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WILD ¢t-NORMS

Andrea Mesiarova

Non-continuous triangular norms with continuous diagonal proposed by G. Krause under the name wild ¢-norms are
recalled and investigated. The set of all discontinuity points of wild t-norms is characterized. Fractal-like structure of the
diagonal of a linear wild ¢-norm is shown by means of its derivative.
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1 INTRODUCTION

The term triangular norm was for the first time intro-
duced by Menger [1942]. Originally triangular norms were
used for generalization of classical triangular inequality
for metric spaces (introduced by Fréchet [1906]) on statis-
tic metric spaces (or on probability metric spaces, as we
call them today). Triangular norms (shortly ¢-norms) are
operations on the unit interval with special properties.
Originally their axioms (Menger [1942]) were relatively
weak. Associativity was not demanded and also bound-
ary conditions were weaker then in axioms, which are used
today and which were introduced by Schweizer and Sklar
[1960].

Definition 1. Triangular norm is a binary operation
T:[0,1]> — [0,1], where for all z,y,z € [0,1] the fol-
lowing four axioms are fulfilled:

(1) T(
(2) T(x,T(y,2)) =T(T(z,y),2)
(3) T(
4) T(

commutativity,)

associativity),
3
4

monotonicity),

~ o~ o~ o~

boundary condition).

Observe that couple ([0,1],7T) is a special Abelian
semigroup with neutral element 1 and anihilator 0.

Example 1. Following are four basic t-norms Tys, Tp,
TL y TD .

Ty (z,y) = min(z, y) (minimum),

Tp(z,y) =z -y (product),

Ty (z,y) = max(0,z +y — 1) (Lukasiewicz t-norm),
0 if (z,y) €[0,1

Tp(z,y) = { . if(,y) € ) ¥ (drastic product).
min(z,y) otherwise

These four ¢-norms are important for several reasons.
For every t-norm T we have: Tp < T < Ty. Every

Cantor set, Farrey sequence, triangular norm

continuous t-norm can be constructed from Ty, 11, Tp
by using some suitable transformations and the so-called
ordinal sums, see also [2, 6].

Several algebraic properties of ¢t-norms can be derived
from their diagonal function (7'(z,z): [0,1] — [0,1]),
such as Archimedean property, nilpotency, existence of
zero divisors, existence of idempotent elements etc. This
is the reason why the diagonal function of ¢-norms is one
of important domains of investigation. Following are the
diagonal functions of our four basic ¢-norms:

Ty(z,z) =z,
Tp(z,z) = 22,
Tr(z,z) = max(0,2z — 1),
0 ifxel0,1],
TD(‘T?‘T) = { . [ [
min(x,x) otherwise.

It is evident that every continuous ¢-norm has a con-
tinuous diagonal but the converse question (mentioned in
[6]), whether a t-norm must be continuous when it has
a continuous diagonal, was for years an open problem.
Counterexample to this problem was found by Gerianne
Krause. Krause’s construction is still not published and it
is known only in rough e-mail form. The aim of this work
is a clear description of this construction and investiga-
tion of properties of Krause’s t-norms. Construction of
Krause’s t-norms is based on the notions of the Cantor
set and the Farrey sequence, which we will now briefly
recall.

2 CANTOR SET

Cantor set is a set derived from the unit interval, from

which open intervals (so-called middles) are successively
deleted:

1. step: (1/3,2/3), 2. step: (1/9,2/9), (7/9,8/9) ...
In the n-th step we are deleting exactly 2"~! intervals.
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Each of these deleted intervals can be represented by its
left-end point (e.g. (7/9,8/9) — 7/9). The set of these
points together with points 0,1 will be denoted by S.
So §=1{0,1,1/3,1/9,7/9,1/27,7/27,19/27,25/27,...}.
We will also denote the set of all right-end points of
deleted intervals by U. Points from Cantor set which are
neither from S nor from U will be called pure Cantor
points and the set of all these points will be denoted by
C'. Every point from S\ {0,1} can be represented by a
finite sequence of 0’s and 2’s created by means of triadic
expansion in the following way:

