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ON THE COMPLEMENTARITY OF MAXIMUM
LIKELIHOOD AND MiniMax ENTROPY

Marian Grendár* — Marián Grendár**

The article 1) extends the notion of the exponential family into a general exponential form, 2) utilizes an analogy
between Boltzmann’s deduction of equilibrium distribution of ideal gas in an external potential field and a probability density
function, and consequently, based on it, 3) investigates a complementary relationship between Maximum Likelihood (ML)
and Maximum Entropy (MaxEnt) methods. MiniMaximization of Entropy (MiniMax Ent), for the case of parametric inverse
problem is proposed, and demonstrated to be complementary to ML on the general exponential form. The complementary
relationship with ML method seems to be a specific property of Shannon’s entropy (mini)maximization.
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tarity
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1 INTRODUCTION

Maximization of the likelihood function is a well-
established method of finding estimators with desirable
asymptotical properties. The method relies upon a sam-
ple and an assumed pmf/pdf the sample came from. The
choice of the sample generating pmf/pdf is ambiguous.
Shannon’s entropy maximization should be, in order to
bring a nontrivial result, confined by some constraints,
and it is where its ambiguity lies.

2 DEFINITIONS AND NOTATION

The notion of exponential family is extended into sim-
ple and general exponential forms.

Definition 1. Let X be a random variable with pmf/pdf
fX(x). If fX(x) can be written in the form of

fX(x|λ) = k(λ)e−U(x,λ) ,

where U(x,λ) = λ′u(x) is a linear combination of func-
tions u(x) depending on other parameters, and k(λ) is a
normalizing factor, then it has a simple exponential form.
u(x) is called simple potential. If the pmf/pdf can be writ-
ten in the form of

fX(x|λ,α) = k(λ,α)e−U(x,λ,α)

where U(x,λ,α) = λ′u(x,α) is a linear combination
of functions u(x,α) depending on other parameters α ,
and k(λ,α) is a normalizing factor, then it has a general

exponential form. u(x,α) is called the general potential.
The U(·) function is called the total potential.

N o t e . Any class of pmf/pdf which can be written in
the exponential form is equivalently characterized by its
exponential form pmf/pdf or by its potentials.

Example 1. Γ(α, β) distribution has a simple exponen-
tial form, with total potential U(x,λ) = λ1x + λ2 lnx ;

λ1 = 1
β

and λ2 = 1 − α ; u1(x) = x and u2(x) = lnx

are the potentials. The normalizing factor k(λ1, λ2) =
1

Γ(1−λ2)λ
λ2−1

1

. Logistic (µ, β) distribution has a general

exponential form with a total potential U(x,λ,α) =

λ1u1(x,α) + λ2u2(x,α), with λ = [ 1
α2

, 2], and the po-

tentials u1(·) = x−α1

α2

, u2(·) = ln(1 + e−
x−α1

α2 ), and

α = [µ, β] . k(α2) = 1/α2 . Discrete normal distribu-
tion dn(λ, α), defined over a support by fX(xi|λ) =

e−λ(xi−α)2/
∑

i e
−λ(xi−α)2 has a total potential U(x, λ, α)

= λ(x−α)2 . It can be equivalently expressed in a simple

form with U(x, λ1, λ2) = λ1x+ λ2x
2 , where λ1 = −2αλ

and λ2 = λ .

Standard definitions of the moment and sample mean
are extended.

Definition 2. V -moment of random variable X , µ(V ),
is for any function V (X,α) defined as

µ(V ) = E V (X,α)
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Definition 3. Sample V -moment of random variable
X , m(V ), is for any function V (X,α) defined as

m(V ) =

m
∑

i=1

riV (Xi,α)

where ri is the frequency of i -th element of support in
the sample.

Definition 4. Let µ(V ), m(V ) be V -moment and sam-
ple V -moment, respectively. Then the requirement

µ(V ) = m(V )

will be called V-moment consistency condition.

N o t a t i o n . λ , u(·), µ(·) and m(·) are [J, 1] vec-
tors, indexed by j . x , p and r are [m, 1] vectors, indexed
by i , with m finite or infinite. α is [T, 1] vector indexed
by t .

Since entropy maximization can be reasonably con-
strained by constraints other than the moment consis-
tency constraints (see for instance [2], or proceedings of
MaxEnt conferences), in order to be specific, we will speak
about a ME task . Also, ML task is defined.

