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GENERALIZATION OF THE PARTIAL SUMMATION PROCESS

Jan Maéutek ~

Two types of transformations of discrete random variables are presented. The first of them is a generalization of the
partial summation mentioned in [1], [6] and [7]. Relations between probability generating functions and moments of the
parent and descendant distributions are analyzed. It is shown that the Salvia-Bollinger distribution is invariant in regard to

the considered transformations.

Keywords: discrete probability distributions, partial-sums distributions, the Salvia-Bollinger distribution

2000 Mathematics Subject Classification: 60E05, 62E10

1 R(k,l)-GENERATED DISTRIBUTIONS

Let R be the set of real numbers, Zar the set of non-
negative integers and ZT the set of positive integers. Let
X* be a discrete random variable (rv) defined on the set
Zy with a probability mass function (pmf) {P;};2,.

Throughout the paper let us suppose any sum with

the lower limit greater than the upper one to be equal to
0.

Definition 1. Let k € 7,1 € Z*. Let Xp(.) be a
discrete mv generated from X* in the following way.

For k =0:

RO) & o
ronE = 7 Z Py, i=0,1,2,...

et j=it+l—-1
For k > 0:
k—1
renPi=ai, 0 >0,i=01,...k=1;3 a;<1;
=0

Rk ~~ .
R(k,l)Pi:m Z P, oi=kk+1,...
Jj=i4+l-1

R(k,0): Z§ x Z* — R is (for a fixed pmf {PZ*}ZO) a
function adjusting the values of {ﬁ > Pj}'

j=itl—1 i=k

taking into account the sequence {ai}f:_ol (if £k >0) so
that {R(k,l)Pi}zo is a pmf (ie. > papyPi =1).
i=0

X* will be called the R(k,)-parent of Xpr1); Xp(k,
the R(k,l)-descendant of X*.

This summation is a generalization of the process P; =

(e ]
< Z P;,i=1,2,... (c being a proper constant), which
J=
is a result of theoretical explorations of the Bradford law
[1]. It is also a mathematical model of law-like hypotheses
in linguistics and musicology [7]. The process is analyzed
in [6].

Lemma 1. 1_ kil o
R(k7l) = o0 ooizo P °
DORED DR
i=k j=i1+1—1
Proof.
00 k—1 ) 1 [e'S)
1=0 1=0 1=k Jj=i+l—1
k—1
1-— Z (67
= R(k1)= =
DR DR oY
i=k j=i+1—1

For the generated probabilities the following recur-
rence formula holds.

L 2.

. R(k,0)

i—k +l i+1—1>

The proof is obvious and hence omitted.

Let G*(t) = > Prt', ranG(t) = Y resyPit" be
i=0 i=0

the probability generating functions (pgf’s) of X* and
XR(k,1), Tespectively.

Rk Pit1 = reey Pi — i=kk+1,...

Theorem 1.

t
Rk, G(t) = B;(llj’kl) /0 {(1 - Z Pi*)zlfl
i=0
k+1—2 k—1
- (G*(z) - Z Pi*zi)szﬂ} (1-2)""dz+ Z at'.
i=0 1=0
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Proof.
Rk, G(1)

ZR(kl Pt —Zaztl
k tk+1

+R(k, l)[l (P + P+ )+ l+1(Pk+z+Pk+l+1

k—
+- Z 1= k) —(Pipa+ P t-)
o= |7

tl+1
[+1

k—1 . R(k,l) k+1—-2
= Z Oéit +

mele-x ) [

=0 i=0

/(Z et 1Z )(1_'2)_1(14
-y aiti+}i(llf}f) /Ot[(l—

=0

+ 70 (Bl + Pl + - )+...}

-1
dz

-z

k+1-2

- (G*(z) - Z Pi*zi)z_kﬂ} (1—2)""dz.

=0

A special case of Theorem 1 (for kK = 1 = 1 and
ap =0) is in [6].

Let * € R, r € Z". Let us denote z(,y the r-th
descending factorial of the number z, ie. z¢) = 2(z —

1)...(z—r+1). We onlynote that z) = 1.