1/3=(1)13 & 0,
1/9=(0,1)1/3 ~ (0),
7/9=(2,1)13 ~ (2),
1/272(0,0,1)1/3 ~ (0,0),

Ending number in triadic expansion of every point
from S\ {0,1} is 1, so it is not important, and in our
representation we will not use it. In this way we can
represent each point from S\ {0, 1} and we will denote the
set of such representations by P. We also know that the
interval which is represented by current point has a length
3-(+1) where n is the dimension of current 0—2-vector.

We can use triadic expansion also for representation of
points from C'. These points have infinite triadic expan-
sions, so their representatives will be exactly their tri-
adic expansions, i.e., sequences which contain infinitely
many of 0’s and infinitely many of 2’s (e.g. 1/4 =
(0,2,0,2,...)1/3 ~(0,2,0,2,...)).

3 FARREY SEQUENCE

Farrey sequence is also created inductively. At the be-
ginning we have two “fractions”: 1/0,0/1. In the first
step we put between these two fractions a new one: 1/1.
In the second step we put 2/1 between 1/0 and 1/1 and
1/2 between 1/1 and 0/1, and so on. In the n-th step
we add to our sequence 2"~ new fractions in such a way,
that between every two old neighbours a/b, ¢/d (in the
increasing order) we put new fraction (a+¢)/(b+d). So
if we denote by F,, the Farrey sequence in the n-th step,
we have:

Fy = {1/0,1/1,0/1},
Fy, ={1/0,2/1,1/1,1/2,0/1},
F3 ={1/0,3/1,2/1,3/2,1/1,2/3,1/2,1/3,0/1} ,

For every two neighbours a/b, ¢/d of the Farrey sequence
F,, for each n, a-d = 14c¢-b. The whole Farrey sequence
is

Fyo = F, .

s

n=1

We should note that F, is just equal to the set of all
rational numbers from [0, co] in their basic form.

In the n-the step of the construction of the set S we
have added 2"~! new points (corresponding to construc-
tion of the Cantor set). Similarly, 2" ~! new fractions have
been added to the Farrey sequence in the n-th step. So we
can map the points from S to the fractions from Farrey
sequence. We will do it in the following way:

First we define boundary conditions: f(0) =1/0 = oo,
f(1) =0/1=0. Then we define

in the 1% step: f(1/3)=1/1=1,

in the 274 step: f(1/9) =2/1=2, f(7/9)=1/2,

e.t.c.

A new point from S is mapped to a new fraction
from the Farrey sequence preserving the relevant orders
of creation. Now we have a one-to-one mapping between
S\ {0,1} and P and also a one-to-one mapping between
S and the fractions from the Farrey sequence. Hence
we have also a one-to-one mapping between P and the
fractions from the Farrey sequence and thus we can define
a function (we will denote it also by f)

f:P— Fso \{1/0,0/1} as we have defined it before:

f/3)=r0) =1, f(1/9) = f((0)) =2, ...

After investigation of f, we have found these proper-
ties:

1) z,y € P, x =

flx) =1+ F(y),
2) z,y € P, x = (x1,...,2n), ¥y = (Y1,-.-,Yn), where

yy=2—x; fori=1,...,n= f(x) =1/f(y).

Using these properties finitely many times f(z) can
be computed for any x € P. In the points from deleted
intervals and in the right-end points of deleted intervals
we will determine the value of f as follows:

f(x) = f(m/3™), © € [m/3", (m + 1)/3"], where
(m/3™,(m+1)/3™) is a deleted interval. To define f on
the whole interval [0, 1] it remains to determine values of
f in pure Cantor points.

(O,zl,...,xn), Yy = (xlv"'7$n> =

Each point ¢ € C' can be expressed as a limit of points
from S, so we put
fle) =

lim f(z), ceC.

z—ct
zeS

This definition is equivalent to:
flc)=inf{f(s) € [0,00] | s € S,s <c}.

