Journal of ELECTRICAL ENGINEERING, VOL. 51, NO. 12/s, 2000, 41-45

THE SHEAR CORRECTION
COEFFICIENT IN THE VISCOELASTIC
MINDLIN-TIMOSHENKO THIN PLATE MODEL

, e *
David Pancza

The Mindlin-Timoshenko Model allows us to describe the vertical motion (bending) of a viscoelastic thin plate by an

operator equation

KW V) + (AQ)W, V) + (A"« W, V) = F(V) +G(V).

The bilinear form A can be written as a sum of two members which are differently dependent on the thickness h of the

plate:

A=hAL +h3As.

To correct the inexactness of the MT model, a factor k called the shear correction coefficient is introduced into A:

A =khA; +h3As.

The term kh.A; plays here the role of a penalty term. We shall deal with the properties of the MT model in the special

cases of Kk — 0 and k — oo.
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INTRODUCTION

In this paper we use a mathematical description of the
viscoelastic stress-strain relations which can be found in
the works of S.Shaw, M.K. Warby and J.R. Whiteman
(3], 4]

The basic formulation of the viscoelastic Mindlin-
Timoshenko thin plate model and a theorem about the
existence and uniqueness of its solution can be found in
[5]. Here we recall these results.

The Mindlin-Timoshenko thin plate theory for the val-
ues k =0 and k£ = oo in the case of an elastic material
can be found in [1]. Our aim is to generalize these results
to the viscoelastic case.

THE VISCOELASTIC MATERIAL

Consider a thin plate of a constant thickness h. Its
points will be represented by rectangular coordinates
(1,22, 23). We assume that the middle surface of the
plate occupies a region 2 of the plane z3 = 0.

Let (u1,us,us) denote the displacement vector of the
point which, when the plate is in equilibrium, has coordi-
nates (z1,x2,xs). The strain tensor is denoted by €;;(u)
and the stress tensor by o;;(¢). In small displacement

theory [2]

- 1 8u1 an
ew(u) o 2 (6.1’] + 8:51) ' (1)

The plate is assumed here to be homogeneous and
isotropic. In this case the viscoelastic stress-strain rela-
tions are given by a modified Hooke’s law

7ij(€) = N0)[€xn]dij+2u(0) €4+ N *[exr]0i +21 x€:5, (2)
where the Lamén coefficients A\ and p are considered be-

ing positive, sufficiently smooth, nonincreasing functions
dependent on ¢, and * is the convolution product

frg= [ ft=m)g(r)dr.
/

We are using the Einstein summation convention.

THE MINDLIN-TIMOSHENKO
THIN PLATE MODEL

The Mindlin-Timoshenko thin plate model is based on
a hypothesis that the linear filaments of the plate, initially
perpendicular to the middle surface, remain straight and
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undergo neither contraction nor extension. Let ¢ and ¢o
denote the angles between a filament and the planes x; =
0 and xo = 0 respectively. Initially they are both zero.
This hypothesis allows us to linearize the dependence of
the displacement vector u on x3:

)+ x5 d1(21, 22)
x2) + x3 P2 (21, 2)

= ws(x1,22) .

uy (21, 22, 23) = w1 (1, T2

’U,Q(SCl,SCQ,:Cg) = ’LUQ(:Cl,

(3)

ug(z1, T2, 23)

We shall assume that the plate is subjected to a volume
distribution of forces (f1, fa, f3). The motion of the plate
is determined by the balance law, according to which the
displacement function u must satisfy

pu,., - 60'1']‘
' &rj

+ fi. (4)

THE VARIATIONAL FORMULATION
OF THE PROBLEM

Let us consider a plate which is clamped along a por-
tion I'g X [ g, 2] and simply supported on I'; x [ %, %} ,
where T'g # @ and T'; = T'\Ty.

