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SOME CONSTRUCTIONS OF AGGREGATION OPERATORS

Tatiana Micháliková – Rückschlossová
∗

The motivation of developing new methods of constructing aggregation operators is a need for flexible classes of aggre-
gation operators for numerous applications. Some of these constructing methods are discussed in this work.
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1 INTRODUCTION

Aggregation of inputs into a single output is a cen-
tral problem of several modern intelligent systems. There
is a need for new effective aggregation methods. Before
describing some constructing methods, we recall the def-
inition of an aggregation operator.

Definition 1. An aggregation operator
A :

⋃

n∈N [0, 1]n → [0, 1] is a mapping fulfilling the fol-

lowing conditions:

(i) A(x) = x for each x ∈ [0, 1] (identity)

(ii) A(x1, . . . , xn) ≤ A(y1, . . . , yn) (monotonicity)
whenever xi ≤ yi for each i = 1, . . . , n , n ∈ N

(iii) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1
(boundary conditions)

One of the often required properties is the idempotency
of an aggregation operator.

Definition 2. An aggregation operator A is called idem-
potent if

A(x, . . . , x) = x , ∀x ∈ [0, 1] .

2 TRANSFORMATION

There are several ways how to construct new aggre-
gation operators. One of them is a method by means of
transformation. If we have an aggregation operator A and
some transformation ϕ : [0, 1] → [0, 1], which is bijection,
we can define a new aggregation operator Aϕ as follows:

Aϕ = ϕ−1 ◦A ◦ ϕ . By the transformation we change the
scale of inputs. When we apply this method on the arith-
metic mean M (on extended real line, with convention
−∞+∞ = −∞) we obtain an important class of aggre-
gation operators called quasi-arithmetic means.

Definition 3. Let f : [0, 1] → [−∞,∞] be a continu-
ous strictly monotone mapping. A quasi-arithmetic mean
is an operator Mf : ∪n∈N [0, 1]n → [0, 1] defined by

Mf (x1, . . . , xn) = f−1(M(f(x1), . . . , f(xn))), where f−1

is the inverse function of f . The function f is called an
additive generator of the quasi-arithmetic mean Mf .

Example 1.

(i) Mx = M (arithmetic mean)

(ii) Mlogx = G (geometric mean)

(iii) M 1
x
= H (harmonic mean)

(iv) Mx2 = Q (quadratic mean)

(v) Mxp = Mp , p ∈ (−∞, 0) ∪ (0,∞)
(power-root operator)

It is easy to see that Mp(x1, . . . , xn) =
(

1
n

n
∑

i=1

xp
)

1
p

Directly from the definition it follows that Maf+b =
Mf for each a, b ∈ R , a 6= 0 (up to the case when
Ran f = [−∞,∞] ; then a > 0 should be required).

For quasi-arithmetic means generated by powers fλ ,
λ ∈ (0,∞), of a given generator f with Ran f ⊆ [0,∞] ,
the limit properties were studied. Considering the situ-
ation when λ approaches to infinity, the limit operators
are maximum or minimum and depend only on the mono-
tonicity of the generator f .

lim
λ→∞

M(f+)λ = Max, lim
λ→∞

M(f−)λ = Min .

The function f+ (f− ) is an increasing (decreasing) gen-
erator of Mf+ (Mf− ). When λ approaches zero from
the right, the limit operators are f -transformations of
the geometric mean, depending on the generator f .

lim
λ→0+

M(f+)λ = Gf+ , lim
λ→0+

M(f−)λ = Gf− .

They are called quasi-geometric means, see [9].

Also for quasi-arithmetic means generated by func-
tions fα , α ∈ (0,∞), fα(x) = f(xα), the limit oper-
ators are known. Namely, for α approaching zero from
the right the limit operator (if it exists) is the geometric
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E-mail: tatiana@vox.svf.stuba.sk

ISSN 1335-3632 c© 2000 FEI STU
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mean G and for α approaching infinity the limit opera-
tor is maximum or minimum, depending on the type of
monotonicity of f .

A special type of this transformation method is dual-
ization. The transformation in this case is the function
ϕ : [0, 1] → [0, 1], ϕ(x) = 1 − x . The dual operator DA

to a given aggregation operator A is given by

DA(x1, . . . , xn) = 1−A(1− x1, . . . , 1− xn) .