Then, of course, the properties (1), (2) of function f
are valid also for f(c). We can also define f: [0,1] —
[0, 0] by another equivalent expression:

f(z) =inf{f(s) | s € S,s <xz}.

From the construction it is evident that f: .S — QN[0, co]
and f: CUS — [0,00] are decreasing bijections and
f:0,1] = [0,0¢0] is a decreasing surjection. This means
that f is continuous (where the derivative f’ = 0 in every
point, where it exists, i.e. on [0,1]\ (CUSUU)).
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Example 2.

c=1/4=(0,2,0,2,...) = f(c) =1+ 1/f(c) = f2(c) =
fle)+1 = f3(c) — f(e) =1 = 0. As far as f(c) is
nonnegative f(c) = (1++/5)/2. Point 1/4 is interesting
also for function values of its successive approximations:
1/4=(0,2,0,2,...)

f@) =1, £((0)) =2, f((0,2)) =3/2, f((0,2,0)) = 5/3,

£((0,2,0,2)) =8/5, ..., f((0,2,0,2,...)) =
f((z1,...,2n)) = ant1/an, where numbers a,, are mem-
bers of Fibonacci sequence (ap = 1, a1 = 1, a, =

Gp—1 + Gn_2). So we can determine f(1/4) also using
the explicit form of Fibonacci numbers:

1 n+1 n+1
an = W[(l—i—\/&'_)) +1_ (1 —+/5)"*1], and hence
a1 _ 1 [04VE (VB 1446
Qn S 2 [(1 + \/g)nJrl — (1 — \/5)”+1] n— 00 2 '

4 WILD t-NORMS

Using the above defined continuous decreasing func-
tion f:[0,1] — [0, 00] we can define a t-norm T'.

Definition 2. As for every t-norm we define first
T(x,1)=T1,2) =z, T(z,0) =T(0,z) =0, z€[0,1].

Let Gg: [1/3,2/3] — [i/3%,(i + 1)/37], where i/3/ €
S\ {0,1} and q = f(i/37), be any system of increasing
bijections. Let z* = G, ' (z), « € [i/37, (i +1)/37],
p= f(i/3) and y* = G (), y € [m/3", (m +1)/37),
q = f(m/3™). Then we define:

T(z,y) = Gpyq(min(z*, y")).

(1)
If {z,y}NC # 0 we put

T(z,y) =inf{T(c,d) |ce S, de S,z <c,y<d} (2)

((1) and (2) are equivalent for z,y € CUS)).

We should also remark that if {z,y}N(CUS) # 0 then
T(z,y) € (CUS). T:1[0,1]*> — [0,1] is defined correctly.
We show now that 7' is a ¢-norm.

1) Commutativity is evident from the definition of T'.

2) Monotonicity: We know that G is an increasing bi-
jection for V¢ € QNJ0, 00[ and f is a decreasing function.
Let z € [i/37,(i+1)/37], y € [m/3",(m+1)/3"], y < 2.
We know, that f(T(z,y)) =p+q = f(i/37) + f(m/3")
and from the definition f(x) = f(i/37), f(y) = f(m/3"),
hence f(T'(z,y)) = f(x) + f(y). Soif f(z) < f(y) then
T(z,y) <T(z,z).

If f(y) = f(z) then y,z are points from the same
deleted interval — [m/3", (m + 1)/3"]. Consequently
y* < 2*. Let x € [i/37,(i + 1)/37], p = f(m/3"),
q=f(i/3") = T(z,y) = Gps+q(min(z*,y"))
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< Gpyq(min(z*, 2*)) = T'(x, z), because Gpiq is an in-
creasing bijection. As far as between every point from
CUSUU and another point from C, there are infinitely
many points from S, T is monotone also for x,y, where
{z,y}NC #0.

