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WILD t–NORMS

Andrea Mesiarová
∗

Non-continuous triangular norms with continuous diagonal proposed by G. Krause under the name wild t -norms are
recalled and investigated. The set of all discontinuity points of wild t -norms is characterized. Fractal-like structure of the

diagonal of a linear wild t -norm is shown by means of its derivative.
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1 INTRODUCTION

The term triangular norm was for the first time intro-
duced by Menger [1942]. Originally triangular norms were
used for generalization of classical triangular inequality
for metric spaces (introduced by Fréchet [1906]) on statis-
tic metric spaces (or on probability metric spaces, as we
call them today). Triangular norms (shortly t-norms) are
operations on the unit interval with special properties.
Originally their axioms (Menger [1942]) were relatively
weak. Associativity was not demanded and also bound-
ary conditions were weaker then in axioms, which are used
today and which were introduced by Schweizer and Sklar
[1960].

Definition 1. Triangular norm is a binary operation
T : [0, 1]2 → [0, 1], where for all x, y, z ∈ [0, 1] the fol-
lowing four axioms are fulfilled:

(1) T (x, y) = T (y, x) (commutativity,)

(2) T (x, T (y, z)) = T (T (x, y), z) (associativity),

(3) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),

(4) T (x, 1) = x (boundary condition).

Observe that couple ([0, 1], T ) is a special Abelian
semigroup with neutral element 1 and anihilator 0.

Example 1. Following are four basic t-norms TM , TP ,
TL , TD :

TM (x, y) = min(x, y) (minimum),

TP (x, y) = x · y (product),

TL(x, y) = max(0, x+ y − 1) (Lukasiewicz t-norm),

TD(x, y) =

{
0 if (x, y) ∈ [0, 1[2

min(x, y) otherwise
(drastic product).

These four t-norms are important for several reasons.
For every t-norm T we have: TD ≤ T ≤ TM . Every

continuous t-norm can be constructed from TM , TL , TP

by using some suitable transformations and the so-called
ordinal sums, see also [2, 6].

Several algebraic properties of t-norms can be derived
from their diagonal function (T (x, x) : [0, 1] → [0, 1]),
such as Archimedean property, nilpotency, existence of
zero divisors, existence of idempotent elements etc. This
is the reason why the diagonal function of t-norms is one
of important domains of investigation. Following are the
diagonal functions of our four basic t-norms:

TM (x, x) = x ,

TP (x, x) = x2 ,

TL(x, x) = max(0, 2x− 1) ,

TD(x, x) =

{
0 if x ∈ [0, 1[ ,

min(x, x) otherwise.

It is evident that every continuous t-norm has a con-
tinuous diagonal but the converse question (mentioned in
[6]), whether a t-norm must be continuous when it has
a continuous diagonal, was for years an open problem.
Counterexample to this problem was found by Gerianne
Krause. Krause’s construction is still not published and it
is known only in rough e-mail form. The aim of this work
is a clear description of this construction and investiga-
tion of properties of Krause’s t-norms. Construction of
Krause’s t-norms is based on the notions of the Cantor
set and the Farrey sequence, which we will now briefly
recall.

2 CANTOR SET

Cantor set is a set derived from the unit interval, from
which open intervals (so-called middles) are successively
deleted:

1. step: (1/3, 2/3), 2. step: (1/9, 2/9), (7/9, 8/9) . . .

In the n-th step we are deleting exactly 2n−1 intervals.
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Each of these deleted intervals can be represented by its
left-end point (e.g. (7/9, 8/9) → 7/9). The set of these
points together with points 0, 1 will be denoted by S .
So S = {0, 1, 1/3, 1/9, 7/9, 1/27, 7/27, 19/27, 25/27, . . .} .
We will also denote the set of all right-end points of
deleted intervals by U . Points from Cantor set which are
neither from S nor from U will be called pure Cantor
points and the set of all these points will be denoted by
C . Every point from S \ {0, 1} can be represented by a
finite sequence of 0’s and 2’s created by means of triadic
expansion in the following way:

1/3 = (1)1/3 ≃ ∅ ,
1/9 = (0, 1)1/3 ≃ (0) ,

7/9 = (2, 1)1/3 ≃ (2) ,

1/27 = (0, 0, 1)1/3 ≃ (0, 0) ,

Ending number in triadic expansion of every point
from S \ {0, 1} is 1, so it is not important, and in our
representation we will not use it. In this way we can
represent each point from S\{0, 1} and we will denote the
set of such representations by P . We also know that the
interval which is represented by current point has a length

3−(n+1) , where n is the dimension of current 0–2-vector.

