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A MODEL AND NUMERICAL SCHEME
FOR PROCESSING OF COLOR IMAGES

Zuzana Krivá — Karol Mikula
∗

We propose a model for processing of RGB images based on regularized (in the sense of Catté, Lions, Morel and Coll)
Perona-Malik nonlinear image selective smoothing equation. The model is represented by a system of nonlinear different
equations with a common diffusion coefficient given by a synchronization of the information coming from all three channels.
For the numerical solution we adjust a finite volume computational method given by Mikula and Ramarosy ([5]) and propose
a coarsening strategy to reduce the number of unknowns in the linear system to be solved at each discrete scale step of the
method.
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2000 Mathematics Subject Classification: 35K55, 65P99

1 INTRODUCTION

A greyscale image can be modelled as a real function
u0(x) representing values of greylevel intensity, defined in

some rectangular subdomain Ω ⊂ IRd (in practice d = 2
or 3). Applying the evolutionary partial differential equa-
tion (PDE) to u0(x), we can solve many basic tasks of
image processing and computer vision. Such an approach
is known as image multiscale analysis ([1], [3], [6]), since
the initial image u0(x) = u(0, x) is associated with a se-
quence of images u(t, x), a solution of PDE, depending
on an abstract parameter t > 0 called the scale.

A RGB image can be viewed as a composition of three
greyscale images, representing levels of intensity for red,
green and blue colors and thus it corresponds to three real
functions u0i (x) = ui(0, x), i = 1, 2, 3. These “initial”
functions can be associated with solutions ui(t, x), t > 0

applied to each u0i (x).

One of the well known examples of PDE in image pro-
cessing is image selective smoothing represented by “edge
enhancing” nonlinear diffusion. In this paper we are deal-
ing with Perona-Malik type ([7]) system of equations, reg-
ularized in the sense of Catté, Lions, Morel and Coll ([4])
which we adapt to RGB image. In our model we do not
apply Perona-Malik like equation to each channel (which
would be the simplest approach) but we synchronize the
diffusion in each channel by computing a common dif-
fusion coefficient depending on information coming from
all three colors (see also [8], [9], dealing with similar tech-
niques in vector valued diffusion and color image process-
ing).

Thus we propose the following system of nonlinear
partial differential equations

∂tui −∇ · (d∇ui) = 0 , i = 1, 2, 3 (1.1)

in QT ≡ I × Ω, where

d = g
(

3
∑

i=1

∣

∣∇Gσ ∗ ui
∣

∣

)

, (1.2)

together with zero Neumann and initial conditions in each
channel

∂νui = 0 , i = 1, 2, 3, on I × ∂Ω , (1.3)

ui(0, ·) = u0i , i = 1, 2, 3, in Ω . (1.4)

In (1.1)–(1.4), Ω ⊂ IRd is a rectangular domain, I =
[0, T ] is a scaling interval, and

g(s) is a decreasing smooth function,

g(0) = 1 , 0 < g(s) → 0 for s→ ∞ , (1.5)

Gσ ∈ C∞(IRd) is a smoothing kernel with
∫

IRd

Gσ(x)dx = 1 and (1.6)

Gσ(x) → δx for σ → 0 , δx — Dirac function at point x ,

u0i ∈ L2(Ω), i = 1, 2, 3 . (1.7)

The basic idea of Perona and Malik consists in con-
trolling diffusion (smoothing) of the image by the shape
of the diffusion coefficient in nonlinear parabolic equation
by means of its dependence on ∇u which is in a sense an
edge indicator. Catté, Lions, Morel and Coll considered
∇Gσ ∗ u , the Gaussian gradient, for decision where there
is un-spurious/spurious edge.

In the case of (1.1)–(1.4), if an un-spurious edge is
presented in all three channels, g returns a smaller value
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than in a case when the channels are processed indepen-

dently and thus the edge is better preserved. If noise is

present in only one of the channels, the model works in

the same way as for the greyscale image. If the noise is

present in all three channels at the same time, smoothing

can be slower at the beginning but with the increasing

scale the difference diminishes.

For the numerical solution of (1.1)–(1.4), we adjust a

technique suggested and analysed in [5]. It is based on a

semi-implicit discretization in scale and on the so-called

finite volume method in space. Recently, the finite vol-

ume method (FVM) has been widely used in computa-

tional sciences and engineering since it is based on phys-

ical principles as conservation laws, it is local and easily

implemented. Moreover, in the FVM the discrete approx-

imations of a solution of partial differential equation are

considered to be piecewise constant in control volumes

(cells) which in image processing corresponds to pixel

structure of a discrete image. From the conceptional point

of view such an approach seems to be the most natural

for image processing.

