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ARCH AND GARCH MODELS APPLIED
IN GEODESY AND GEODYNAMICS

Tomas Bognar

We first introduce some basic theoretical concepts and models used in time series analysis. Then we prepare geodetical
data for modeling, fitting models to a given set of data and finally we check the validity of this models.
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1 TIME SERIES

1.1. Introduction

A discrete series consists of a set of observations
{z1,29,...,2¢,...,2,} of some phenomenon. (We as-
sume that z; is real.) The observations are made at
equally spaced time intervals. This assumption enables
us to use the interval between two successive observa-
tions as the unit of time. The subscript ¢ can be referred
to as time, so the z; is the observed value of the time
series at time ¢. The total number of observations in a
time series (here n) is called the length of the time series.

The main purpose of time series analysis is to under-
stand the underlying mechanism that generates the ob-
served data and, in turn, to forecast future values of the
series. Given the unknowns that affect the observed values
in time series, it is natural to suppose that the generat-
ing mechanism is probabilistic and to model time series as
stochastic processes. By this we mean that the observa-
tion z; is presumed to be a realized value of some random
variable X;; the time series {z1,z2,...,2¢,...}, a single
realization of a stochastic process {X1, Xa,..., X;,...}.

In the following we will use the term time series to refer
both to the observed data and to the stochastic process.

In general the time series consists of the following
components:

1. Trend: The long-therm component that represents the
growth or decline in a time series over an extended period
of time.

2. Cyclical component: The wavelike fluctuation around
the trend.

3. Seasonal component: A pattern of change in quarterly
or monthly data that repeats itself from year to year.

4. Trregular component: A measure of the variability of
the time series after the other components have been
removed.

We can eliminate the first three components in general
for example by regression and then we will analyse the
irregular component by Box-Jenkins methodology, as it
is shown in the following parts.

To “visualize” a time series we plot our observations
{z+} as a function of time ¢. This is called a time plot.

1.2. Univariate ARCH and GARCH Models

In the time series we have considered so far, the distur-
bances or errors {Z;} are assumed to be homoskedastic,
that is, the variance of Z; is assumed to be indepen-
dent of t. Autoregressive Conditional Heteroskedasticity
(ARCH) models and Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH) models are used to
model the changes in the variance of the errors as a func-
tion of time. An ARCH process of order ¢, ARCH(q), is
given by (see Engle (1982))

Zy = vVl (1)

where {v;} is an independently distributed Gaussian ran-
dom sequence with zero mean and unit variance; h; is the
conditional variance of Z; conditional on all the informa-
tion up to time ¢t — 1, I; ;:

E(Zt2 | It—l): he = g+ o127 +anzl o+ —l—aqu_q .
(2)

GARCH models are generalizations of ARCH models
where h;, the conditional variance at time ¢, depends

on earlier variances. That is, a GARCH(p, ¢) process is
given by (1) with (see Bollerslev (1986))

q p
h: = ag + Z aizgfi + Z Bihg—i - (3)
i=1 i=1

When p = 0 we have an ARCH(q) model; when both p
and ¢ are zero, Z; is simply white noise.
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An ARCH(q) model and a GARCH(p,q) model are
represented in Time Series package in Mathematica 3.0
by

ARCHModel[ {ag,a1,...,a4} ] and

'7aq}7 {/317/327 e 761)}]7

respectively. Note that since the variance is positive, we
usually have ap > 0,a; >0, and 8; > 0 for ¢ > 0.

The so-called ARCH- or GARCH-regression model is
a regression model with the disturbances following an
ARCH process (see(1) and (2)) or a GARCH process (see
(1), (3)), respectively. That is,

YZZXQb—}—Zt

GARCHModel[{ag, a1, ..

(4)

where x; is a known column vector that can contain
lagged values of YV (i.e., yt—1, Yi—2,... etc.), and b is
a column vector of unknown parameters. The first term
on the right-hand side of (4) is the conditional mean of
Y;; that is, E(Yt | It,l)z x;-b = my, and the conditional

variance of Y; is that of Z; and is given by (2) or (3).

1.2.1. Estimation of ARCH and GARCH
Models

From the definition of the ARCH(g) model it is clear
that the correlation E(Z;Ziyr) (k # 0) is zero. How-
ever, it is easy to see that Z? follows an AR(q) process.
Similarly, if {Z;} is a GARCH(p, q) process, Z? follows
an ARMA (s,p) process, where s = Max(p, ¢). This can
be used to help identify the orders of ARCH or GARCH
models.

The maximum likelihood method is often used to esti-
mate the parameters of an ARCH or GARCH model. The
logarithm of the Gaussian likelihood function is given by
(apart from an additive constant)

N

1 22
Z(—ilnht — 2—ht> s

t=1

()

where z:((= y)r — m) conditional on i;_; is normally
distributed with zero mean and variance h;. The function

LogLikelihood[z, model]

gives the logarithm of the likelihood (5), where model
can be ARCHModel or GARCHModel and z = {z, 22,

.,Zn}. Once the likelihood function is calculated, we
can in principle estimate the model parameters by max-
imizing the likelihood function (or minimizing its nega-
tive). This can be accomplished in some cases by using the
built-in function FindMinimum. This gives the maximum
likelihood estimate of the ARCH or GARCH parameters:

FindMinimum|-LogLikelihood[z, model].

However, when the number of parameters is large, the
function FindMinimum can either be very slow or can go

into parameter regions where the LogLikelihood function
is complex. In these cases, the function
ConditionalMLEstimate should be used to estimate
ARCH or GARCH parameters.

ConditionalMLEstimate[data, model]

fits the specified model to data using the maximum like-
lihood method, where the model can be ARCHModel or
GARCHModel.