3) Associativity: We have to prove associativity only
for x,y,z €]0,1[ (in other cases it is evident).

a) Let x € [i/37,(i +1)/3], y € [m/3™, (m + 1)/3"],
2 e /3%, (r +1)/3), p = F(m/3"), q = f(i/3), t =
f(r/3%). Then T(T(z,y), 2) = Gatt(min(a*, z*)), where
a = T(x,y) € [L/3* (L +1)/3%], A = f(L/3F). Since
x,y are points from deleted intervals, from the definition
T(x,y) belongs to a deleted interval, as well. So we have:
T(T(x,y),2) = Gpiqre(min(a®, 27)),

a = Gprq(min(z*,y*)), a* = min(z*,y*), and hence
T(T(z,y), z) = Gptqtt(min(min(z”, y), 2%))
=T(x,T(y, 2))

b)If x € C = T(z,y) =inf{T,y) |2,y €S,z <
,y<y'teCuUS. Then
T(T(z,y),2) = mf{T(d,2) | a',2' € S, T(a,y) < a,
2 <z} =inf{T(d,2) | d,2 € S,z <2 inf{T(, y) ]|
iy eSae<dag y<y}<d}.

Because T is monotone, the last expression is equal
to: inf{T(d,2") | a/,2" € S,z < 2/, inf{T(a',y) | 2’y €
S,x <2y <y} <d}=mf{T(T(,y)z2) |2y, 2 €
S,e < 2y < y,z < 2} = inf{T(@, T, z2")) |
iy 2 eSS <z y<y,z<z}.

If {y,2z} NC # 0 the proof is finished.

If y € m/3",(m+1)/3", z € [r/3°,(r + 1)/3%],
p=f(m/3"), t = f(r/3"), T(y,z) = Gpst(min(y*, 27))
then T(x,T(y,2)) = inf{T(z',0') | V',2' € S,T(y,z) <
b,z < a’'}. We know that inf{b’ > T(y,2),b' € S} =
inf{T'(y',2") | v/, 2" € S,y <y', 2 < 2'}. Since T is mono-
tone: T(z,T(y,z)) = inf{T(z',b") | b',2' € S,T(y,2) <
Ve < o'} = inf{T, T, 2)) | 2,y,2 € S,x <
2y <y, z<z2}y=T(T(x,y),z).

4) The boundary condition was directly introduced in
the definition.

We have shown that the introduced mapping T is a
t-norm. Following Gerianne Krause, 1" will be called wild
t-norm. This t-norm is continuous on rectangles
/37, (i+1)/39[x]m/3"™, (m+1)/3"[, which are called by
G. Krause devil’s terraces.

5 WILD ¢(-NORMS ON DIAGONAL

The ¢-norm T is continuous on the diagonal. We put
D(z) =T(z,x).

1) @ €]i/37,(i +1)/37[= x is inner point of a deleted
interval, p = f(i/3%). On I =]i/37, (i+1)/37[ the function
Gp is continuous (increasing bijection) = also G, is
continuous. Because z is from a deleted interval we know
that: 2p = ¢, where ¢ = f(y), y € S. Function G,
is also continuous. As far as also f: CUS — [0,00] is
continuous, the whole £-norm is continuous on I x I and
hence D(z) is continuous on I. D(z) is also continuous
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from the right in the left-end point and from the left in
right-end point of interval I.

2) The continuity of D(z) in points from C follows
directly from the monotonicity of D(z), density of S in
S UC and continuity of bijection f: CUS — [0,00],
as far as for ¢ € C, D(c) = f~4(2.f(c)) (where f~! is
the inverse function of f: C'US — [0,00], which is a
decreasing bijection).

3) The continuity from the left of diagonal D(z) in
points s € S\ {0} follows directly from the monotonicity
of D(z) and the continuity of f: S — Q N[0,00] (the
same for the continuity from the right in points u € U).