As the solution tends to be more flat with the increas-

ing scale in large regions of the image, we can improve

the efficiency of the method using adaptivity because it

is not necessary to consider the same fine resolution in the

whole spatial domain. This approach reduces the compu-

tational effort because coarsening of the computational

grid reduces the number of unknowns in the linear sys-

tem to be solved at the discrete scale step of the method.

Since the whole information about the image is contained

in the initial grid and there is no spatial movement of

the edges, no refinement is needed and we work just with

grids, elements of which are obtained by merging of pixels.

This process is called coarsening in numerical methods

for solving PDEs. In this paper, we present a coarsening

strategy for rectangular grids, join such strategy with the

finite volume method for (1.1)–(1.4) and solve by such

a technique our nonlinear selective smoothing system of

equations for color images.

The rest of this paper is organized as follows. In Sec-

tion 2 we deal with solution of (1.1)–(1.4) on a regular

grid. Section 3 is devoted to the finite volume method

joined with adaptive grid and Section 4 shows some nu-

merical experiments.

R e m a r k 1 . If we have some apriori knowledge

about the image, e.g. that for all three channels of the

original version gradients near edges are of the same sign

(do not cancel each other), we can use a simplified model,

which enables us to speed up the calculation of the diffu-

sion coefficient

d = g
(

∣

∣

3
∑

i=1

∇Gσ ∗ ui
∣

∣

)

. (1.8)

2 FINITE VOLUME SCHEME

ON A UNIFORM GRID

In this chapter we introduce the finite volume compu-
tational method for solving (1.1)–(1.4) on a nonadaptive
regular grid. The finite volume scheme for Perona-Malik
equation given in [5] is generalized to the system (1.1)–
(1.4). Instead of applying the original scheme to every
color channel straightforwardly with diffusion coefficients
different for each channel, we take into account informa-
tion from all color channels and by summing the gradients
(i.e. expressions ∇Gσ∗ui ) in a way described later we ob-
tain a diffusion coefficient which is common for all three
channels.

Let τh be a uniform mesh of Ω with cells p of measure
m(p) (we assume rectangular cells here). For every cell p
we consider set of neighbours N(p) consisting of all cells
q ∈ τh for which common interface of p and q , denoted
by epq , is of non-zero measure m(epq).

In the numerical scheme we will provide computations
in the series of discrete scale steps starting with u0ip ,

p ∈ τh , corresponding to given intensities on the pixel
structure of the initial discrete image. We assume

u0ip =
1

m(p)

∫

p

u0i (x)dx , p ∈ τh , (2.9)

i.e, the discrete image intensity represents the average
cell value of the continuous intensity function u0i (x). In
the FVM, in every subsequent discrete scale step we get
again a piecewise constant approximation unip , p ∈ τh ,

n = 1, 2, . . . of the continuous solution (with the same
interpretation as cell averages). Convergence of such ap-
proximations to a weak solution of (1.1)-(1.4) for the
greyscale image, provided the length of the discrete scale
step and the size of the pixel tends to zero, is given in
[5]. In [5], it is assumed that for every p , there exists a
representative point xp ∈ p such that for every pair p, q ,

q ∈ N(p), the vector
xq−xp

|xq−xp|
is equal to unit vector npq

which is normal to epq and oriented from p to q (Let
us note that this assumption is not fulfilled for adaptive
grids given by the coarsening algorithm). In the simple
case of a uniform grid we can take xp just as center of
the pixel. Let xpq be the point of epq intersecting the
segment xpxq . Then we define coefficients

Tpq :=
m(epq)

|xq − xp|
(2.10)

and

gσ,npq := g
(

3
∑

i=1

∣

∣∇Gσ ∗ ũi (xpq)
∣

∣

)

(2.11)

where ũi is a periodic extension of discrete color channel
computed in n-th scale step. The finite volume scheme
on uniform grid is then written as follows:

Let 0 = t0 ≤ t1 ≤ · · · ≤ tNmax
= T denote the scale

discretization steps with tn = tn−1 + k , where k is a

discrete scale step. For i = 1, 2, 3 and n = 0, . . . , Nmax−1



Journal of ELECTRICAL ENGINEERING VOL. 51, NO. 12/s, 2000 23

we look for un+1
ip

, p ∈ τh , satisfying the system of linear

equations

(m(p)

k
+

∑

q∈N(p)

gσ,npq Tpq

)

un+1
ip

−
∑

q∈N(p)

gσ,npq Tpqu
n+1
iq

=
m(p)

k
unip . (2.12)

This scheme is linear semi-implicit in scale, since the
scale derivative is replaced by the backward difference
and nonlinear terms of equation (1.1) are treated from the
previous scale step while the linear terms are discretized
on the current scale level. After such scale discretization,
(2.12) is derived by integrating the corresponding elliptic
equation over the cell, applying the divergence theorem
and approximating the normal derivative on the bound-

ary of the cell by
uiq−uip

|xq−xp|
.