Definition 5. ML task on fX(x|θ) . Let X1, X2, . . . , Xn

be a random sample from population fX(x|θ). The max-
imum likelihood task is to find the maximum likelihood
estimator θ̂ of θ for a given sample.

Definition 6. ME task on u(·) . Given a sample and a
vector of known potential functions u(·), the maximum
entropy task is to find the most entropic distribution p

consistent with a set of u-moment consistency conditions.

3 ML TASK AND ME TASK

Simple exponential form, simple potential case

Theorem 1. Complementarity of ML and ME tasks,
identity of solutions.

Let X1, X2, . . . , Xn be a random sample. Then

(i) complementarity of tasks

a) ML estimator λ̂ of λ on simple exponential form

fX(x|λ) = k(λ)e−λ
′
u is obtained as a solution of

system of J uj -moment consistency conditions,

b) the most entropic distribution p satisfying the sys-
tem of J uj -moment consistency conditions is the

simple exponential form pmf/pdf fX(x|λ̂) .

(ii) identity of solutions

necessary and sufficient conditions for ML task on sim-

ple exponential form pmf or pdf fX(x|λ) = k(λ)e−λ
′
u(x)

and ME task on the simple potentials u(x) are identical,
and they are

µ(uj) = m(uj) j = 1, 2, . . . , J (1)

P r o o f . For the proof see [3].

N o t e . ML task on simple exponential form and
ME task on simple potentials are complementary in the
sense that where one starts the other one ends, and vice
versa. ML starts with a known simple exponential form
of pmf/pdf and ends up with ML estimators of the pa-
rameters, found out of the potential moment consistency
equations. ME, working on the sample, starts with an
assumed form of potential functions, forming potential
moment consistency constraints. The most entropic dis-
tribution resolved is just the exponential form pmf/pdf
ML has assumed. And the ME estimators of its parame-
ters are the same as the ML estimators. We say that ML
task on simple exponential form pmf/pdf and ME task
on simple potentials are complementary.

ML and ME tasks are complementary in set-up but
identical in solution. Both the tasks end up with the same
mathematical problem of solving estimators of λ out of
the system of potential moment consistency equations
(1).

Example 2. Let X1, X2, . . . , Xn be a random sample of
size n from discrete normal distribution dn(λ1, λ2), taken
in the simple exponential form. ML task of estimation
leads to solving λ1, λ2 out of the system of equations

∑m

i=1 xie
−(λ1xi+λ2x

2

i )

∑m

i=1 e
−(λ1xi+λ2x

2

i )
=

m
∑

i=1

rixi

∑m

i=1 x
2
i e

−(λ1xi+λ2x
2

i )

∑m

i=1 e
−(λ1xi+λ2x

2

i )
=

m
∑

i=1

rix
2
i

which is just the system of x-moment and x2 -moment
consistency conditions.

ME task constrained by the system of x-moment, and
x2 -moment consistency conditions

m
∑

i=1

pixi =

m
∑

i=1

rixi

m
∑

i=1

pix
2
i =

m
∑

i=1

rix
2
i

(2)

finds the most entropic distribution consistent with the
constraints to have form (after normalization)

pi =
e−(λ1xi+λ2x

2

i )

∑m
i=1 e

−(λ1xi+λ2x
2

i )
(3)

where, λ1, λ2 should be found out of the system (2), after
plugging (3) in.

In passing we mention an identity of ML and modified
method of moments (MMM) in the case of an exponential
family discovered by [5] and explored further by [1]. The
identity holds also for the simple exponential form, mak-
ing ME complementary to both ML and MMM. Note that
MMM starts with moment consistency conditions, where
the understanding of moments is enhanced as done here
by Definitions 2, 3, 4.
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General exponential form, general potential case

Complementarity of the general exponential form ML
task and general potential ME task can not be assessed
analytically in full extent, for sufficient conditions for
maximum of likelihood or entropy function do not allow,
in general, for it. We show, analytically, that ML task on
the general exponential form and ME task on the general
potentials lead to the same FOC’s. This could be called
‘weak complementarity’.