Multiplying both sides of (4) by a vector of test func-
tions z = (21, 22, z3) from the space

{(v1 + @391, 02 + 392, v3); v1,v2,v3, U1, ¥s € HE (Q)},

where

HE (Q) = {u c HY(Q); v = % —0on ro}, (5)

we obtain a variational formulation

// / puizi + oij€;5(z) drgdaadry
_h
2
Q@ -%

After introducing (1), (2), (3) into (6) and carrying out
the integration in x3 it is possible to uncouple the stretch-
ing members wi,ws,v1,v2 from the bending members
ws, V3, @1, P2, %1, P2. So the equation splits into two in-
dependent equations describing separately the energy of
stretching and the energy of bending. The bending equa-
tion is:

KW, V)4 (AQ)W, V) +

(A"« W, V)y=F(V), (7)

where

W = (ws, o1, 92), V = (vs3,91,92) (8)

are vectors of the unknown and test functions,

13
KW, V) // phwsvz + P—(¢11/)1 + ¢2tp2)dz (9)

is a bilinear form, for V.= W describing the kinetic energy
in bending of the plate,

A=EkhA; + h3A3 ) (10)
1 3¢1 01 O Oty
(As(t)W, V) = 12 //Q<>\ i QM)(t Oz1 Ox1  Oxa Do )
¢y OYs O OYn
+3O(5 0+ T )
Op1 02\ (O0Y1 Ot
T (t)(a$2 + 6951)(8952 + 8951) x, (11)
(A (OW,V / 61+ % ) (v + gzj)

(¢2+8w3)(¢2 a”3)dgc (12)

is a bilinear form, for V' = W describing the strain en-
ergy in bending of the plate: (A(0)W, W) describes the
energy of the immediate elastic reaction of the plate,
(A"« W, W) describes the energy of the previous defor-
mations, decreasing because of the viscous creeping of the
plate. Their sum characterizes the viscoelastic properties
of the plate. The factor k is introduced to correct the in-
exactness of the model and is called the shear correction
coefficient (see [1] for details).

The operator

:// F3U3+M1¢1+M2’lb2d$, (13)
Q
where
2
Fy = /f3d963, M; = /fi963d963, (14)
_n _h

describes the work done by the force f.

The equation of stretching can be written using the
just defined operators:

K(X",Z)+ h{A3(0)X + A3« X, Z) = F(Z), (15)

where

X:(O,wl,wg), Z:(O,’Ul,’vg).

Remark: The Kirchhoff model.
The Kirchhoff thin plate model supposes, in addition to

the conditions required by the Mindlin-Timoshenko hy-
pothesis, that the linear filaments remain all the time
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perpendicular to the middle surface. The linearization of

the displacement vector is now:

Ows (w1, 72)
8561

(’)w3 ($1 N $2)

8562

w1 (z1, 22, x3) = w1 (21, 22) — T3

16
uz (21, T2, 73) = wa(T1,T2) — T3 (16)
u3(1‘1; 1"27:63) = U}g(xl,xg) .

In the same way as before we obtain the weak formulation
for bending:

K(U",Y) + h(As(0)U,Y) + h{A} « U, Y) = F(Y),
(17)

where

U= (wg,Vw3), Y = (’Ug,V’Ug)

and the operators are those defined above.

The stretching equations for the Kirchhoff model are
exactly the same as those of the Mindlin-Timoshenko
model.

EXISTENCE AND UNIQUENESS OF AN
APPROXIMATE WEAK SOLUTION

For every t € [0,T] we have a weak formulation

KW V)4 (AW, V)+(A'«W, V) = F(V) VYV € Vs,
(18)

with the initial conditions
W) =w", w0 =w, W' Ww'ecvs, (19)

where

V. = (H, (@) (20)

V. is a closed subspace of the Hilbert space (Hl(Q))n
with a scalar product

(U, V)(HI(Q))” = // u;v; + Vu; Vo, do
Q
and norm

1/2
Uiy = (U U) apyn) ' -

In order to analyze the initial value problem (18), (19)
we add a penalty member

FWV) = [[07uavs + 701761 + v6270) da
Q

to the bilinear form I and denote the new form by §C291 )
Ko(W,V) =KW, V) + Jo(W, V). (22)

We get a new system
KW' V)+(AQ)W, V)+(A'xW, V) = F(V) YV E(Vg),
23

with unchanged initial conditions.

The parameter 6 and the shear correction coefficient k
will be considered now as penalty terms and the solution
of the system (23), (19), which corresponds to given 6 >
0, k > 0, shall be denoted by Wiy . About its existence
and uniqueness it holds (see [5]):

Theorem 1. Let A\, € C([0,T],R) and

fi € C([0,T],L2(82)), ¢ = 1,2,3. Then there exists a
unique solution Wy g € C?([0,T],Vs) of the initial value
problem (23), (19).