We can use triadic expansion also for representation of
points from C . These points have infinite triadic expan-
sions, so their representatives will be exactly their tri-
adic expansions, i.e., sequences which contain infinitely
many of 0’s and infinitely many of 2’s (e.g. 1/4 =
(0, 2, 0, 2, . . . )1/3 ≃ (0, 2, 0, 2, . . . )).

3 FARREY SEQUENCE

Farrey sequence is also created inductively. At the be-
ginning we have two “fractions”: 1/0, 0/1. In the first
step we put between these two fractions a new one: 1/1.
In the second step we put 2/1 between 1/0 and 1/1 and
1/2 between 1/1 and 0/1, and so on. In the n-th step

we add to our sequence 2n−1 new fractions in such a way,
that between every two old neighbours a/b , c/d (in the
increasing order) we put new fraction (a+ c)/(b+ d). So
if we denote by Fn the Farrey sequence in the n-th step,
we have:

F1 = {1/0, 1/1, 0/1} ,
F2 = {1/0, 2/1, 1/1, 1/2, 0/1} ,
F3 = {1/0, 3/1, 2/1, 3/2, 1/1, 2/3, 1/2, 1/3, 0/1} ,

...

For every two neighbours a/b , c/d of the Farrey sequence
Fn for each n , a ·d = 1+c ·b . The whole Farrey sequence
is

F∞ =
∞⋃

n=1

Fn .

We should note that F∞ is just equal to the set of all
rational numbers from [0,∞] in their basic form.

In the n-the step of the construction of the set S we
have added 2n−1 new points (corresponding to construc-

tion of the Cantor set). Similarly, 2n−1 new fractions have
been added to the Farrey sequence in the n-th step. So we
can map the points from S to the fractions from Farrey
sequence. We will do it in the following way:

First we define boundary conditions: f(0) = 1/0 = ∞ ,
f(1) = 0/1 = 0. Then we define

in the 1st step: f(1/3) = 1/1 = 1,

in the 2nd step: f(1/9) = 2/1 = 2, f(7/9) = 1/2,

e.t.c.

A new point from S is mapped to a new fraction
from the Farrey sequence preserving the relevant orders
of creation. Now we have a one-to-one mapping between
S \ {0, 1} and P and also a one-to-one mapping between
S and the fractions from the Farrey sequence. Hence
we have also a one-to-one mapping between P and the
fractions from the Farrey sequence and thus we can define
a function (we will denote it also by f )

f : P → F∞ \ {1/0, 0/1} as we have defined it before:

f(1/3) = f(∅) = 1, f(1/9) = f((0)) = 2, . . .

After investigation of f , we have found these proper-
ties:

1) x, y ∈ P , x = (0, x1, . . . , xn), y = (x1, . . . , xn) ⇒
f(x) = 1 + f(y),

2) x, y ∈ P , x = (x1, . . . , xn), y = (y1, . . . , yn), where
yi = 2− xi for i = 1, . . . , n ⇒ f(x) = 1/f(y).

Using these properties finitely many times f(x) can
be computed for any x ∈ P . In the points from deleted
intervals and in the right-end points of deleted intervals
we will determine the value of f as follows:

f(x) = f(m/3n), x ∈ [m/3n, (m + 1)/3n] , where
(m/3n, (m+ 1)/3n) is a deleted interval. To define f on
the whole interval [0, 1] it remains to determine values of
f in pure Cantor points.

Each point c ∈ C can be expressed as a limit of points
from S , so we put

f(c) = lim
x→c+

x∈S

f(x) , c ∈ C .

This definition is equivalent to:

f(c) = inf{f(s) ∈ [0,∞] | s ∈ S, s ≤ c} .

Then, of course, the properties (1), (2) of function f
are valid also for f(c). We can also define f : [0, 1] →
[0,∞] by another equivalent expression:

f(x) = inf{f(s) | s ∈ S, s ≤ x} .

