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ASYMPTOTIC BEHAVIOUR OF n–th ORDER LINEAR
DIFFERENTIAL EQUATIONS OF NEUTRAL TYPE
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New sufficient conditions for convergence to 0 of nonoscillatory solutions of some n -th order linear neutral functional
differential equations are given.
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1 INTRODUCTION

We consider n-th order linear neutral functional dif-

ferential equation of the form

dn

dtn
[x(t)− p(t)x(σ(t))] + q(t)x(τ(t)) = 0 , t ≥ t0 , (1)

under the standing hypotheses that n ≥ 2 and:

(a) p ∈ C [[t0,∞); (0,∞)] ;

(b) σ, τ ∈ C [[t0,∞);R], σ, τ are strictly increasing,

lim
t→∞

σ(t) = ∞ , lim
t→∞

τ(t) = ∞ ;

(c) q ∈ C [[t0,∞);R], q(t) 6≡ 0.

Our aim is to obtain new sufficient conditions for the

nonoscillatory solutions of equation (1) to converge to
zero. By a solution of equation (1) we mean a continuous

function x : [tx,∞) → R such that x(t)−p(t)x(σ(t)) is n

times continuously differentiable and x(t) satisfies Eq. (1)
for all sufficiently large t ≥ tx . The solutions which van-

ish for all large t will be excluded from our consideration.

A solution of (1) is called nonoscillatory if it is eventu-
ally of constant sign in [tx,∞) otherwise is oscillatory.

The problem of oscillation and nonoscillation for neutral
differential equations has received considerable attention

in recent years; see the references cited therein. However,

most of the works on the subject has been focused on first
and higher order equations with constant coefficients and

a little has been published on higher order neutral equa-

tions with variable coefficients. For some results we refer
to [1, 5, 7].

2 SOME BASIC LEMMAS

The following lemmas will be useful in the proof of the
main results.

Lemma 1. ([6],Lemmas 2.1 and 2.2) Suppose that (a),
(b) hold.

A1 : Let 0 < p(t) ≤ 1 , t ≥ t0 , and x(t) be continuous

nonoscillatory solution of the functional inequality

x(t)[x(t) − p(t)x(σ(t))] < 0 defined in a neighbor-

hood of infinity.

(i) Suppose that σ(t) < t for t ≥ t0 . Then x(t) is

bounded. If moreover 0 < p(t) ≤ λ∗ < 1 , t ≥ t0 ,

for some positive constant λ∗ , then lim
t→∞

x(t) = 0 .

(ii) Suppose that σ(t) > t for t ≥ t0 . Then x(t) is

bounded away from zero.

A2 : Let 1 ≤ p(t) for t ≥ t0 , and x(t) be a continuous

nonoscillatory solution of the functional inequality

x(t) [x(t) − p(t)x(σ(t))] > 0 defined in a neighbor-

hood of infinity.

(i) Suppose that σ(t) > t for t ≥ t0 . Then x(t) is

bounded. If moreover 1 < λ∗ ≤ p(t) , t ≥ t0 , for

some positive constant λ∗ , then lim
t→∞

x(t) = 0 .

(ii) Suppose that σ(t) < t for t ≥ t0 . Then x(t) is

bounded away from zero.

The next Lemma can be derived on the base of Theo-
rem 2 in [8].

Lemma 2. Assume that

g : [t0,∞) → [0,∞), δ : [t0,∞) → R

are continuous, lim
t→∞

δ(t) = ∞ ,

lim inf
t→∞

∫ δ(t)

t

g(s)ds >
1

e
,

where δ(t) > t for t ≥ t0 . Then the functional inequality

ẋ(t)− g(t)x(δ(t)) ≥ 0 , t ≥ t0 ,

cannot have an eventually positive solution, and

ẋ(t)− g(t)x(δ(t)) ≤ 0 , t ≥ t0 ,
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cannot have an eventually negative solution.

We say that the function u(·) ∈ Cn[R;R] is of degree
k ∈ {0, 1, ... n} if

u(t)u(i)(t) > 0 , 0 ≤ i ≤ k ,

(−1)i+k u(t)u(i)(t) > 0 , k ≤ i ≤ n .
(2k )

Let τ∗(t) = min{t, τ(t)} .

Lemma 3. ([7], Lemma 3.3) Suppose that n is odd, and

∫ ∞

t0

[τ∗(t)]n−2 [τ(t)]1−ε q(t)dt = ∞

for some ε > 0 . Then each nonoscillatory solution of

inequality

{v(n)(t) + q(t) v(τ(t))} sgn v(t) ≤ 0 , t ≥ t0 ,

is of degree 0 .

