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THE SHEAR CORRECTION

COEFFICIENT IN THE VISCOELASTIC

MINDLIN–TIMOSHENKO THIN PLATE MODEL

Dávid Pancza
∗

The Mindlin-Timoshenko Model allows us to describe the vertical motion (bending) of a viscoelastic thin plate by an
operator equation

K(W ′′, V ) + 〈A(0)W, V 〉+ 〈A′ ∗W,V 〉 = F(V ) + G(V ) .

The bilinear form A can be written as a sum of two members which are differently dependent on the thickness h of the

plate:

A = hA1 + h3A3 .

To correct the inexactness of the MT model, a factor k called the shear correction coefficient is introduced into A :

A = khA1 + h3A3 .

The term khA1 plays here the role of a penalty term. We shall deal with the properties of the MT model in the special
cases of k → 0 and k → ∞ .

K e y w o r d s: stress and strain, viscoelastic material, Mindlin-Timoshenko thin plate model, shear correction coefficient,
coercivity
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INTRODUCTION

In this paper we use a mathematical description of the
viscoelastic stress-strain relations which can be found in
the works of S.Shaw, M.K. Warby and J.R. Whiteman
[3], [4].

The basic formulation of the viscoelastic Mindlin-
Timoshenko thin plate model and a theorem about the
existence and uniqueness of its solution can be found in
[5]. Here we recall these results.

The Mindlin-Timoshenko thin plate theory for the val-
ues k = 0 and k = ∞ in the case of an elastic material
can be found in [1]. Our aim is to generalize these results
to the viscoelastic case.

THE VISCOELASTIC MATERIAL

Consider a thin plate of a constant thickness h . Its
points will be represented by rectangular coordinates
(x1, x2, x3). We assume that the middle surface of the
plate occupies a region Ω of the plane x3 = 0.

Let (u1, u2, u3) denote the displacement vector of the
point which, when the plate is in equilibrium, has coordi-
nates (x1, x2, x3). The strain tensor is denoted by ǫij(u)
and the stress tensor by σij(ǫ). In small displacement

theory [2]

ǫij(u) =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

. (1)

The plate is assumed here to be homogeneous and
isotropic. In this case the viscoelastic stress-strain rela-
tions are given by a modified Hooke’s law

σij(ǫ) = λ(0)[ǫkk]δij+2µ(0)ǫij+λ
′∗[ǫkk]δij+2µ′∗ǫij, (2)

where the Lamén coefficients λ and µ are considered be-
ing positive, sufficiently smooth, nonincreasing functions
dependent on t , and ∗ is the convolution product

f ∗ g =

t
∫

0

f(t− τ)g(τ) dτ .

We are using the Einstein summation convention.

THE MINDLIN–TIMOSHENKO

THIN PLATE MODEL

The Mindlin-Timoshenko thin plate model is based on
a hypothesis that the linear filaments of the plate, initially
perpendicular to the middle surface, remain straight and
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undergo neither contraction nor extension. Let φ1 and φ2
denote the angles between a filament and the planes x1 =
0 and x2 = 0 respectively. Initially they are both zero.
This hypothesis allows us to linearize the dependence of
the displacement vector u on x3 :

u1(x1, x2, x3) = w1(x1, x2) + x3 φ1(x1, x2)

u2(x1, x2, x3) = w2(x1, x2) + x3 φ2(x1, x2)

u3(x1, x2, x3) = w3(x1, x2) .

(3)

We shall assume that the plate is subjected to a volume
distribution of forces (f1, f2, f3). The motion of the plate
is determined by the balance law, according to which the
displacement function u must satisfy

ρu′′i =
∂σij

∂xj
+ fi . (4)

THE VARIATIONAL FORMULATION

OF THE PROBLEM

Let us consider a plate which is clamped along a por-

tion Γ0×
[

−h
2 ,

h
2

]

and simply supported on Γ1×
[

−h
2 ,

h
2

]

,

where Γ0 6= ∅ and Γ1 = Γ\Γ0 .