From the construction it is evident that f : S → Q∩[0,∞]
and f : C ∪ S → [0,∞] are decreasing bijections and
f : [0, 1] → [0,∞] is a decreasing surjection. This means
that f is continuous (where the derivative f ′ = 0 in every
point, where it exists, i.e. on [0, 1] \ (C ∪ S ∪ U)).
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Example 2.

c = 1/4 = (0, 2, 0, 2, . . . ) ⇒ f(c) = 1 + 1/f(c) ⇒ f2(c) =

f(c) + 1 ⇒ f2(c) − f(c) − 1 = 0. As far as f(c) is

nonnegative f(c) = (1 +
√
5)/2. Point 1/4 is interesting

also for function values of its successive approximations:
1/4 = (0, 2, 0, 2, ...)

f(∅) = 1, f((0)) = 2, f((0, 2)) = 3/2, f((0, 2, 0)) = 5/3,
f((0, 2, 0, 2)) = 8/5, . . . , f((0, 2, 0, 2, . . . )) =
f((x1, . . . , xn)) = an+1/an , where numbers an are mem-
bers of Fibonacci sequence (a0 = 1, a1 = 1, an =
an−1 + an−2). So we can determine f(1/4) also using
the explicit form of Fibonacci numbers:

an =
1√

5 · 2n+1
· [(1 +

√
5)n+1− (1−

√
5)n+1], and hence

an+1

an
=

1

2
· [(1 +

√
5)n+2 − (1−

√
5)n+2]

[(1 +
√
5)n+1 − (1−

√
5)n+1]

−−−→
n→∞

1 +
√
5

2
.

4 WILD t–NORMS

Using the above defined continuous decreasing func-
tion f : [0, 1] → [0,∞] we can define a t-norm T .

Definition 2. As for every t-norm we define first

T (x, 1) = T (1, x) = x , T (x, 0) = T (0, x) = 0 , x ∈ [0, 1] .

Let Gq : [1/3, 2/3] → [i/3j, (i + 1)/3j] , where i/3j ∈
S \ {0, 1} and q = f(i/3j), be any system of increasing

bijections. Let x∗ = G−1
p (x), x ∈ [i/3j, (i+ 1)/3j] ,

p = f(i/3j) and y∗ = G−1
q (y), y ∈ [m/3n, (m + 1)/3n] ,

q = f(m/3n). Then we define:

T (x, y) = Gp+q(min(x∗, y∗)) . (1)

If {x, y} ∩ C 6= ∅ we put

T (x, y) = inf{T (c, d) | c ∈ S, d ∈ S, x ≤ c, y ≤ d} (2)

((1) and (2) are equivalent for x, y ∈ C ∪ S)).

We should also remark that if {x, y}∩(C∪S) 6= ∅ then

T (x, y) ∈ (C ∪ S). T : [0, 1]2 → [0, 1] is defined correctly.
We show now that T is a t-norm.

1) Commutativity is evident from the definition of T .

2) Monotonicity: We know that Gq is an increasing bi-
jection for ∀ q ∈ Q∩]0,∞[ and f is a decreasing function.

Let x ∈ [i/3j, (i+1)/3j] , y ∈ [m/3n, (m+1)/3n] , y ≤ z .

We know, that f(T (x, y)) = p + q = f(i/3j) + f(m/3n)

and from the definition f(x) = f(i/3j), f(y) = f(m/3n),
hence f(T (x, y)) = f(x) + f(y). So if f(z) < f(y) then
T (x, y) < T (x, z).

If f(y) = f(z) then y, z are points from the same
deleted interval — [m/3n, (m + 1)/3n] . Consequently

y∗ ≤ z∗ . Let x ∈ [i/3j, (i + 1)/3j] , p = f(m/3n),

q = f(i/3j) ⇒ T (x, y) = Gp+q(min(x∗, y∗))

≤ Gp+q(min(x∗, z∗)) = T (x, z), because Gp+q is an in-
creasing bijection. As far as between every point from
C ∪S ∪U and another point from C , there are infinitely
many points from S , T is monotone also for x, y , where
{x, y} ∩C 6= ∅ .

3) Associativity: We have to prove associativity only
for x, y, z ∈]0, 1[ (in other cases it is evident).

a) Let x ∈ [i/3j, (i + 1)/3j] , y ∈ [m/3n, (m + 1)/3n] ,

z ∈ [r/3s, (r + 1)/3s] , p = f(m/3n), q = f(i/3j), t =
f(r/3s). Then T (T (x, y), z) = GA+t(min(a∗, z∗)), where

a = T (x, y) ∈ [L/3k, (L + 1)/3k] , A = f(L/3k). Since
x, y are points from deleted intervals, from the definition
T (x, y) belongs to a deleted interval, as well. So we have:
T (T (x, y), z) = Gp+q+t(min(a∗, z∗)),
a = Gp+q(min(x∗, y∗)), a∗ = min(x∗, y∗), and hence
T (T (x, y), z) = Gp+q+t(min(min(x∗, y∗), z∗))
= T (x, T (y, z))

b) If x ∈ C ⇒ T (x, y) = inf{T (x′, y′) | x′, y′ ∈ S, x ≤
x′, y ≤ y′} ∈ C ∪ S . Then
T (T (x, y), z) = inf{T (a′, z′) | a′, z′ ∈ S, T (x, y) ≤ a′ ,
z ≤ z′} = inf{T (a′, z′) | a′, z′ ∈ S, z ≤ z′, inf{T (x′, y′) |
x′, y′ ∈ S, x ≤ x′, y ≤ y′} ≤ a′} .