3 ASYMPTOTIC BEHAVIOUR

In this section we shall study the asymptotic behaviour
of the bounded and all nonoscillatory solutions of equa-
tion (1). Let τ−1(t), σ−1(t) denote the inverse functions
of τ(t), σ(t), and α : [t0,∞) → R be a continuous func-
tion. We define the function u(t) = x(t) − p(t)x(σ(t)).
So Eq. (1) can be written as

u(n)(t) = −q(t)x(τ(t)), t ≥ t0, n ≥ 2 . (1′ )

Theorem 1. Suppose that 0 < p(t) ≤ λ∗ < 1 ,
(−1)nq(t) ≥ 0 , σ(t) < t < τ(t) , t < α(t) , and

lim inf
t→∞

1

(n− 2)!

∫ τ(t)

t

∫ α(v)

v

(ξ− v)n−2|q(ξ)| dξdv >
1

e
. (3)

Then every nonoscillatory bounded solution of (1) tends

to zero as t → ∞ .

P r o o f . Without loss of generality we may assume
that x(t) is bounded and eventually positive solution of
(1). Let n be odd (the proof is similar when n is even)

then u(n)(t) ≥ 0 for all large t . For sufficiently large t0
we have two cases:

1. u(t) > 0, t ≥ t0 ; 2. u(t) < 0, t ≥ t0 .

Case 1. Since u(t) is bounded, and u(n)(t) ≥ 0 then

(−1)iu(i)(t) < 0 , t ≥ t1 ≥ t0, i = 1, 2, . . . , n− 1 (4)

then from the equality

u(k)(t) =

n−1
∑

i=k

(−1)i−k
(s− t)i−k

(i− k)!
u(i)(s)

+
(−1)n−k

(n− k − 1)!

∫ s

t

(ξ − t)n−k−1u(n)(ξ)dξ , (5)

where s > t , k = 1, and with regard to (4), (1′) we get

u′(t) ≥
−1

(n− 2)!

∫ s

t

(ξ − t)n−2q(ξ)x(τ(ξ))dξ , t < s ,

we have u(t) < x(t) hence |q(t)|u(τ(t)) ≤ |q(t)|x(τ(t))
then

u′(t) ≥
1

(n− 2)!

∫ s

t

(ξ − t)n−2|q(ξ)|u(τ(ξ))dξ

let s = α(t), and so

u′(t)−
1

(n− 2)!

∫ α(t)

t

(ξ − t)n−2|q(ξ)|dξ u(τ(t)) ≥ 0 .

By Lemma 2 and condition (3) the last inequality can
not have eventually positive solution, which is a contra-
diction.

Case 2. By Lemma 1, A1 it follows that lim
t→∞

x(t) = 0.

The proof is complete. Analogously we can prove the
following result.

Theorem 2. Suppose that 1 < λ∗ ≤ p(t) is bounded,

(−1)n q(t) ≤ 0 , t < σ(t) < τ(t) , t < α(t)

lim inf
t→∞

1

(n− 2)!

∫ σ
−1(τ(t))

t

∫ α(v)

v

(ξ − v)n−2 |q(ξ)|

p
(

σ−1(τ(ξ))
)dξdv >

1

e
. (6)

Then every nonoscillatory bounded solution of (1) tends

to zero as t → ∞ .

Theorem 3. Suppose that n is odd, 1 < λ∗ ≤ p(t) ,
q(t) < 0 , t < σ(t) and

∫ ∞

t0

[σ−1
∗ (τ(t))]n−2[σ−1(τ(t))]1−ε

|q(t)|

p
(

σ−1(τ(t))
)dt = ∞ ,

(7)

for some ε > 0,

∫ ∞

t0

tn−1 |q(t)|

p
(

σ−1(τ(t))
)dt = ∞ , (8)

where σ−1
∗ (τ(t)) = min{σ−1(τ(t)), t} . Then every non-

oscillatory solution of (1) tends to zero as t → ∞ .

P r o o f . Assume for the sake of contradiction that
x(t) is an eventually positive solution of (1), then

u(n)(t) > 0 for each t large. We consider two cases:

1. u(t) > 0, t ≥ t0 ; 2. u(t) < 0, t ≥ t0 , where t0 is
sufficiently large.

Case 1. By Lemma 1, A2 it follows that lim
t→∞

x(t) =

0, but this case is not possible because lim
t→∞

u(t) = 0
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means that u(t) is bounded, and since u(n)(t) > 0 then

(−1)iu(i)(t) < 0, i = 1, . . . , n which is impossible .