A special case is duality between t-norms and t-conorms.
For the definition of t-norms and t-conorms and their
properties we refer to [8]. An aggregation operator A is
called self-dual if DA = A . Self-dual aggregation opera-
tors were called symmetric sums in [13]. The construction
of a self-dual aggregation operator is given by

A(x1, . . . , xn) =
g(x1, . . . , xn)

g(x1, . . . , xn) + g(1− x1, . . . , 1− xn)
,

where the function g is non-decreasing with g(0, . . . , 0) =

0, g(1, . . . , 1) > 0 and with convention 0
0 = 1

2 . As a
function g it can be also used an arbitrary t-norm or
t-conorm.

Example 2.

(i) If g(x1, . . . , xn) =
n
∑

i=1

xi , then

A(x1, . . . , xn) = M(x1, . . . , xn).

(ii) For g(x1, . . . , xn) =
n
∏

i=1

xi we get

A(x1, . . . , xn) =















1
2 {0, 1} ⊆ {x1, . . . , xn},

n
∏

i=1

xi

n
∏

i=1

xi+
n
∏

i=1

(1−xi)
otherwise.

(iii) Let g(x, y) = TL(x, y) = max(x + y − 1, 0), where
TL is the Lukasiewicz t-norm, see [8]. Then

A(x, y) =











0 if x+ y < 1,

1 if x+ y > 1,
1
2 if x+ y = 1.

(iv) Put g(x, y) = SL(x, y) = min(x + y, 1). SL is
t-conorm called bounded sum, which is dual to the

t-norm TL . Then A(x, y) =

{ x+y
x+y+1 if x+ y ≤ 1,

1
3−x−y if x+ y > 1 .

There are also some open problems in this domain. For
instance what kinds of aggregation operators are invari-
ant with respect to all increasing (decreasing) transforma-
tions. For example, operators maximum and minimum
are invariant with respect to all increasing transforma-
tions. Or, what is the class of transformations for which
a given aggregation operator is invariant. It can be shown
that the product (on [0,1]) is invariant with respect to the

class of transformations P =
{

ϕ; ϕ(x) = xr, r ∈ R\{0}
}

and the sum (on R) is invariant with respect to the class

of transformations S =
{

g; g(x) = rx, r ∈ R \ {0}
}

.

3 COMPOSED AGGREGATION

Take some aggregation operators B,A1, . . . , Am (not
necessarily different), where B is an idempotent aggrega-
tion operator. We can define a new aggregation operator
C by C = B(A1, . . . , Am), given by

C(x1, . . . , xn) = B(A1(x1, . . . , xn), . . . , Am(x1, . . . , xn)) .

We speak about two-step aggregation if all applied opera-
tors are from the same class. Some classes of aggregation
operators are closed under this construction, for example
weighted means. An extension on k -step aggregation is
possible by induction.

In the next example we will work with a special type of
aggregation operators, called weighted ordered averages
(OWA operators [15]), and we will show that OWA oper-
ators (Choquet integrals) are not closed under two-step
aggregation.

Definition 4. A mapping F : [0, 1]n → [0, 1] is called
an ordered weighted average associated with a weighting
vector w = (w1, . . . , wn) such that

(i) wi ∈ [0, 1],

(ii)
n
∑

i=1

wi = 1, n ∈ N

if F (a1, . . . , an) =
n
∑

i=1

wibi , where (b1, . . . , bn) is a non-

increasing permutation of input arguments (a1, . . . , an).

Some properties of OWA operators are discussed in
[15]. Special types of OWA operators are, e.g., minimum,
maximum, order statistics, but also the arithmetic mean.

Example 3, Two-step Choquet integral. Any OWA
operator with weights w1, . . . , wn is the Choquet integral
with respect to the fuzzy measure µ on {1, . . . , n} defined
by

µ(Y ) =

i−1
∑

j=0

wn−j , ∀Y such that |Y | = i ,

where |Y | denotes the cardinality of Y .

Consider the operators A1, A2, B which are OWA op-
erators and therefore Choquet integrals:

A1(x, y, z) =
max(x, y, z) + min(x, y, z)

2
,

A2(x, y, z) =
x+ y + z

3
,

B(u, v) =
max(u, v) + 2min(u, v)

3
.