Theorem. Let X1, X2, . . . , Xn be a random sample.
Then, necessary conditions for

a) ML task on general exponential form pmf/pdf

fX(x|λ,α) = k(λ,α)e−λ
′
u(x,α)

b) ME task on the general potentials u(x,α)

are identical, and they are

µ(uj) = m(uj) j = 1, 2, . . . , J ,

λ′µ
( ∂u

∂αt

)

= λ′m
( ∂u

∂αt

)

t = 1, 2, . . . , T .

P r o o f . Discrete r.v. case.

1. ML task.

max
λ,α

l(λ,α) = ln(k(λ,α))−

J
∑

j=1

m
∑

i=1

λjriuj(xi,α)

leads to system of J + T first order conditions

µ(uj) = m(uj) j = 1, 2, . . . , J

λ′µ
( ∂u

∂αt

)

= λ′m
( ∂u

∂αt

)

t = 1, 2, . . . , T .
(4)

2. ME task.

max
p(α)

H(p(α)) = −

m
∑

i=1

pi ln pi

subject to µ(uj) = m(uj) , j = 1, 2, . . . , J
which can be accomplished by means of Lagrangean

L(p(α)) = −

m
∑

i=1

pi ln pi +

J
∑

j=1

λj(m(uj)− µ(uj))

leading to the system of m+ T FOC’s

pi = e−λ
′
u(xi,α) i = 1, 2, . . . ,m

−

m
∑

i=1

( ∂pi
∂αt

ln pi +
∂pi
∂αt

)

+

J
∑

j=1

λj

(

∂m(uj)

∂αt

−
m
∑

i=1

{

pi
∂uj(xi,α)

∂αt

+
∂pi
∂αt

uj(xi,α)
}

)

= 0 ∀t .

(5)

The most entropic distribution after normalization takes
general exponential form

pi =
e−λ

′
u(xi,α)

∑m
i=1 e

−λ′u(xi,α)
i = 1, 2, . . . ,m

where ‘ME estimators’ of λ have to be found out of the
system (5).

The T of equations of the system (5) simplifies heavily
into

λ′µ
( ∂u

∂αt

)

= λ′m
( ∂u

∂αt

)

t = 1, 2, . . . , T

which are the same as the T equations of FOC’s for ML
task (4). Thus, the ME and ML tasks indeed lead to the
same necessary conditions (4).

Continuous r.v. case.

In analogy to the proof of Theorem 1.

Corollary. Due to the linearity of U(x,λ,α) in λ , the
necessary conditions (4) can be rewritten in a compact
form

µ
( ∂U

∂λj

)

= m
( ∂U

∂λj

)

j = 1, 2, . . . , J ,

µ
( ∂U

∂αt

)

= m
( ∂U

∂αt

)

t = 1, 2, . . . T .

Example 3. Let X1, X2, . . . , Xn be a random sample
from discrete normal distribution dn(λ, α), taken in the

general exponential form, so u(x, α) = (x − α)2 .

ML task of estimation leads to solving λ , α out of the
system of equations

µ(u) = m(u) ,

µ
( ∂u

∂αt

)

= m
( ∂u

∂αt

)

.
(6)

ME task constrained by moment consistency condition

m
∑

i=1

pi(xi − α)2 =

m
∑

i=1

ri(xi − α)2

leads to the FOC’s

pi = e−λ(xi−α)2

µ
( ∂u

∂αt

)

= m
( ∂u

∂αt

)

where λ, α has to be found out of (6), after normalizing
p ’s.

So, ML and ME tasks lead to the same necessary
conditions. Also, note that the ML and ME estimators
are the same as in Example 2, where dn(·) was taken in
the simple exponential form.

Sufficient conditions do not allow, in general, for as-
sessing the kind of extremum attained in the points cho-
sen out by FOC’s.
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Theorem 3. Second derivatives for the ML task are

∂2l(λ,α)

∂λ2
j

= −Var (U ′
λj
) ,

∂2l(λ,α)

∂λj∂λι

= −Cov (U ′
λj
U ′
λι
) ,

∂2l(λ,α)

∂α2
= −

(

Var (U ′
α) +m(U ′′

α)− µ(U ′′
α)
)

,

∂2l(λ,α)

∂αt∂ατ

= −µ(U ′
αt
)µ(U ′

ατ
)−

J
∑

j=1

λjµ(U
′′
λjαt

U ′′
αtατ

)

−m(U ′′
αtατ

) + µ(U ′′
αtατ

) ,

∂2l

∂λj∂αt

= −λj Cov (U
′
λj
, U ′′

λjαt
)−

J
∑

k 6=j

λkµ(U
′
λj
U ′′
λkαt

)

−m(U ′′
λjαt

) + µ(U ′′
λjαt

)

and for the ME task they are

∂2L(p(α))

∂p2i
= −

1

pi
,

∂2L(p(α))

∂α2
t

= Var (U ′
αt
) +m(U ′′

αt
)− µ(U ′′

αt
) ,

∂2L(p(α))

∂αt∂ατ

= m(U ′′
αtατ

)− µ(U ′′
αtατ

) + Cov (U ′
αt
, U ′

ατ
) .