6 NON-CONTINUITY OF WILD t—-NORMS

We know that wild ¢-norms are non-continuous, more
precisely every wild t-norm is non-continuous from the
left in (z,1), (1,2) where x € [0,1]\ (C' U S) and non-
continuous from the right in (x,y), (y,x)
for Ve € [0,1]\ (CUSUU),Yy e U.

Let = € [i/37,(i+1)/37], p = £(i/37). We know that
T(x,1) = x. Then T(z,17) = limje T(z,1 — 2/3%),
T(x,1-2/37) = Gpiy/j(min(z*,1/3)) = i/37. This shows
that T is continuous in points (z,1),(1,z), z € S, and
non-continuous from left in (z,1), (1,2), = € [0,1]\ (SU
C). We can easily see that in z € C', T'(z,17) = sup{s; ; |
Si,j € S, Sij < SC} =z (Siﬁj = 2/33)

Concerning the non-continuity from the right: if z €
/3%, (i + 1)/39[ and for k/3L € S, T(i/37,k/3L) =
m/3™, this means that = = i/37 + \/37, X\ €]0,1]=
T(z,(k+1)/3Y) = m/3" + \/3", T(z,[(k + 1)/3F]F) =
(m+1)/3" = T(z,[(k+1)/35]7) # T(x, (k+1)/3%).

Further we will suppose that G, is a linear function
for Vp € QNJ0, oo[. The corresponding T will be called a
linear wild ¢-norm.

Example 3. T(1/2,1)=1/2

T(1/2,17) = lim, ;- T(1/2,2) = lim,_ oo T(1/2,2,,),

where z, = (3" —2)/3™. Then T(1/2,(3" — 2)/3" =
Gl_,_l/n(min(l/.?), 1/2)) = G1+1/n(1/3) = (3” - 2)/3n+1)
o 1/3, 1/3£1/2.

Example 4. T(1/2,2/3)=1/6.

Denote p = f((2-3""1 +1)/3"). Then T(1/2,2/3%) =
T(1/2,(2.3"7 1 +1)/3") = Gi4,(min(1/3,1/2))
=(2-3""141)/3" -, ,2/9. 2/9#1/6.

7 DERIVATIVE OF LINEAR WILD
t-NORM ON THE DIAGONAL

Suppose that all bijections G,, are linear. This means:
G f(my3ny(x) = k-z+q for Ym/3" € S = m/3" = k/3+q,
(m+1)/3"=2k/3+q=1/3" =k/3=k=1/3""1q=
(m — 1)/3". Consequently, G 3n)(z) = x/3" 1 +

(m—1)/3™ and Gf(m/3n (x) =3tz — (m—1)/3.

For the diagonal function related to the linear wild
t-norm T we obtain: D(z) = Gapmssny (3" 'z —
(m —1)/3), z € [m/3",(m + 1)/3"], m/3" € S. If
f~Y2f(x)) =i/37 then D(x) =3""Jx — (m —1)/37.

We have just shown that the value 377 is the deriva-
tive (slope) of D on the interval I =]m/3™, (m +1)/3"[.

Let z € S and let = m/3™, f~1(2(f(z))= i/37.
Then D(z) = 3"z —(m—i)/37 for any z € [m/3", (m+
1)/3™].

Let s(xz) be a mapping which assigns to every point
x € S the value s(z) = (j —n). Then the slope of D on
Jm/3™, (m+1)/3"] is 3~
the value of s(x).

(%) S0 we have only to find out

Example 5.
s(0)=s(1/3) =2-1=
s((0)) =s(1/9) =4-2=
s((2)=s(7/9) =1-2=-1
s((0,0)) =s(1/27) =6—-3=
5((0,2)) =s(7/27) =3-3=
s((2,0)) =s(19/27)=4-3=1
s((2,2)) =s(25/27)=3-3=0

The function s has the following properties:

Theorem 1. Let p = (x1,...,2n), P = (Y1,---,Yn)
yi=2—mx;,i=1,....n, z;,y; € {0,2}. Then
1) s((0,p)) = 14s(p), where (0, p) means (0,21,...,2Zy),
2) s((2,0,p)) = s(p'),
3) s((2,2,p)) =s(p) — 1.