Because T is monotone, the last expression is equal
to: inf{T (a′, z′) | a′, z′ ∈ S, z ≤ z′, inf{T (x′, y′) | x′, y′ ∈
S, x ≤ x′, y ≤ y′} ≤ a′} = inf{T (T (x′, y′), z′) | x′, y′, z′ ∈
S, x ≤ x′, y ≤ y′, z ≤ z′} = inf{T (x′, T (y′, z′)) |
x′, y′, z′ ∈ S, x ≤ x′, y ≤ y′, z ≤ z′} .

If {y, z} ∩ C 6= ∅ the proof is finished.

If y ∈ [m/3n, (m + 1)/3n] , z ∈ [r/3s, (r + 1)/3s] ,
p = f(m/3n), t = f(r/3s), T (y, z) = Gp+t(min(y∗, z∗))
then T (x, T (y, z)) = inf{T (x′, b′) | b′, x′ ∈ S, T (y, z) ≤
b′, x ≤ x′} . We know that inf{b′ ≥ T (y, z), b′ ∈ S} =
inf{T (y′, z′) | y′, z′ ∈ S, y ≤ y′, z ≤ z′} . Since T is mono-
tone: T (x, T (y, z)) = inf{T (x′, b′) | b′, x′ ∈ S, T (y, z) ≤
b′, x ≤ x′} = inf{T (x′, T (y′, z′)) | x′, y′, z′ ∈ S, x ≤
x′, y ≤ y′, z ≤ z′} = T (T (x, y), z).

4) The boundary condition was directly introduced in
the definition.

We have shown that the introduced mapping T is a
t-norm. Following Gerianne Krause, T will be called wild
t-norm. This t-norm is continuous on rectangles
]i/3j, (i+1)/3j[×]m/3n, (m+1)/3n[ , which are called by
G. Krause devil’s terraces.

5 WILD t–NORMS ON DIAGONAL

The t-norm T is continuous on the diagonal. We put
D(x) = T (x, x).

1) x ∈]i/3j, (i + 1)/3j[⇒ x is inner point of a deleted

interval, p = f(i/3i). On I =]i/3j, (i+1)/3j[ the function

Gp is continuous (increasing bijection) ⇒ also G−1
p is

continuous. Because x is from a deleted interval we know
that: 2p = q , where q = f(y), y ∈ S . Function Gq

is also continuous. As far as also f : C ∪ S → [0,∞] is
continuous, the whole t-norm is continuous on I × I and
hence D(x) is continuous on I . D(x) is also continuous
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from the right in the left-end point and from the left in
right-end point of interval I .

2) The continuity of D(x) in points from C follows
directly from the monotonicity of D(x), density of S in
S ∪ C and continuity of bijection f : C ∪ S → [0,∞] ,

as far as for c ∈ C , D(c) = f−1(2.f(c)) (where f−1 is
the inverse function of f : C ∪ S → [0,∞] , which is a
decreasing bijection).

3) The continuity from the left of diagonal D(x) in
points s ∈ S \ {0} follows directly from the monotonicity
of D(x) and the continuity of f : S → Q ∩ [0,∞] (the
same for the continuity from the right in points u ∈ U ).

6 NON–CONTINUITY OF WILD t–NORMS

We know that wild t-norms are non-continuous, more
precisely every wild t-norm is non-continuous from the
left in (x, 1), (1, x) where x ∈ [0, 1] \ (C ∪ S) and non-
continuous from the right in (x, y), (y, x)
for ∀x ∈ [0, 1] \ (C ∪ S ∪ U), ∀y ∈ U .

Let x ∈ [i/3j, (i + 1)/3j] , p = f(i/3j). We know that

T (x, 1) = x . Then T (x, 1−) = limj→∞ T (x, 1 − 2/3j),

T (x, 1−2/3j) = Gp+1/j(min(x∗, 1/3)) = i/3j . This shows

that T is continuous in points (x, 1), (1, x), x ∈ S , and
non-continuous from left in (x, 1), (1, x), x ∈ [0, 1] \ (S ∪
C). We can easily see that in x ∈ C , T (x, 1−) = sup{si,j |
si,j ∈ S, si,j ≤ x} = x (si,j = i/3j ).