(e ]
Let J*(t) = > um s Bk J (1) = 22 7% bei
1=0 =0
generating functions of the descending factorial moments
(see e.g. [3]) of the rv’s X* and X gy, respectively. Let
us suppose that these functions exist. It is easy to see that

Rk (1) = Rk = E(Xp)) and”ppy) ="p = E(X7).

be the

Theorem 2.

k+1-2
=0
k+1-2 k—1
—(=D(1= Y P k1] + DGk Dai+ k-1
=0 =0

and for r > 1 it holds

r—1
T .
Z <Z> (r =)l = k) (1) ROk 1) H—i—1)
=0
r—1

— [r
+° ( ) =) (1= k) ) Rek1) ]

=
=0

0
T T
( ) —k+1) (i gy —
k—1

—(l—l)m( - Z Pfﬂ +7“Z(i—’f+l)<r>ai-

=0

k+1-2

> (i—k+1)P;

=

Proof . The following equations hold (see e.g. [3]):

Rk =m0 g s
Rk J () = R G+ 1)

Due to Theorem 1 we have

t+1 k+1—-2
(1 10 = AED [ (1= 30 P
1=0
k+1—-2
— (G*(z) - Z Pi*zi)szJrl} (1—2)"tdz
1=0

k—1

F DT> it + 1)
1=0

and computing derivative of both sides of the last equa-
tion we obtain

(1= k)t + 1)1+t + )R @)

= R(kD{ (1) - ki_Qﬂ*(t A
=0
_(1_k§2p )(t+1 )= 1} ZO‘Z (i+l—k)t(t+1)H—h1,
=0

The proof can be easily completed by substituting 0 for
t into r-th derivative of the preceeding equation.

A special case of Theorem 2 (the mean of the R(1,1)-
descendant if ap = 0) can be found in [6].

2. S(m,n)—-GENERATED DISTRIBUTIONS

Let X be a rv defined on the set Zgr with a pmf
{P;}:2, and let Py < ";rj_;leJrS_l for s=1,2,...

Definition 2. Let m € Z, n € Z+, P,, # 0. Let
Xg(m n) be a rv generated from X in the following way.

For (m,n) = (0,1):
son P =50, +1)P; — (i +2)P;y1], i=0,1,2,...
For (m,n) # (0,1):
S(mﬁn)P{kZOz:, af >0,i=0,1,...,m+n—2;
m+n—2
> ai <L
i=0
S(m,n)]Di* = S(ma TL) [(7’ —m+ 1)Pi*n+1 - (7’ —m

+2)Pi_n+2], i=m+n—1m+n,...

S(m,n): Zf x Z+ — R is (for a fixed pmf {P;}°,)
a function adjusting the values of {(i + n)(Pitm — (i +
n + 1)Pitm11)}5°, taking into account the sequence
{a}mim=2 (if m +n > 2) so that {S(mm)Pi*}zo is
a pmf.

X will be called the S(m,n)-parent of X
the S(m,n)-descendant of X .

S(m, n)’
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Lemma 3.

m+n—2
1— > af
s _ i=0
(m.m) = ——=¢
Proof.
) m+n—2
1= stmmPr = Y ai +S(m,n) <an
i=0 i=0

—n+1)Ppi1+(n+1)Ppi1—(n+2)Pria+.. )

m+n—2
1— > of
= S(m,n) = ;O
nim

Let G(t) = Z Pitiv S(m,n)G*(t) = Z S(m,n)Pi*ti be
=0 =0

the pgf’s of X and X35y Tespectively.

Theorem 3.

s G () = Stm,m) {2 e = ) [ (G

m ) ’
PROIRT
=0

m+n—2

* 41
E a;t.
1=0

Proof.
m+n—2

ZS(mn)Pt —Z aitt 4 S(m, n){[

- (n+1)Pm+1]tm+n Y[(n+ 1)Pm+1 —(n+2) P2t
m+n—2
+...}= Z ajt' + S(m,n) [anthr"_l
i=0
m+n—2

1)(§: PHmt”")/} =3 ae
1=1 =0
m NT/
- X))

Py,

+ tmfl(t

+ S(m,n){tm_l(t —1) [t”‘m (G t

oo N‘ o0 s THI t’L
Let ‘]() = Z [l 7S(mn)‘] () Z(m,nli!m be
i=0 i=0
the generating functions of the descending factorial mo-
ments of X and Xg S(mon) respectively. Let us suppose

that these functions exist.