Multiplying both sides of (4) by a vector of test func-
tions z = (z1, z2, z3) from the space

{

(v1 + x3ψ1, v2 + x3ψ2, v3); v1, v2, v3, ψ1, ψ2 ∈ H1
Γ0
(Ω)

}

,

where

H1
Γ0
(Ω) =

{

v ∈ H1(Ω); v =
∂v

∂ν
= 0 on Γ0

}

, (5)

we obtain a variational formulation

∫∫

Ω

h

2
∫

−
h

2

ρu′′i zi + σijǫij(z) dx3dx2dx1

=

∫∫

Ω

h

2
∫

−
h

2

fizi dx3dx2dx1 . (6)

After introducing (1), (2), (3) into (6) and carrying out
the integration in x3 it is possible to uncouple the stretch-
ing members w1, w2, v1, v2 from the bending members
w3, v3, φ1, φ2, ψ1, ψ2 . So the equation splits into two in-
dependent equations describing separately the energy of
stretching and the energy of bending. The bending equa-
tion is:

K(W ′′, V ) + 〈A(0)W,V 〉+ 〈A′ ∗W,V 〉 = F(V ) , (7)

where

W = (w3, φ1, φ2), V = (v3, ψ1, ψ2) (8)

are vectors of the unknown and test functions,

K(W,V ) =

∫∫

Ω

ρhw3v3 + ρ
h3

12
(φ1ψ1 + φ2ψ2)dx (9)

is a bilinear form, for V =W describing the kinetic energy
in bending of the plate,

A = khA1 + h3A3 , (10)

〈A3(t)W,V 〉 =
1

12

∫∫

Ω

(λ+ 2µ)(t)
(∂φ1

∂x1

∂ψ1

∂x1
+
∂φ2

∂x2

∂ψ2

∂x2

)

+ λ(t)
(∂φ1

∂x1

∂ψ2

∂x2
+
∂φ2

∂x2

∂ψ1

∂x1

)

+ µ(t)
(∂φ1

∂x2
+
∂φ2

∂x1

)(∂ψ1

∂x2
+
∂ψ2

∂x1

)

dx , (11)

〈A1(t)W,V 〉 = µ(t)

∫∫

Ω

(

φ1 +
∂w3

∂x1

)(

ψ1 +
∂v3

∂x1

)

+
(

φ2 +
∂w3

∂x2

)(

ψ2 +
∂v3

∂x2

)

dx , (12)

is a bilinear form, for V = W describing the strain en-
ergy in bending of the plate: 〈A(0)W,W 〉 describes the
energy of the immediate elastic reaction of the plate,
〈A′ ∗W,W 〉 describes the energy of the previous defor-
mations, decreasing because of the viscous creeping of the
plate. Their sum characterizes the viscoelastic properties
of the plate. The factor k is introduced to correct the in-
exactness of the model and is called the shear correction
coefficient (see [1] for details).

The operator

F(V ) =

∫∫

Ω

F3v3 +M1ψ1 +M2ψ2 dx , (13)

where

F3 =

h

2
∫

−
h

2

f3 dx3 , Mi =

h

2
∫

−
h

2

fix3 dx3 , (14)

describes the work done by the force f .

The equation of stretching can be written using the
just defined operators:

K(X ′′, Z) + h〈A3(0)X +A′

3 ∗X,Z〉 = F(Z) , (15)

where

X = (0, w1, w2) , Z = (0, v1, v2) .

R e m a r k: T h e K i r c h h o f f m o d e l .
The Kirchhoff thin plate model supposes, in addition to
the conditions required by the Mindlin-Timoshenko hy-
pothesis, that the linear filaments remain all the time
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perpendicular to the middle surface. The linearization of
the displacement vector is now:

u1(x1, x2, x3) = w1(x1, x2)− x3
∂w3(x1, x2)

∂x1
,

u2(x1, x2, x3) = w2(x1, x2)− x3
∂w3(x1, x2)

∂x2

u3(x1, x2, x3) = w3(x1, x2) .

(16)

In the same way as before we obtain the weak formulation
for bending:

K(U ′′, Y ) + h〈A3(0)U, Y 〉+ h〈A′

3 ∗ U, Y 〉 = F(Y ),
(17)

where
U = (w3,∇w3) , Y = (v3,∇v3)

and the operators are those defined above.

The stretching equations for the Kirchhoff model are
exactly the same as those of the Mindlin-Timoshenko
model.