THE MINDLIN-TIMOSHENKO
MODEL FOR k£ — 0

Theorem 1 holds for £ = 0, too. But in the proof (see
[5]) of the existence and uniqueness of the solution of (18),
(19) coercivity and boundedness of the operator A were
used. The coercivity holds for every fixed positive k, but
for £ — 0 the unknown ws vanishes from the operator
A and some kind of degeneracy appears. The properties
of the operator A must be reformulated, more exactly:

Lemma 1. Jag,oq € RT, such that Vk, 0 < k < 1 it
holds:

(AW, W) > kar [W3, + ool WIS, (24)

where W = (¢1,02).

Lemma 2. Jag, a3 € RT such that Vk, 0 < k < % it
holds:

(A"« W, W) < kas|WIIZ o105 + 0<2||W||2C([0,T],v2) :

(25)
In the following we shall assume that
A pe C3([0,T],R) and f; € C*([0,T], La(€2)),
i=1,2,3. (26)

To get an estimate of Wy we shall put V = W/, and
integrate in ¢ both sides of equation (23). Using the per
partes method and inequalities valid for bilinear forms,
applying Lemmas 1, 2 and initial conditions (19), we
obtain an inequality

t
IWioll 73 () +RIWaoll5, +[Wioll3:, < Cl+c2ﬁ|Wée||%g(Q)
0
+ k[ Wioll3, + [Woll, + kI Waollc(o.5.v5) | Wao v

+ I Waolcto,s0,va) I Wis [lvods . (27)

This inequality holds also (with other constants) when
instead of the used norms || - [| 30y, || - [lv, the norms

I lleqo 232> I lleqo,m,v,) are taken. To prove this,
we use the following lemma, which can be easily verified.
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Lemma 3. Let p,q :
c—l—f(;5 q(s)ds. Then

[0,7] — R\R™ satisfy p(t) <

t
HPUWCMQS(%¥/wQchm@d&
0

Applying Lemma 3 and Gronwall’s lemma, we get from
(27) an apriori estimate of the solution Wy :

IWia 120,71, L2y + EIWro 1Z:0.77,v4)
+ ||Wk9||20([o,T],v2) <Bi, BieR. ()

Setting t =0 and V = W}, (0) into the equation (23)
we get
Ko(Wi(0), Wi (0)) < Cs..

In order to achieve other estimates of Wie we have to
differentiate the equation (23). After introducing into it
V =W}, carrying out the integration in ¢ and applying
(29), in a similar way as above we can get an estimate

(29)

||ng0|%([o,T},Lg(Q)) +EIWiglEo.11,0)
+WigllEoryvsy < B2y Ba€R. (30)

After setting k = 0 we get from the estimates (28) and

(30) different results for W and for ws. Applying the
Banach-Alaoglu theorem and the continuity properties
(26) we can prove that

1) there exists a function

W e ([0, 7], L3(Q))nC([0,T],V2)  with
W' e 0([0,T], L3() N Loo ([0,7], V), (31)
W” € Loo ([0, T, L3(2))

and a sequence {Wyg}, 6 — 0 such that
Wog N W in Loo([O,T],VQ),

WO/Q N W/ in Loo([ovT]a V2> ) (32)

Wop = W" in Lo ([0, 77, L3()
2) there exists
wz € CH([0,T], L2(Q))  with
wy € C([0,T], L()) ,
wy € Lo ([0,T], L2()) ,
and a sequence {(w3)op}, @ — 0 such that
(wh)oo — wh, (w5)op — wh in Leo ([0, 7], L2(€)) . (34)
Using the estimate (30) we can show that for V¢ € [0, T
VW3 | Loy < 077 Ms.
It implies that for 6,, — 0 the penalty member Jp, (W, V)

vanishes and the limit W = (w3, W) is a solution of the
initial value problem (18), (19).

Using Gronwall’s lemma we can prove the uniqueness
of the limit W:

Lemma 4. If Wi and Wy are solutions of (18), (19)
then Wy = W,.