Let x ≤ y ≤ z . Then A1(x, y, z) = u = z+x
2 ,

A2(x, y, z) = v = x+y+z
3 = 2u+y

3 . Consequently,

C(x, y, z) =

{

4x+y+4z
9 if y ≥ x+z

2 ,

7x+y+7z
18 if y < x+z

2 .

Now, evidently C is not an OWA operator. Moreover, it
is neither a Choquet integral, because for a given order
of input arguments (x ≤ y ≤ z in the discussed case)
we have two possible different output formulae, which
contradicts the definition of the Choquet integral [1].
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Example 4. Aggregation operators in the following ex-
amples are based on a t-norm T and a t-conorm S and
their role is to compensate some defects of the t-norm
and t-conorm aggregation.

(i) A1 = T , A2 = S , B(x, y) = x1−γyγ (weighted
geometric mean)

C(x1, . . . , xn) = (T (x1, . . . , xn))
1−γ(S(x1, . . . , xn))

γ

This operator is customary denoted by
Eγ,T,S(x1, . . . , xn) and called the exponential convex
compensatory operator [13]. In the case when T = TP

(product), S = SP (probabilistic sum) we obtain so
called gamma-operators, see [11, 15].

(ii) A1 = T , A2 = S , B(x, y) = (1− γ)x+ γy (weighted
mean). Now we obtained so called linear convex com-
pensatory operator [13] Lγ,T,S(x1, . . . , xn)

= (1 − γ)T (x1, . . . , xn) + γS(x1, . . . , xn).

4 CARTESIAN PRODUCT BASED METHOD

This method is based on two aggregation operators A

and B , and the order k . For k = 2 we define a new
aggregation operator as follows:

C2(x1, . . . , xn)

= A
(

B(x1, x1) . . . , B(x1, xn), B(x2, x1), . . . , B(xn, xn)
)

.

For k > 2 we aggregate by means of A all outputs of B
applied to elements of {x1, . . . , xn}k formally distinguish-
ing all xi ’s. It is convenient to require the idempotency of
the operator A because of the definition of an aggregation
operator.

Example 5. Examples below are again considered for
k = 2. For a general k it is enough to replace power
(root) 2 by power (root) k .

(i) Let A = M , B = Min. Then

C2(x1, . . . , xn) =
n
∑

i,j=1

min(xi, xj)
1
n2

=
n
∑

i=1

(n−i+1)2−(n−i)2

n2 yi ,

where (y1, . . . , yn) is a non-decreasing permutation
of (x1, . . . , xn). The result is an OWA operator.

(ii) Put A(x1, . . . , xn) =

n
∏

i=1

xi

n
∏

i=1

xi+
n
∏

i=1

(1−xi)
(with conven-

tion 0
0 = 1

2 ), B = G .
Then the resulting operator is defined by

C2(x1, . . . , xn) = A(
√
x1x1, . . . ,

√
x1xn,

√
x2x1, . . . ,

√
xnxn) =

(

n
∏

i=1

xi

)n

(

n
∏

i=1

xi

)n

+
n
∏

i,j=1

(1−
√
xixj)

.

(iii) For A = M , B = G we obtain the operator

C2(x1, . . . , xn) =
n
∑

i,j=1

√
xixj

n2

=
( n
∑

i=1

√
xi

n

)2

= Mp(x1, . . . , xn) ,

which is the power-root operator with parameter p = 1
2 .

5 ORDINAL SUMS OF

AGGREGATION OPERATORS

Ordinal sums of aggregation operators are extensions
of given aggregation operators acting on inputs from some
given intervals to an aggregation operator acting on any
inputs from unit interval [0, 1], see [10] and [11]. We can
speak about two boundary extensions, so called lower and
upper extensions.

• Lower extension is a minimal aggregation operator
on [0, 1] preserving A (on [a, b] ⊆ [0, 1]) defined as
follows:

A∗ ∼ (〈a, b, A〉)∗ :
⋃

n∈N

[0, 1]n → [0, 1] , A∗(x1, . . . , xn) =

=



















1 if min(x1, . . . , xn) = 1 ,

b if b ≤ min(x1, . . . , xn) < 1 ,

A(x̄1, . . . , x̄n) if a ≤ min(x1, . . . , xn) < b ,

0 otherwise,

where x̄ = min(x, b).