Theorem 4. For r =1,2,... we have
r—1 r

stmaty =St mf(n-m) 3 (7)) n-2) oty
i=0

m

Z(i—i—n—m)(i—i—n

=0

_Z(T) r—1 n—l)(z) [T ’L]_T
m+n—2

2)(r71)Pi + n(m +n— 1)(7«)Pm} + Z a:-‘i(r).
=0
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Proof. Due to Theorem 3 we have

Senm* (1) = Stm,m){a(t + 1) (e 4+ 1) (1)

m ’ m+n—2
=SR] AnPa(t ) S ar (1)
i=0 1=0

By substituting ¢ = 0 into r-th derivative of the last

equation we can easily complete the proof.
Corollary 1. Let us denote S(m n’;M = E(Xg(m n)) and

w=E(X). We have

Sttt =S(m,n)[n—m—p = "(i+n—m)P,

=0
m+n—2
+n(m+n— 1)Pm} + Z o .
i=0

3 THE RELATIONSHIP BETWEEN R(k,l)—
AND S(m,n)-GENERATED DISTRIBUTIONS

Theorem 5. Let u € Z, v € Z*. Let X* be a v
u—1

defined on the set Z; with a pmf {P;};c,. Let Y. a; <
i=0

1 if w > 1. Let us construct the S(u,v)-descendant
of XR(uw) in such a way that g, . P = P} for i =
0,1,...,u+v—2 if u+v > 2. Then Xg,,) is the
S(u,v)-parent of X*.

Proof . According to Definition 1 for i = u,u+1, ...

u—i—v Z P*

j=t+v—1

and due to Definition 2 for it =u+v — 1, u+wv,...

R(u,U)Pi =

Sty P = S(u,v)[(i — u+ 1) gy Picor1 — (i —u
—u—+1 "
+ 2)R(u,v)Pz v+2] = R(u,’U)S(U,’U ( —u+1 ZP
Pi—u+2 & " *
T 2 ) = Rl o)S(u, o),
Jj=i+1
Consequently,
Ru,v)Suw,v) > Pr= Y sunb
i=ut+v—1 i=u+v—1
u+v—2 u+v—-2

Z Sl =1- Z P = Z by
=0 =0 i=u+v—1

= R(u,v)S(u,v)=1.
For ¢ =0,1,2,... the equation
S P = Pf
has been proved.

Remark 1. Analogously it can be proved that if X
is a rv with a proper pmf {P;}32, then Xg(u V) 18 the
R(u,v)-parent of X.
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4 INVARIANT DISTRIBUTIONS

Let k € Z. {P;}, has the k-displaced Salvia-
Bollinger d1str1but1on (see [4], [5]) if

* i— o
Fr=(-1 k(ikJrl)’

and P =0 for :=0,1,...,k—1if k> 1.
The k-displaced Salvia-Bollinger distribution has the pgf
G*(t) = [1— (1 —t)]th1.

i=kk+1,...;0<a<1

Theorem 6. Let k € Zar, l = 1. Let us choose
renyPi = 0 for i = 0,1,...,k — 1 if k > 1. Then
X* = Xp,1) if and only if X* has the k-displaced
Salvia-Bollinger distribution.

Proof. Let X* = Xg(,1)- Then for n = 1,2,...
we have
Pk"l'n_l:T(Pk-‘rn—l+Pk+n+Pk+n+1+---),
. R(k1)
Pin=—77 ol (Pin + Prpngr + Binga + 1)

and we obtain

n— R(k,1)
n+1

Pk—i—n - Pk-l—n—l

= PkJrn = 2(n) k>
(1 — R(k,1))(™ being the n-th ascending factorial of
(1-R(k,1)),ie. (1—R(k,1))(2—R(k,1))...(n—R(k,1)).
Consequently (2Fi(a,b;c;d) is the Gaussian hypergeo-
metric function, see e.g. [2]),

(14 R(k, 1))
2()

1 :ip* Py Z
1=0

:Pngl( —R(k,l),1;2;1) = P, = R(k,1).

So Py, = (—=1)"("* ), n =0,1,2,..., which is the

n+1
k-displaced Salvia-Bollinger distribution.

Let X* have the k-displaced Salvia-Bollinger distri-
bution, i.e. its pgf is
G*(t) =

[1—(1—t)]th 1.

According to Lemma 1 (for a; =0, ¢ =0,1,...,k— 1 if

k>1)
)y

ZZZ*]C+1

i=k j=t
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) A
o R 2+<1>3(j)+<1>4(§>+...]

= (~1) !
- F 1—ao,1; 2;1
+ ;’i-ﬁ-l ’L+1)2 1(’L+ « 1+ )

- éi(_l)i(i

o
3

—~~

1

+ o

) =9 (1—-0a,1;2;1) =

Due to Theorem 1

r)G(t) = R

=[1- 1=ttt =G (1).

The invariance of the 1-displaced Salvia-Bollinger dis-
tribution in regard to the R(1,1)-summation is proved
in [6].

Remark 2. Due to Theorem 5 the k-displaced
Salvia-Bollinger distribution is invariant also in regard
to the S(k,1)-transformation.
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