Concerning the non-continuity from the right: if x ∈
]i/3j, (i + 1)/3j[ and for k/3L ∈ S , T (i/3j, k/3L) =

m/3n , this means that x = i/3j + λ/3j , λ ∈]0, 1[⇒
T (x, (k + 1)/3L) = m/3n + λ/3n, T (x, [(k + 1)/3L]+) =

(m+ 1)/3n ⇒ T (x, [(k + 1)/3L]+) 6= T (x, (k + 1)/3L).

Further we will suppose that Gp is a linear function
for ∀p ∈ Q∩]0,∞[ . The corresponding T will be called a
linear wild t-norm.

Example 3. T (1/2, 1) = 1/2
T (1/2, 1−) = limx→1− T (1/2, x) = limn→∞ T (1/2, xn),
where xn = (3n − 2)/3n . Then T (1/2, (3n − 2)/3n =

G1+1/n(min(1/3, 1/2)) = G1+1/n(1/3) = (3n − 2)/3n+1)

→n→∞ 1/3, 1/3 6= 1/2.

Example 4. T (1/2, 2/3) = 1/6.

Denote p = f((2 · 3n−1 + 1)/3n). Then T (1/2, 2/3+) =

T (1/2, (2.3n−1 + 1)/3n) = G1+p(min(1/3, 1/2))

= (2 · 3n−1 + 1)/3n+1 →n→∞ 2/9. 2/9 6= 1/6.

7 DERIVATIVE OF LINEAR WILD

t–NORM ON THE DIAGONAL

Suppose that all bijections Gp are linear. This means:
Gf(m/3n)(x) = k·x+q for ∀m/3n ∈ S ⇒ m/3n = k/3+q ,

(m+1)/3n = 2k/3+ q ⇒ 1/3n = k/3 ⇒ k = 1/3n−1, q =

(m − 1)/3n . Consequently, Gf(m/3n)(x) = x/3n−1 +

(m− 1)/3n and G−1
f(m/3n)(x) = 3n−1x− (m− 1)/3.

For the diagonal function related to the linear wild
t-norm T we obtain: D(x) = G2f(m/3n)

(
3n−1x −

(m − 1)/3
)
, x ∈ [m/3n, (m + 1)/3n] , m/3n ∈ S . If

f−1(2f(x)) = i/3j then D(x) = 3n−jx− (m− i)/3j .

We have just shown that the value 3n−j is the deriva-

tive (slope) of D on the interval I =]m/3n, (m+ 1)/3n[ .

Let x ∈ S and let x = m/3n , f−1
(
2(f(x)

)
= i/3j .

Then D(z) = 3n−jz−(m−i)/3j for any z ∈ [m/3n, (m+

1)/3n] .

Let s(x) be a mapping which assigns to every point

x ∈ S the value s(x) = (j − n). Then the slope of D on

]m/3n, (m+1)/3n[ is 3−s(x) . So we have only to find out

the value of s(x).

Example 5.

s(∅) = s(1/3) = 2− 1 = 1

s((0)) = s(1/9) = 4− 2 = 2

s((2)) = s(7/9) = 1− 2 = −1

s((0, 0)) = s(1/27) = 6− 3 = 3

s((0, 2)) = s(7/27) = 3− 3 = 0

s((2, 0)) = s(19/27) = 4− 3 = 1

s((2, 2)) = s(25/27) = 3− 3 = 0

The function s has the following properties:

Theorem 1. Let p = (x1, . . . , xn) , p′ = (y1, . . . , yn) ,

yi = 2− xi , i = 1, . . . , n , xi, yi ∈ {0, 2} . Then
1) s((0, p)) = 1+s(p) , where (0, p) means (0, x1, . . . , xn) ,

2) s((2, 0, p)) = s(p′) ,

3) s((2, 2, p)) = s(p)− 1 .

P r o o f . 1) 2f((0, p)) = 2 + 2f(p) ⇒
f−1(2 + 2f(p)) = (0, 0, q), where q = f−1(2f(p)).

s((0, p)) = j−n ⇒ s(p) = (j−2)−(n+1) = s((0, p))−1 ⇒
s((0, p)) = 1 + s(p).