P r o o f . Differentiating twice the loglikelihood func-
tion, and the Lagrange function lead to the stated results.

In the following simple instance of the general poten-
tial the sufficient conditions are analytically tractable,
showing that at the points chosen by the necessary condi-
tions (4) entropy function attains its maximum in p(α),
and minimum in α , hence the chosen distribution has
a minimal entropy in the class of the most entropic dis-
tributions, consistent with the moment consistency con-
straints. Likelihood function at the points attains its max-
imum.

Example 4. Find the sufficient conditions for the Ex-
ample 3 set-up.

The general total potential is U(x, λ, α) = λ(x − α)2 ,

so the potential is u(x, α) = (x−α)2 . The second deriva-
tives stated in the above Theorem then simplifies into

∂2l(λ, α)

∂λ2
= −Var (u)

∂2l(λ, α)

∂α2
= −(λ2 Var (u′

α) + λ(m(u′′
α)− µ(u′′

α)))

∂2l(λ, α)

∂λ∂α
= − (λCov (u, u′

α) +m(u′
α)− µ(u′

α))

for the ML task, and into

∂2L(p(α))

∂p2i
= −

1

pi

∂2L(p(α))

∂α2
= λ2 Var (u′

α) + λ(m(u′′
α)− µ(u′′

α))

for the ME task. Furthermore, in this case

m(u′′
α)− µ(u′′

α) = 0

and also, due to the FOC’s (4)

m(u′
α)− µ(u′

α) = 0

Thus, the second derivatives for the ML task form a

hessian matrix

HML = −

(

Var (u) λCov (u, u′)

λCov (u, u′) λ2 Var (u′)

)

which is negative definite, assuring in this case, that the

global maximum was attained.

ME task second derivatives are

∂2L(p(α))

∂p2i
= −

1

pi

∂2L(p(α))

∂α2
= 4λ2 Var (x)

showing that entropy attains its maximum in distribution

p , and minimum in α , at the same point where likelihood

attains its maximum.

This result was also supported by numerical investi-

gations, elucidating the behavior. In the α suggested by

FOC’s entropy function attains its minimum, whilst the

maximum is attained for an α̃ degenerating p into an

uniform distribution. No surprise, since the value of pa-

rameter α of u(x, α) is free to choose, and attaining the

goal of maximal entropy the value is set up such that the

uniform distribution is reached.

The above analytically tractable case of the sufficient

conditions and several numerical investigations of more

complex general potentials lead us to propose a hypothe-

sis about complementarity of ML and MiniMax Entropy

tasks and identity of their solutions, under the general

exponential form, general potentials.

For the sake of completeness, the MiniMax Ent task is

defined.

Definition. MiniMax Entropy task. Given a sample and

a vector of known general potentials u(x,α), the Min-

iMax Entropy task is to find in the class of all most

entropic distributions p(α) consistent with the set of

u-moment consistency conditions, a pmf/pdf with mini-

mal entropy.

N o t e . If the potentials are simple, MiniMax Ent

task reduces into the ME task on simple potentials.
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4 SUMMARY

The complementary tasks of likelihood maximization
on the general exponential form, and Shannon’s entropy
minimaximization on the general potentials, are in favor
of each other, in a circular way; supporting jointly the
exponential form.

To the both, the question about the choice of the
potential functions remains open.

Finally, we would like to note that the complementary
relationship of (Mini)MaxEnt with ML seems to be a spe-
cific property of the Shannon entropy function. In [4] we
have shown that the so-called maximum empirical likeli-
hood (MEL) criterion constrained by moment consistency
constraints, proposed by [6] in the context of noiseless lin-
ear inverse problem, is not complementary with ML on
the MEL recovered class of pmf/pdf.
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