = ̺(f(x), f(z)) ≤ λ̺(x, z) and therefore ̺(x, z) =
0, and hence x = z by (Mii).

It is a corollary of the proof just given that iterates
of any point converge to the unique fixed point of the
function in question. In denotational semantics, this ad-
ditional feature of the fixed-point theorem is desirable
since it yields a method of actually obtaining the fixed
point whose existence has been shown.

In the remainder of this section, we will investigate
relationships between conventional metrics and d-metrics.
First note that if f is a contraction on a d-metric space
X , we have ̺(f(x), f(x)) ≤ λ̺(x, x) for all x ∈ X . Since
the requirement ̺(x, x) = 0 for all x ∈ X renders a d-
metric a metric, we are interested in studying the function
u̺ : X → R defined by u̺(x) = ̺(x, x). We will call this
function the dislocation function of ̺ .



6 P. Hitzler — A. K. Seda: DISLOCATED TOPOLOGIES

4.3 Lemma. Let (X, ̺) be a d-metric space. Then
u̺ : X → R is d-continuous.

P r o o f . Recalling the observations following Defini-
tion 3.5, let x ∈ X and let (xλ) be a net in X which
d-converges to x , so that for each ε > 0 there exist λ0

such that ̺(xλ, x) < ε for all λ > λ0 . Since u̺(xλ) =
̺(xλ, xλ) ≤ 2̺(xλ, x) for all λ , we obtain u̺(xλ) → 0
for increasing λ . It remains to show that u̺(x) = 0, and
this follows from u̺(x) = ̺(x, x) ≤ 2̺(xλ, x), since the
latter term tends to 0 for increasing λ .

The following is a general result which shows how d-
metrics can be obtained from conventional metrics.

4.4 Proposition. Let (X, d) be a metric space, let

u : X → R
+

0 be a function and let T : R× R → R
+

0 be a
symmetric operator which satisfies the triangle inequality.
Then (X, ̺) with

̺(x, y) := d(x, y) + T (u(x), u(y))

is a d-metric space and u̺(x) = T (u(x), u(x)) for all
x ∈ X . In particular, if T (x, x) = x for all x ∈ R , then
u̺ ≡ u .

P r o o f .
(Mii) If ̺(x, y) = 0, then d(x, y) + T (u(x), u(y)) = 0.
Hence d(x, y) = 0 and x = y .

(Miii) Obvious by symmetry of d and T .

(Miv) Obvious since d and T satisfy the triangle inequal-
ity.

Completeness also carries over if some continuity con-
ditions are imposed.

4.5 Proposition. Using the notation of Proposition 4.4 ,

let u be continuous as a function from (X, d) to R
+

0 (en-
dowed with the usual topology), and let T be continuous

as a function from the topological product space R
2 to

R
+

0 , satisfying the additional property T (x, x) = x for all
x . If (X, d) is a complete metric space, then (X, ̺) is a
complete d-metric space.

P r o o f . Let (xn) be a Cauchy sequence in (X, ̺).
Thus, for each ε > 0, there exists n0 ∈ N such that
for all m,n ≥ n0 we have d(xm, xn) ≤ d(xm, xn) +
T (u(xm), u(xn)) = ̺(xm, xn) < ε . So (xn) is also a
Cauchy sequence in (X, d) and therefore has a unique
limit x in (X, d). In particular, we have xn → x in
(X, d) and also u(xn) → u(x) and T (u(xn), u(x)) →
T (u(x), u(x)) = u(x). We have to show that ̺(xn, x)
converges to 0 as n → ∞ . For all n ∈ N we obtain
̺(xn, x) = d(xn, x)+T (u(xn), u(x)) → u(x) = u̺(x), and
it remains to show that ̺(x, x) = 0. But this follows from
the fact that (xn) is a Cauchy sequence, since the latter
implies that u(xn) = u̺(xn) = ̺(xn, xn) → 0 as n → ∞ ,
and hence by continuity of u we obtain u(x) = 0.

We can also obtain a partial converse of Proposi-
tion 4.4.

4.6 Proposition. Let (X, ̺) be a d-metric space which
satisfies the partial metric triangle inequality [4] ̺(x, z) ≤
̺(x, y) + ̺(y, z) − ̺(y, y) for all x, y, z ∈ X , and let

T : R × R → R
+

0 be a symmetric operator such that
T (x, x) = x , for all x ∈ R , which satisfies the inequality

T (x, y) ≥ T (x, z) + T (z, y)− T (z, z)

for all x, y, z ∈ R . Then (X, d) with

d(x, y) := ̺(x, y)− T (u̺(x), u̺(y))

is a pseudo-metric space.

P r o o f . (Mi) For all x ∈ X we have d(x, x) =
̺(x, x) − u̺(x) = 0.

(Miii) Obvious by symmetry of ̺ and T .

(Miv) For all x, y ∈ X we obtain

d(x, y) = ̺(x, y)− T (u̺(x), u̺(y)) ≤ ̺(x, z) + ̺(z, y)

− ̺(z, z)−
(

T (u̺(x), u̺(z)) + T (u̺(z), u̺(y))− u̺(z)
)

= ̺(x, z)− T (u̺(x), u̺(z)) + ̺(z, y)− T (u̺(z), u̺(y))

= d(x, z) + d(z, y) .

An example of a natural operator T which satisfies
the requirements of Propositions 4.4, 4.5 and 4.6 is

T : R× R → R : (x, y) 7→
1

2
(x+ y) .

Examples of d-metrics can be found in the long version
of the paper.

The following proposition demonstrates an alternative
way of obtaining d-ultrametrics from ultrametrics. This
result is of importance in the area of denotational seman-
tics where ultrametric structures naturally appear.

4.7 Proposition. Let (X, d) be an ultrametric space

and let u : X → R
+

0 be a function. Then (X, ̺) with

̺(x, y) = max{d(x, y), u(x), u(y)}

is a d-ultrametric and ̺(x, x) = u(x) for all x ∈ X . If u
is a continuous function on (X, d) , then completeness of
(X, d) implies completeness of (X, ̺) .

P r o o f . (Mii) and (Miii) are obvious.

(Miv ′ ) We obtain

̺(x, y) = max{d(x, y), u(x), u(y)}

≤ max{d(x, z), d(z, y), u(x), u(y)}

≤ max{d(x, z), u(x), u(z), d(z, y), u(y)}

= max{̺(x, z), ̺(z, y)}.

For completeness, let (xn) be a Cauchy sequence in
(X, ̺). Then (xn) is a Cauchy sequence in (X, d) and
converges to some x ∈ X . We then obtain ̺(xn, x) =
max{d(xn, x), u(xn), u(x)} → u(x) for n → ∞ . As in
the proof of Proposition 4.5 we obtain u(x) = 0 which
completes the proof.
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5 DISCUSSION

We have studied dislocated metric spaces and an un-
derlying generalized notion of topology, the dislocated
topology. Whilst a few applications of dislocated metrics,
and in particular of the generalized Banach contraction
mapping theorem, Theorem 2.2, are known in Theoreti-
cal Computer Science, it is at this stage unclear whether
or not other applications can be found, and where else
in Mathematics these spaces appear. If they do arise
elsewhere, further theoretical investigations of dislocated
metrics will be worth undertaking. The authors are cur-
rently developing further applications of Theorem 2.2 to
logic programming semantics. It may also be possible to
merge Theorem 2.2 and the fixed-point theorem given in
[5].

Applications to logic programming hint at interpreting
the dislocation function u̺ as a measure of undesirability.
Whether or not this point of view is useful remains to be
seen.
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