In the scheme (2.12) we must compute the term (2.11),
i.e. the vector

∇Gσ ∗ ũi (xpq) =
(∂(Gσ ∗ ũi)

∂x
(xpq),

∂(Gσ ∗ ũi)

∂y
(xpq)

)

,

which is an input of the Perona-Malik function g . For that
goal, we use the following property of the convolution

∂(Gσ ∗ ũ)

∂x
(xpq) =

(∂Gσ

∂x
∗ ũ

)

(xpq) .

Then one gets

∇Gσ ∗ ũi(xpq) =
(∂Gσ

∂x
∗ ũi(xpq),

∂Gσ

∂y
∗ ũi(xpq)

)

=
(

∑

r

unir

∫

r

∂Gσ

∂x
(xpq−s)ds,

∑

r

unir

∫

r

∂Gσ

∂y
(xpq−s)ds

)

.

Using (1.8)

(∂Gσ

∂x
∗

3
∑

i=1

ũi

)

(xpq) =

∫

IRd

∂Gσ

∂x
(xpq − s)

3
∑

i=1

ũi(s)ds

=
∑

r

3
∑

i=1

unir

∫

r

∂Gσ

∂x
(xpq − s)ds . (2.13)

Now the sum is restricted to the control volumes r inside
Bσ(xpq), the ball centered at xpq with radius σ . The
ball Bσ is given either by a support of the compactly
supported smoothing kernel or it can represent a “nu-
merical support” (a domain in which values of a function
are above some threshold given e.g. by a computer preci-
sion) of the Gauss function. In any case, just a finite sum
in (2.13) is evaluated and coefficients of this sum, namely
∫

r
∇Gσ(xpq − s)ds can be precomputed in advance us-

ing a computer algebra system, e.g. Mathematica. More-
over, we can see that computing of the diffusion coef-
ficients is significantly faster in the synchronized model
because they are computed only once and this is partic-
ularly desirable, when we work with σ covering several
pixels because it considerably reduces number of multipli-
cation operations. Further advantages of the model will
be demonstrated in the section dealing with numerical
experiments.

3 FINITE VOLUME SCHEME

ON THE ADAPTIVE GRID

The initial image is given as a set of discrete grey val-

ues on pixels of a uniform grid. At the beginning, and

especially with the increasing scale, we can merge cells

using some coarsening criterion and instead on the reg-

ular grid we can work on the irregular adaptive struc-

ture. For its construction we chose an approach based on

quadtrees. Moreover, to simplify creating the matrix of

the linear system we require that the ratio of sides of two

neighboring squares be 1 : 1, 1 : 2 or 2 : 1. We will call

such a structure balanced .

Without lost of generality, let us have an image with

2n × 2n pixels. The idea of constructing the quadtree

is the following. We divide the original image into four

quadrants and test if the coarsening criterion is fulfilled.

We consider the following coarsening criterion:

The cells are merged if the difference in intensities is

bellow a prescribed tolerance ε in every color channel .

If the cells in the quadrant can not be merged, we

continue in recursive subdivision of the quadrant in four

new ones. At the end, we either have quadrants with pix-

els merged due to the coarsening criterion (new intensity

value of merged cells is set to pixels’ average) or quad-

rants of the size 1 × 1, i.e. pixels of the original image.

These quadrants represent the cells of the adaptive grid

which is common for all three channels.

As we have already noticed, it is not possible to ap-

ply the previous scheme (2.12) straightforwardly to an

adaptive non-uniform grid obtained by the coarsening al-

gorithm. However, it is possible to modify it. For that

goal, we will change the meaning of xpq in (2.11) and
the definition (2.10) of Tpq . Let in the sequel xpq be the

middle point of the common boundary of two neighboring

cells (with possibly non-equal measures). The definition

of gσ,npq will remain the same. The only practical difference

will be that the sum (2.13) will be evaluated over non-

equal control volumes. However, one can precompute all

possible coefficients of the sum again in advance for every

candidate larger cell on the higher level of hierarchy. In

the definition of Tpq in (2.10), the value |xp − xq| rep-

resents the distance used for approximation
uiq−uip

|xq−xp|
of

the normal derivative. Of course, in the case of uniform

rectangular grid with unite size of cells, Tpq is equal 1. In

the case of non-uniform rectangular grids, we can adjust

this parameter in several ways [10]. Here we will consider

the following one

Tpq = min{lp, lq} (3.14)

where lp and lq are the lengths of sides of two adjacent
cells p, q (of possibly non-equal measure). It is like we
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Fig. 1. Image enhancement by the synchronized model (1.1)–(1.4)
(see Example 1)