W is a solution of the reduced system
KW, V) + W3 (A3 ()W + Ay W, V) = F(V)

YWeVy, (35)

W(O)=W° W' 0)=w', WO, W'eV,, (36)

where the hat operators are K, A3, F restricted to their
second and third variable (for £ = 0 they are represented
by bloc-matrices, which allow such a restriction).

The function ws is a solution of a system complemen-
tary to (35), (36):

(phwy,vs) = (Fs,vs), Yz € Hp (2),  (37)
w3(0) = wy, wy(0) =ws, w§,wy € HE (Q). (38)

Now we shall summarize our results in the following
theorem:

Theorem 2. Let the assumptions (26) hold and k = 0.
Then the initial value problem (18),(19) can be treated
as two independent systems (35),(36) and (37),(38),

and it has a unique solution (ws, W) with properties
(31),(33).

Remark . The equation (35), (36) is formally iden-
tical (differing only in the constants) to that of the
stretching (15). The operators are the same, only (¢1, ¢2)
have to be changed by (w1, ws2). So we have answered also
the question about the existence and uniqueness of a so-
lution of the stretching equation.

THE MINDLIN-TIMOSHENKO
MODEL FOR k — o©

For k large enough the coercivity and boundedness of
the operator A can be reformulated as follows:

Lemma 5. There exist ag, a1 € RT, such that for every
k, k> 1 it holds:

(AW, W) > ar [ W, + (k = Vool AW, W) (39)
Lemma 6. There exist ao, a3 € RT, such that for all k,
k > 1 it holds:

(A"« W W) < as|WI[E 0,2y, + (B = Daz( AW, W).
(40)

Assuming k£ > 1 and conditions (26), using Lemmas 5
and 6, in a similar way as in the previous case we get the
following estimates:

IWiallE o7y, 2300y) + IWre I o,77,v0)

+ (b = DI[(A1Wko, Wio) lcjo,r) < Mz, (41)
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||W12/9|%([07T},Lg(g)) + HWIQHH%‘([O,T],V;),)

+ (k= DI{A Wi, Wig)lcrory < Ma. (42)

For k — oo the terms (A4;-,-) in our inequalities
must tend to zero and it implies that

(@i +

8w3
al'i

This leads us to use a special space of test functions

o — 0, i=1,2. (43)

_ 0 .
Vs == {(v3,¥1,¢2) € V33 ¢ + 61,7):3 =0, i=1,2} (44)

which causes reduction of the equation (23) to
’CO(W//v V) + <h3A3(O)VV7 V> + <h3"4£’> * Wa V> - ‘F(V) )
YV eVs, (45)

and it allows us to pass to the limit k = oco.

For 6 — 0 there exists a sequence, weak star conver-
gent in Loo([0,7],V3) {Waos}, whose limit is

W e C1([0,T], L3(Q)) NC([0,T], V3) with
W e C([0,T], L3(9)) Lo (10,71, Vs) ,
W" € L ([0,T], L3(%)) ,

(46)

and it holds
—3 =9,
o1+ O
It can be easily verified that the limit W is unique.

We have got a simple dependence of ¢1, ¢2 on ws,
and so the weak formulation of the Mindlin-Timoshenko
model for k= oo can be formulated as a system:

0
Gy + =2 =0,

¢1+—:05 53@2

. (47)

K(U",Y) + h*(A3(0)U,Y) + h* (A« U, Y) = F(Y)

VY € V3, where U = (w3, Vws), Y = (v3, Vus),
with changed initial conditions:
w3(0) = wga wIS(O) = wé ) wgawé € H%U(Q);
9 (48)
$:(0) + Z2(0) =0, i=1,2.

axi

We can summarize now the results in the following
theorem:

Theorem 3. Let the assumptions (26) hold. For k = oo
the initial value problem (18),(19) is transformed into a
system (47), (48) and it has a unique solution (w3, Vws),
where

ws € C1([0,T), HE, () N C([0,T], HE, ()
wy € C([0,T], HE, (2))NLoo ([0, T, HE () ,
wi € Loo([0,T], H, () .

(49)

Remark . Formally equation (46) is identical (dif-
fering only in constants) to the equation of the Kirchhoff
model (17). Solving the Mindlin-Timoshenko problem for
k = oo we have proved the existence and uniqueness of a
solution of the Kirchhoff model equation too.
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