EXISTENCE AND UNIQUENESS OF AN

APPROXIMATE WEAK SOLUTION

For every t ∈ [0, T ] we have a weak formulation

K(W ′′, V )+〈A(0)W,V 〉+〈A′∗W,V 〉 = F(V ) ∀V ∈ V3 ,

(18)
with the initial conditions

W (0) =W 0 , W ′(0) =W 1 , W 0,W 1 ∈ V3 , (19)

where
Vn =

(

H1
Γ0
(Ω)

)n
. (20)

Vn is a closed subspace of the Hilbert space
(

H1(Ω)
)n

with a scalar product

(U, V )(H1(Ω))n =

∫∫

Ω

uivi + ▽ui▽vi dx

and norm

‖U‖(H1(Ω))n =
(

(U,U)(H1(Ω))n
)1/2

.

In order to analyze the initial value problem (18), (19)
we add a penalty member

Jθ(W,V ) =

∫∫

Ω

θ(▽w3▽v3 + ▽φ1▽ψ1 + ▽φ2▽ψ2) dx

(21)
to the bilinear form K and denote the new form by Kθ :

Kθ(W,V ) = K(W,V ) + Jθ(W,V ) . (22)

We get a new system

Kθ(W
′′, V )+〈A(0)W,V 〉+〈A′∗W,V 〉 = F(V ) ∀V ∈ V3 ,

(23)
with unchanged initial conditions.

The parameter θ and the shear correction coefficient k
will be considered now as penalty terms and the solution
of the system (23), (19), which corresponds to given θ >

0, k ≥ 0, shall be denoted by Wkθ . About its existence
and uniqueness it holds (see [5]):

Theorem 1. Let λ, µ ∈ C1([0, T ],R) and

fi ∈ C([0, T ], L2(Ω)) , i = 1, 2, 3 . Then there exists a

unique solution Wk,θ ∈ C2([0, T ],V3) of the initial value

problem (23), (19) .

THE MINDLIN–TIMOSHENKO

MODEL FOR k → 0

Theorem 1 holds for k = 0, too. But in the proof (see

[5]) of the existence and uniqueness of the solution of (18),

(19) coercivity and boundedness of the operator A were

used. The coercivity holds for every fixed positive k , but

for k → 0 the unknown w3 vanishes from the operator

A and some kind of degeneracy appears. The properties

of the operator A must be reformulated, more exactly:

Lemma 1. ∃α0, α1 ∈ R
+ , such that ∀k , 0 < k ≤ 1

2 it

holds:

〈A(0)W,W 〉 ≥ kα1‖W‖2V3
+ α0‖Ŵ‖2V2

, (24)

where Ŵ = (φ1, φ2) .

Lemma 2. ∃α2, α3 ∈ R
+ such that ∀k , 0 < k ≤ 1

2 it

holds:

〈A′ ∗W,W 〉 ≤ kα3‖W‖2C([0,T ],V3)
+ α2‖Ŵ‖2C([0,T ],V2)

.

(25)

In the following we shall assume that

λ, µ ∈ C3([0, T ],R) and fi ∈ C1([0, T ], L2(Ω)) ,

i = 1, 2, 3 . (26)

To get an estimate of Wk we shall put V = W ′
kθ and

integrate in t both sides of equation (23). Using the per

partes method and inequalities valid for bilinear forms,

applying Lemmas 1, 2 and initial conditions (19), we

obtain an inequality

‖W ′

kθ‖
2
L3

2
(Ω)+k‖Wkθ‖

2
V3
+‖Ŵkθ‖

2
V2

≤ C1+C2

t
∫

0

‖W ′

kθ‖
2
L3

2
(Ω)

+ k‖Wkθ‖
2
V3

+ ‖Ŵkθ‖
2
V2

+ k‖Wkθ‖C([0,s],V3)‖Wkθ‖V3

+ ‖Ŵkθ‖C([0,s],V2)‖Ŵkθ‖V2
ds . (27)

This inequality holds also (with other constants) when

instead of the used norms ‖ · ‖L3

2
(Ω) , ‖ · ‖Vn

the norms

‖ · ‖C([0,T ],L3

2
(Ω)) , ‖ · ‖C([0,T ],Vn) are taken. To prove this,

we use the following lemma, which can be easily verified.
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Lemma 3. Let p, q : [0, T ] → R\R− satisfy p(t) ≤

c+
∫ t

0
q(s)ds . Then

‖p(t)‖C[0,t] ≤ c+

t
∫

0

‖q(s)‖C(0,s)ds .