Fig. 2. Graph comparing adaptive and nonadaptive algorithms.

assume an exchange of intensity between neighbouring
cells just in a strip of unit thickness along boundary of
cell. This adjustment can be used for any grid but in the
case of a balanced grid, we can observe the following: if
the coarsening process creates a uniform grid with cells
of size l , the scheme works like (2.12) but with the scale
step enlarged l times and thus diffusion is “faster” than in
the original nonadaptive scheme. To make computing of
coefficients faster, we can use the fact that Tpq is always

equal to 1 or 1
2 for the balanced grid.

Finally, as our adaptive finite volume scheme we will
consider system (2.12) where xpq represents the middle
point of the common boundary of two neighboring cells
and Tpq is given by (3.14). In every discrete scale step,
the scheme gives a linear system which is symmetric and
strictly diagonally dominant (with a positive diagonal and
negative numbers out of the diagonal) which guarantee
the existence of its unique solution and for which also
L∞ stability can be easily proved.

Fig. 3. Denoising of an artificial color image.

4 NUMERICAL EXPERIMENTS

In this section we present experiments with some real
as well as artificial images perturbed by various types of
noise. In simulations, we use the function

g(s) =
1

1 +Ks2

with K > 0 and the convolution is realized with the
kernel

Gσ(x) =
1

Z
e

|x|2

|x|2−σ2 ,

where the constant Z is chosen so that Gσ has a unit
mass. In order to compute the diffusion coefficient gσ,npq we

use the concept given in (2.13). In numerical experiments

we have chosen σ = 1
2 , i.e. half size of the cell on the

finest level, which is the fastest and simplest approach.
Figures and a graph document the results of multiscale
analysis (iterative filtering) as well as adaptive compu-
tational grids. All experiments were done on AMD K6-2
(266 MHz) with linux operating system.
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Fig. 4. Removing of ”moiré” from the color image.

Example 1. This numerical experiment demonstrates
the feature of our model mentioned in the introduction
— better preserving of edges. In the top of Fig. 1, on the
left we show the original noisy image and on the right the
image obtained by independent smoothing of the chan-
nels. Bellow, on the left there is an image obtained by our
model using a nonadaptive scheme and on the right we
show a visually very similar adaptive version with a corre-
sponding adaptive grid. It is clear that the synchronized
model denoises and enhances the image successfully.

The graph in Fig. 2 compares computational times in
discrete scale steps of the nonadaptive and adaptive algo-
rithms. The legend, graph columns and the x-axis inform
about 6 scale steps of the adaptive algorithm, the bold
horizontal lines show the average time for computation of
one linear system (top line) and for computation of coef-
ficients (bottom line) in one scale step of the nonadaptive
algorithm. The initial number of elements is 65536, the
threshold value for coarsening criterion has been set to
0.025, K = 10.

Example 2. In the example documented in Fig. 3 with
the size 256×256 we process artificial image pixels. Every
channel of the original image is a double-valued image
ûi(x) with intensity difference set to 70.7 and 75 for
particular color channels. The initial functions u0i(x),
representing noisy channels of the color image, are given
by

u0i(x) =MIN(255,MAX(0, ûi(x) − C + ψ)/255 .

where ψ is a random function generating integer values
in [0, 2C] , in our example C = 50. In the top of Fig-
ure 3 the color noisy image and its smoothed version
are plotted. Bellow there are red, green and blue noisy
and processed channels. The purpose of this example is
to demonstrate, that although the green channel is al-
most lost for individual smoothing, the synchronized dif-
fusion allows to recover it thanks to the information from
the other channels. The example shows the results of the
adaptive algorithm after 10 scale steps. We have chosen
ε = 0.025, K = 10. The number of elements after 10th
step is 4185. While, at the beginning, one system solving
takes about 1.2 seconds, at the end only 0.07 seconds. The
achieved total CPU time is 24.27 seconds. The nonadap-
tive algorithm needs 40.05 seconds for 10 scale steps, but
the comparable smoothing results were obtained after 15
steps, with the time 62.96 seconds.

Example 3. The experiment documented in Fig. 4 was
performed on the image of the size 512 × 402 pixels.
The picture is a result of scanning and has a significantly
damaged blue channel (top of Fig. 4). With the help of
the other two channels, which are of much better quality,
the synchronized smoothing recovered the blue channel
to the form shown by the picture in the bottom of Fig. 4.
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