Case 2. We have

|q(t)|x
(

τ(t)
)

> −
|q(t)|

p
(

σ−1(τ(t))
)u

(

σ−1(τ(t))
)

, so Eq. (1)

implies

u(n)(t) +
|q(t)|

p
(

σ−1(τ(t))
)u

(

σ−1(τ(t))
)

> 0 , (9)

By Lemma 3 it follows that all nonoscillatory solutions of
(9) are of degree 0. We claim that lim

t→∞
u(t) = 0, otherwise

lim
t→∞

u(t) = L < 0, then u(t) ≤ L , t ≥ t0 . From (5) we

have

u(t) =

n−1
∑

i=0

(−1)
i (s− t)i

i!
u(i)(s)

+
−1

(n− 1)!

∫ s

t

(ξ − t)n−1u(n)(ξ)dξ , s > t . (5′ )

Then

u(t1) <
1

(n− 1)!

∫ t

t1

(ξ − t1)
n−1q(ξ)x(τ(ξ))dξ

<
1

(n− 1)!

∫ t

t1

(ξ − t1)
n−1 |q(ξ)|

p
(

σ−1(τ(ξ))
)u(σ−1(τ(ξ)))dξ

<
L

(n− 1)!

∫ t

t1

(ξ − t1)
n−1 |q(ξ)|

p
(

σ−1(τ(ξ))
)dξ ,

u(t1)

L
>

1

(n− 1)!

∫ t

t1

(ξ − t1)
n−1 |q(ξ)|

p
(

σ−1
(

τ(ξ))
)dξ

and for t → ∞ we get from the last inequality a contra-
diction with (8). Then lim

t→∞
u(t) = 0. We claim that x(t)

is bounded and lim
t→∞

x(t) = 0. First suppose that x(t) is

not bounded, then there exists a sequence {tn}
∞
n=1 such

that

lim
n→∞

tn = ∞ , lim
n→∞

x(σ(tn)) = ∞ ,

and x(σ(tn)) = max
t0≤s≤σ(tn)

x(s) .

Since u(t) is bounded there exists a constant B < 0 such
that u(t) ≥ B , t ≥ t1 ≥ t0 . Then

x(t) ≥ p(t)x
(

σ(t)
)

+B ≥ λ∗x
(

σ(t)
)

+B ,

and so λ∗x(σ(t)) ≤ x(t) −B , then

λ∗x
(

σ(tn)
)

≤ x(tn)−B ≤ x
(

σ(tn))−B ,

x
(

σ(tn)
)

≤
−B

λ∗ − 1

which is a contradiction. Then x(t) is bounded.

Next to prove that lim sup
t→∞

x(t) = 0, suppose that

lim sup
t→∞

x(σ(t)) = s > 0. Let {tm}∞m=1 be a sequence

such that lim
m→∞

tm = ∞ , lim sup
m→∞

x
(

σ(tm)
)

= s . For m

large enough we have

u(tm) ≤ x(tm)−λ∗x(σ(tm)), x(tm) ≥ u(tm)+λ∗x(σ(tm)).

We choose 0 < ǫ < (λ∗ − 1)s . Then

ǫ+ s ≥ lim sup
m→∞

x(tm) ≥ λ∗s , hence ǫ ≥ (λ∗ − 1)s

which is a contradiction. Thus s = 0.

Example. Consider the neutral differential equation

(

x(t) − 2ax(at)
)′′′

−
6b

t2
x(bt2) = 0 , t > 0 .

(i) Let a ∈ (0, 1
2 ), b > 1, α(t) = 2t , then the condi-

tion of Theorem 1 is satisfied which implies that each
nonoscillatory bounded solution of the above equation
tends to zero as t → ∞ .

(ii) Let a ∈ (1,∞), b > 0, ε = 1, then the conditions of
Theorem 3 are satisfied, therefore each nonoscillatory
solution of the above equation tends to zero as t → ∞ .

For instance x(t) =
1

t
is such solution.
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[3] DŽURINA, J.—MIHALIKOVÁ, B. : Oscillation Criterias for
Second Order Neutral Differential Equations, Mathematica Bo-
hemica (1998) (to appear).

[4] GRAEF, J. R.—GRAMMATIKOPOULOS, M. K.—SPIKES,
P. W. On the Asymptotic : Behavior of Solutions of a Second
Order Nonlinear Neutral Delay Differential Equations, Applica-
ble Anal. 22 (1986), 1–19.
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