1.2.2 Testing for ARCH

Various standard procedures are available to test the
existence of ARCH or GARCH. A commonly used test
is the Lagrange multiplier (LM) test. Consider the null
hypothesis that there is no ARCH, that is, ay = as =
--- = ay = 0. It is known that (see, for example, Boller-
slev (1986), Eqgs. (27) and (28)) the LM statistic has an
asymptotic x? distribution with ¢ degrees of freedom
under the null hypothesis. If the LM statistic evaluated
under the null hypothesis is greater than x? _(g), the
null hypothesis is rejected at level a. The function

LMStatistic[data, model]

gives the LM statistic, where the model is either an ARCH
or GARCH model.

2 EXAMPLE OF ANALYSIS OF TIME SERIES
USING SOFTWARE MATHEMATICA 3.0

Data used for the analysis

Atmospheric Angular Momentum (AAM) plays a sig-
nificant role in causing variations in the length of day.
Study of AAM can also yield information about the
Earth’s orientation in space and the large scale behaviour
of the atmosphere.

Analysis by Mathemathica 3.0

This contribution is devoted to the time series analysis
of AAM data using ARCH and GARCH models by means
of Mathematica 3.0.

The timeplot of our series is in Fig. 1.

Mean, variance and length of our series:
mi=Mean[z1]
Variance[z1]
n=Length[z1]

-0.289635

0.00205396

5809

We subtract the mean from our series:
z—z1-mi
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Fig. 1. gd=ListPlot[z1]
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Fig. 3. ListPlot[eps]

We difference the time series to obtain a constant mean
series:

dz=Difference|z,1]

The timeplot of series after differencing is in Fig. 2.

The mean and variance after differencing:
mi=Mean[dz]

Variance[dz]

-0.0000164897

0.000020184

We create a new time series to determine the param-
eters of our ARCH and GARCH models

eps=dz’

and the time plot of squares is in Fig. 3.

Parameter of MA model for squares (See Fig.4.):
cor=CorrelationFunction[eps,50];
myplotcorrl[cor,3/Sqrt[n],PlotRange — All]

Parameter of AR model for squares (See Fig. 5):
pkf=PartialCorrelationFunction[eps,50];
myplotcorrl[pkf,3/Sqrt[n]]

We can in principle estimate the model parameters
by maximizing the likelihood function (or minimizing its
negative). To find the GARCH parameters from the series
dz, we can do the following:
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Fig. 2. ListPlot[dz]
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Fig. 4. ListPlot[eps]

The order of selected model is:GARCH(2,1).
r=FindMinimum/[-LogLikelihood[dz,
GARCHModel[{a0,al,a2}, {b1}]],
{20,0.00000001,0.0000002}, {a1,0.05,0.06},
{a2,-0.02,-0.031}, {b1,0.9,0.91}]

The parameters of our model:
modell=GARCHModel[1.18003 x 1075, 0.04537,0.00228,
0.89385]

Now we compute the LM statistics and qantile x¢.95(3):
LMStatistic[dz,modell]

1.55121
Quantile[ChiSquareDistribution[3],0.95]
7.81473

Since the computed test LM statistics is not greater
than quantile x¢.95(3), the Lagrange multiplier test has
not shown suitability of model GARCH(2,1) for the con-
sidered time series on the significance level a = 0.05.

Estimation with function ConditionalMLEstimate:

The order of estimated model is: ARCH(2).

ConditionalMLEstimate[dz,
ARCHModel[0.00001,0.04,0.02]]

The parameters of our model:
model2=ARCHModel[0.00001714,0.05474,0.09453]
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Fig. 5.
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Fig. 7. Show[ptsldz,pdr]

Now we compute the LM statistics and quantile xg.95(2):
LMStatistic[dz,model2]

2.6683 x 10~7
Quantile[ChiSquareDistribution[2],.95]

5.99146
Since the computed test LM statistics is not greater
than quantile x0.95(2), the Lagrange multiplier test has
not shown suitability of model ARCH(2) for the consid-
ered time series on the significance level a = 0.05.

The next estimation:

Model GARCH(2,2):
r1=FindMinimum/[-LogLikelihood[dz,
GARCHModel[{a0,al,a2},{b1,b2}]],
{20,0.00000001,0.0000002},{a1,0.05,0.06},
{a2,-0.02,-0.031},{b1,0.8,0.82},{b2,0.09,0.091}]

The parameters of our model:

model3=GARCHModel[3.06747 x 10~7,0.03987,

—0.01394,0.82776,0.13098]

We compute the LM statistics and quantile xo.95(4):

LMStatistic[dz,model3]

20.0413

15

Fig. 6. ptsldz=ListPlot[ts1dz]

-0.05}

Fig. 8. pts2dz=ListPlot[ts2dz]

Quantile[ChiSquareDistribution[4],0.95]
9.48773
Since the computed test LM statistics is greater than
quantile xo.95(4), the Lagrange multiplier test has shown
suitability of model GARCH(2,2) for the considered time
series on the significance level a =0.05.

And finally: Model GARCH(2,1):

ConditionalMLEstimate[dz,GARCHModel[
0.0000000000052,0.0045,0.0022,0.89]]

The parameters of our model:
model5=GARCHModel[—1.64296 « 109,
0.00468,0.00236,0.88984]

We compute the LM statistics and quantile xo.95(3):

LMStatistic[dz,model5]

878269,
Quantile[ChiSquareDistribution[3],0.95]
7.81473.

Since the computed test LM statistics is greater than
quantile xo.05(3), the Lagrange multiplier test has shown
suitability of model GARCH(2,2) for the considered time
series on the significance level a = 0.05.
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