Applying Lemma 3 and Gronwall’s lemma, we get from
(27) an apriori estimate of the solution Wkθ :

‖W ′

kθ‖
2
C([0,T ],L3

2
(Ω)) + k‖Wkθ‖

2
C([0,T ],V3)

+ ‖Ŵkθ‖
2
C([0,T ],V2)

≤ B1 , B1 ∈ R . (28)

Setting t = 0 and V =W ′′

kθ(0) into the equation (23)
we get

Kθ(W
′′

kθ(0),W
′′

kθ(0)) ≤ C3 . (29)

In order to achieve other estimates of Wkθ we have to
differentiate the equation (23). After introducing into it
V =W ′′

kθ , carrying out the integration in t and applying
(29), in a similar way as above we can get an estimate

‖W ′′

kθ‖
2
C([0,T ],L3

2
(Ω)) + k‖W ′

kθ‖
2
C([0,T ],V3)

+ ‖Ŵ ′

kθ‖
2
C([0,T ],V2)

≤ B2 , B2 ∈ R . (30)

After setting k = 0 we get from the estimates (28) and

(30) different results for Ŵ and for w3 . Applying the
Banach-Alaoglu theorem and the continuity properties
(26) we can prove that

1) there exists a function

Ŵ ∈ C1

(

[0, T ], L2
2(Ω)

)

∩C
(

[0, T ],V2

)

with

Ŵ ′ ∈ C([0, T ], L2
2(Ω)) ∩ L∞

(

[0, T ],V2

)

, (31)

Ŵ ′′ ∈ L∞

(

[0, T ], L2
2(Ω)

)

,

and a sequence {Ŵ0θ}, θ → 0 such that

Ŵ0θ
∗
⇀ Ŵ in L∞([0, T ],V2) ,

Ŵ ′

0θ
∗
⇀ Ŵ ′ in L∞([0, T ],V2) , (32)

Ŵ ′′

0θ
∗
⇀ Ŵ ′′ in L∞([0, T ], L2

2(Ω)) ;

2) there exists

w3 ∈ C1
(

[0, T ], L2(Ω)
)

with

w′

3 ∈ C
(

[0, T ], L2(Ω)
)

, (33)

w′′

3 ∈ L∞

(

[0, T ], L2(Ω)
)

,

and a sequence {(w3)0θ} , θ → 0 such that

(w′

3)0θ
∗
⇀ w′

3 , (w
′′

3 )0θ
∗
⇀ w′′

3 in L∞

(

[0, T ], L2(Ω)
)

. (34)

Using the estimate (30) we can show that for ∀t ∈ [0, T ]

‖∇W ′′

θ ‖L2(Ω) ≤ θ−
1

2M3 .

It implies that for θn → 0 the penalty member Jθn(W,V )

vanishes and the limit W = (w3, Ŵ ) is a solution of the
initial value problem (18), (19).

Using Gronwall’s lemma we can prove the uniqueness
of the limit W :

Lemma 4. If W1 and W2 are solutions of (18) , (19)

then W1 =W2 .

Ŵ is a solution of the reduced system

K̂(Ŵ ′′, V̂ ) + h3〈Â3(0)Ŵ + Â′

3 ∗ Ŵ , V̂ 〉 = F̂(V̂ )

∀V̂ ∈ V2 , (35)

Ŵ (0) = Ŵ 0 , Ŵ ′(0) = Ŵ 1 , Ŵ 0, Ŵ 1 ∈ V2 , (36)

where the hat operators are K,A3,F restricted to their

second and third variable (for k = 0 they are represented

by bloc-matrices, which allow such a restriction).

The function w3 is a solution of a system complemen-

tary to (35), (36):

〈ρhw′′

3 , v3〉 = 〈F3, v3〉 , ∀v3 ∈ H1
Γ0
(Ω) , (37)

w3(0) = w0
3 , w

′

3(0) = w1
3 , w

0
3 , w

1
3 ∈ H1

Γ0
(Ω) . (38)

Now we shall summarize our results in the following

theorem:

Theorem 2. Let the assumptions (26) hold and k = 0 .

Then the initial value problem (18) ,(19) can be treated

as two independent systems (35) ,(36) and (37) ,(38) ,

and it has a unique solution (w3, Ŵ ) with properties

(31) ,(33) .

R e m a r k . The equation (35), (36) is formally iden-

tical (differing only in the constants) to that of the

stretching (15). The operators are the same, only (φ1, φ2)

have to be changed by (w1, w2). So we have answered also

the question about the existence and uniqueness of a so-

lution of the stretching equation.