2) 2f((2, 0, p)) = 2
1+1/(1+f(p)) =

2+2f(p)
2+f(p) ⇒

f−1(2f((2, 0, p))) = f−1(1 + f(p)
2+f(p) ) = f−1(1 + 1

1+2/f(p) )

= (0, 2, q) where q = f−1( f(p)2 ), 2f(p′) = 2
f(p) ⇒

f−1(2f(p′)) = q′ . So s((2, 0, p)) = j − n ⇒ s(p′) =
(j−2)−(n−2) = j−n = s((2, 0, p)) ⇒ s((2, 0, p)) = s(p′).

3) 2f((2, 2, p)) = 2
2+1/f(p) =

2f(p)
2f(p)+1 ⇒

f−1( 2f(p)
2f(p)+1 ) = f−1

(
1

1+1/
(
2f(p)

)
)
= (2, q) where

q = f−1(2f(p)). So s((2, 2, p)) = j − n ⇒ s(p) =

(j − 1)− (n− 2) = j − n+ 1 ⇒ s((2, 2, p)) = s(p)− 1.

Now, we are able to prove the next interesting result.
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Theorem 2. ∀y, z ∈ C ∪ S , y < z , ∀k ∈ Z ∃x ∈]y, z[
such that D′(x) = 3k (this means that there is an interval

on which D has derivative 3k ).

P r o o f . Between every two different points c, d ∈
C ∪S there are infinitely many points from S , so we will
prove the theorem only for two different points from S .

Now let x ∈ S , x = (x1, . . . , xn, 1)1/3 ≃ (x1, . . . , xn)

and y ∈ S , y = (y1, . . . , ym, 1)1/3 ≃ (y1, . . . , ym).
Let x < y and n < m . Then for every point z ≃
(y1, . . . , ym, 0, p), where p = (z1, . . . , zk), zi ∈ {0, 2} ,
i = 1, . . . , k (z ∈ S ) we have x < z < y ⇒ z ∈
]x, y[ . Similarly, if x < y and n ≥ m then we put
z ≃ (x1, . . . , xn, 2, p).

For any such z , using properties (1), (2), (3), we are
able to reduce the value s(z) to one of the following four
cases:

s((y1, . . . , ym, 0, p)) = v + s(q), where v ∈ Z is some
fixed integer depending on y and q , is either p or p′ , or
(2, q) is either p or p′ .

A similar reduction is valid in the case when z ≃
(x1, ..., xn, 2, p).

We want to prove that for any k ∈ Z there is point
z ∈]x, y[ such that s(z) = k .

1) If k − v > 0 we put
q = (0, . . . , 0)

︸ ︷︷ ︸

k−v−1 times

. Then s(q) = k − v − 1 + s(∅) = k − v .

2) If (k − v) ≤ 0
q = (2, . . . , 2)

︸ ︷︷ ︸

(2|k−v|+2)

⇒ s(q) = k − v − 1 + s(∅) = k − v .

Example 6. x = (0, 2, 1)1/3 ≃ (0, 2), y = (0, 2, 2, 1)1/3
≃ (0, 2, 2), k = 3, so z = (0, 2, 2, 0, p), s((0, 2, 2, 0, p) =
1 − 1 + 1 + s(p) = 1 + s(p), q = p ⇒ v = 1, (k − v) =
2 ⇒ q = (0), s(0, 2, 2, 0, 0) = 1− 1 + 3 = 3.

If k = 0 (k−v) = −1, q = (2, . . . , 2)
︸ ︷︷ ︸

2|k−v|+2

⇒ q = (2, 2, 2, 2),

s((0, 2, 2, 0, 2, 2, 2, 2)) = 1− 1 + 1− 2 + 1 = 0.

Similarly, if k = −2, q = (2, 2, 2, 2, 2, 2, 2, 2), s((0, 2, 2,
0, 2, 2, 2, 2, 2, 2, 2, 2)) = 1− 1+1− 1− 1− 1− 1+1 = −2.

For x = (2, 2, 0, 2, 2, 1)1/3 ≃ (2, 2, 0, 2, 2),

y = (2, 2, 1)1/3 ≃ (2, 2), k = 0: z = (2, 2, 0, 2, 2, 2, p) ⇒
s((2, 2, 0, 2, 2, 2, p)) = −1 + 1 − 1 + s(2, p), p = (2, q) ⇒
s(z) = −2 + s(q), so (k− v) = 0+ 2 = 2 and so q = (0).
s(2, 2, 0, 2, 2, 2, 2, 0) = −1 + 1− 1− 1 + 1 + 1 = 0.
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