• Upper extension is a maximal aggregation operator
on [0, 1] preserving A (on [a, b]) defined as follows:

A∗ ∼ (〈a, b, A〉)∗ :
⋃

n∈N

[0, 1]n → [0, 1] , A∗(x1, . . . , xn) =

=



















0 if max(x1, . . . , xn) = 0 ,

a if 0 < max(x1, . . . , xn) ≤ a ,

A(x̃1, . . . , x̃n) if a < max(x1, . . . , xn) ≤ b ,

1 otherwise,

where x̃ = max(x, a).

A∗(x, y) 1 1
b

b
0 A

a
0

0 a b 1

A∗(x, y) 1
1

b
A 1

a
a

0 a b 1

We can easily extend this type of construction to an ar-
bitrary (countable) system of aggregation operators and
corresponding system of pairwise non-overlapping subin-
tervals of the unit interval [0, 1]. For more details see [11].

Example 6.

(i) A1 = T1 , A2 = T2

1
a T2

a
T1 a

0 a 1

upper ext.

(not a t -norm)

1
min T2

a
T1 min

0 a 1

lower ext.
(a t -norm)

(ii) A1 = S1 , A2 = S2

1
max S2

a
S1 max

0 a 1

upper ext.

(not a t -norm)

1
a S2

a
S1 a

0 a 1

lower ext.
(not a t -norm)

(iii) A1 = T , A2 = S

1
max S

a
T max

0 a 1

upper ext.

1
min S

a
T min

0 a 1

lower ext.

(iv) A1 = S1 , A2 = S2

1
a T

a
S a

0 a 1

lower ext.=upper ext.
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Note that operators obtained in (iii) and (iv) are called
uninorms and nullnorms, respectively. For more informa-
tion see [6, 7] and [3], respectively.

Example 7. Lower (upper) extensions of continuous ag-
gregation operators need not be continuous, in general.
We present some continuous aggregation operators as
ordinal sums (note that T and S are supposed to be
continuous).

(i) A1 = T , A2 = S 1

x+y−a S
a

T x+y−a

0 a 1

1

xy/a S
a

T xy/a

0 a 1

6 SOME OTHER METHODS

From other construction methods we recall the sym-
metrisation methods only. For an arbitrary (in general
non-symmetric) aggregation operator A we can always
construct a new operator As forcing the symmetry as
follows:

As(x1, . . . , xn) = A(y1, . . . , yn) ,

where (y1, . . . , yn) is a non-increasing permutation of
(x1, . . . , xn). Applying this method on a weighted mean
W we obtain the corresponding symmetric operator W s

(OWA-operator). Similarly, from a weighted geometric
mean we obtain an ordered weighted geometric mean
(OWG), see [5].

Obviously, if we use a non-decreasing permutation
(z1, . . . , zn) of (x1, . . . , xn) and define

As(x1, . . . , xn) = A(z1, . . . , zn) ,

again we obtain a symmetric aggregation operator As .
Note that OWA operators W s and Ws differ only in the
opposite order of weights.

Finally, we can force the symmetry for a given ag-
gregation operator A as follows: for given input vector
(x1, . . . , xn), take all possible permutations
(xα(1), . . . , xα(n)). For a preselected symmetric idempo-

tent aggregation operator B we define

AB(x1, . . . , xn) = B(u1, . . . , un!) ,

where ui , for i = 1, . . . , n! , are the outputs of
A(xα(1), . . . , xα(n)) obtained for different permutations

α of (1, . . . , n), see also Section 4. Evidently, if A is a
symmetric aggregation operator, for any B (symmetric

and idempotent) AB = A .

Example 8.

(i) To illustrate this last method, let A = W be
a weighted mean with weights w = (w1, . . . , wn)

and B = min . Then Wmin is the OWA operator
with weights w̄ = (w̄1, . . . , w̄n), where w̄ is a non-
increasing permutation of w . Similarly, Wmax is an

OWA operator corresponding to a non-decreasing
permutation of w .

(ii) Next, WM = M .

(iii) Finally, let A(x, y) = 3
√

xy2 and B(x, y) = x+y
2 .

Then AB =
3
√
xy( 3

√
x+ 3

√
y)

2 .
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