THE MINDLIN–TIMOSHENKO

MODEL FOR k → ∞

For k large enough the coercivity and boundedness of

the operator A can be reformulated as follows:

Lemma 5. There exist α0, α1 ∈ R
+ , such that for every

k , k > 1 it holds:

〈A(0)W,W 〉 ≥ α1‖W‖2V3
+ (k − 1)α0〈A1W,W 〉 . (39)

Lemma 6. There exist α2, α3 ∈ R
+ , such that for all k ,

k > 1 it holds:

〈A′ ∗W,W 〉 ≤ α3‖W‖2C([0,T ],V3)
+ (k − 1)α2〈A1W,W 〉 .

(40)

Assuming k > 1 and conditions (26), using Lemmas 5

and 6, in a similar way as in the previous case we get the

following estimates:

‖W ′

kθ‖
2
C([0,T ],L3

2
(Ω)) + ‖Wkθ‖

2
C([0,T ],V3)

+ (k − 1)‖〈A1Wkθ ,Wkθ〉‖C[0,T ] ≤M3 , (41)
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‖W ′′

kθ‖
2
C([0,T ],L3

2
(Ω)) + ‖W ′

kθ‖
2
C([0,T ],V3)

+ (k − 1)‖〈A1W
′

kθ ,W
′

kθ〉‖C[0,T ] ≤M4 . (42)

For k → ∞ the terms 〈A1 · , · 〉 in our inequalities

must tend to zero and it implies that

(φi +
∂w3

∂xi
)kθ → 0 , i = 1, 2 . (43)

This leads us to use a special space of test functions

V3 := {(v3, ψ1, ψ2) ∈ V3 ; ψi +
∂v3

∂xi
= 0 , i = 1, 2} (44)

which causes reduction of the equation (23) to

Kθ(W
′′, V ) + 〈h3A3(0)W,V 〉+ 〈h3A′

3 ∗W,V 〉 = F(V ) ,

∀V ∈ V3 , (45)

and it allows us to pass to the limit k = ∞ .

For θ → 0 there exists a sequence, weak star conver-

gent in L∞([0, T ],V3) {W∞θ} , whose limit is

W ∈ C1([0, T ] , L
3
2(Ω)) ∩C([0, T ] , V3) with

W ′ ∈ C
(

[0, T ], L3
2(Ω)

)

∩L∞

(

[0, T ],V3

)

, (46)

W ′′ ∈ L∞

(

[0, T ], L3
2(Ω)

)

,

and it holds

φ1 +
∂w3

∂x1
= 0 , φ2 +

∂w3

∂x2
= 0 .

It can be easily verified that the limit W is unique.

We have got a simple dependence of φ1 , φ2 on w3 ,

and so the weak formulation of the Mindlin-Timoshenko

model for k = ∞ can be formulated as a system:

φ1 +
∂w3

∂x1
= 0 , φ2 +

∂w3

∂x2
= 0 , (47)

K(U ′′, Y ) + h3〈A3(0)U, Y 〉+ h3〈A′

3 ∗ U, Y 〉 = F(Y )

∀Y ∈ V3 , where U = (w3,∇w3) , Y = (v3,∇v3) ,

with changed initial conditions:

w3(0) = w0
3 , w

′

3(0) = w1
3 , w

0
3 , w

1
3 ∈ H2

Γ0
(Ω) ;

φi(0) +
∂w3

∂xi
(0) = 0 , i = 1, 2 .

(48)

We can summarize now the results in the following

theorem:

Theorem 3. Let the assumptions (26) hold. For k = ∞

the initial value problem (18), (19) is transformed into a

system (47), (48) and it has a unique solution (w3,∇w3) ,

where

w3 ∈ C1([0, T ], H1
Γ0
(Ω)) ∩ C

(

[0, T ], H2
Γ0
(Ω)

)

(49)

w′

3 ∈ C([0, T ], H1
Γ0
(Ω)

)

∩L∞

(

[0, T ], H2
Γ0
(Ω)

)

,

w′′

3 ∈ L∞

(

[0, T ], H1
Γ0
(Ω)

)

.

R e m a r k . Formally equation (46) is identical (dif-

fering only in constants) to the equation of the Kirchhoff

model (17). Solving the Mindlin-Timoshenko problem for

k = ∞ we have proved the existence and uniqueness of a

solution of the Kirchhoff model equation too.
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