Proof. 1) 2f((0,p)) =24 2f(p) =
f71(2 + 2f(p)) (0507Q)5 where q = f71(2f(p))
s((0,p)) = j—n = s(p) = (j=2)—(n+1) = 5((0,p)) -1 =

s((0,p)) =1+ s(p).

2) 2/((2,0,p)) = Tra7cTrGY) = 21/
F7H2A((2,0,0)) = U0+ 2285) = U1+ 97)
= (0,2,q) where ¢ = [T'(E), 2f(p) = & =
fH2f@) = 4. So s((2,0,p) = j—n = s(p) =
(1=2)=(n—2) = j—n=5((2,0,p)) = s((2,0,p)) = s(p').

_ _ _2f
3) 2/((2.2.9)) = sy = ot =
f—l( 2f(p) ):

srert) =1 )
q=f"
G—-1-

242f(p) _y

(2,q) where

H(2f(p))- So s((2,2,p)) =j —n = s(p)

(=2 =j-ntl=s(22.p)=sp) 1

Now, we are able to prove the next interesting result.
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Theorem 2. Vy,z € CUS, y < z, Vk € Z Tz €|y, 2|
such that D'(x) = 3% (this means that there is an interval
on which D has derivative 3%).

Proof . Between every two different points c¢,d €
C'U S there are infinitely many points from S, so we will
prove the theorem only for two different points from S.

Now let x € S, = (®1,...,%n,1)1/3 = (T1,...,Tn)

and y € S, ¥y = (Wi, Um, D)1z = (W1, Ym)-
Let * < y and n < m. Then for every point z ~

(yla"'ay’maoap)a where p = (Zl,...,Zk), zZi € {0)2}3
i =1,....k (z € S) wehave z < z < y = z €
o, . Surmlarly7 if x < y and n > m then we put
22 (X1, .y, 2,D).

For any such z, using properties (1), (2),(3), we are
able to reduce the value s(z) to one of the following four
cases:

s((y1, -+ Ym,0,p)) = v+ s(q), where v € Z is some
fixed integer depending on y and ¢, is either p or p’, or
(2,q) is either p or p’.

A similar reduction is valid in the case when z ~
(X1 ey T,y 2,D).

We want to prove that for any & € Z there is point
z €]z, y[ such that s(z) = k.

1) If k—v>0 we put

g= (0,...,0) . Then s(q) =k—v—1+s(0) =k —v.
~——
k—v—1 times
) If (k—v) <0
q=1(2,....,2)=s(g)=k—v—1+s0) =k —wv.
———
(2lk—v|+2)
Example 6. = = (0,2,1);/3 ~ (0,2), y = (0,2,2,1)1/3
~ (0,2,2), k =3,s0 z =(0,2,2,0,p), s((0,2,2,0,p) =
1—1+1+s():1+s(),q p:>U 1, (k—v) =
2= q=(0), 5(0,2,2,0,0)=1—-1+3=3.
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Iftk=0 (k—v)=-1,9=1(2,...,
2|k—v|+2

5((0,2,2,0,2,2,2,2))=1-1+1-2+1=0.

Similarly, if k = -2, ¢ =(2,2,2,2,2,2,2,2), s((0,2,2,
0,2,2,2,2,2,2,2,2))=1—1+1-1-1-1—1+1=—2.

For o = (2,2,0,2,2,1)15 ~ (2,2,0,2,2),
y=1(2,21)13~(2,2), k=0: 2=(2,2,0,2,2,2,p) =
5((2,2,0,2,2,2,p)) = —14+1—-14+s(2,p), p = (2,9) =
s(z) =—-243(q),s0 (k—v)=04+2=2 and so ¢ = (0).
5(2,2,0,2,2,2,2,0)= —1+1—1—1+1+1=0.

2>:>q:(272’272>’
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