NON–CONTINUOUS *t*–NORMS WITH CONTINUOUS DIAGONAL

Dana Smutná*

During the workshops at the 2nd International Conference on Fuzzy Sets Theory and Its Applications (Liptovský Mikuláš, Slovak Republic, January 31-February 4, 1994), several open problems were specified by the participants, see [4]. One of them was the question: If T is an Archimedean t-norm with a continuous diagonal, is T necessarily continuous on $[0,1] \times [0,1]$? (This problem was stated in the book of Schweizer and Sklar [5] and Kimberling [1] has given an example of a continuous Archimedean t-norm which is not uniquely determined by its diagonal.) However, the above problem was already negatively solved by Gerianne Krause, but not yet published. In the paper we show a new class of Archimedean, non-continuous t-norms with a continuous diagonal.

Keywords: triangular norms, multiplicative generator, non-continuous Archimedean t-norms 2000 Mathematics Subject Classification: 03B52,26B99

1 INTRODUCTION

First we recall some well-known definitions and propositions which we will use:

Definition 1. A triangular norm (t -norm for short) is a binary operation on the unit interval [0, 1], i.e., a function $T: [0, 1]^2 \rightarrow [0, 1]$ such that for all $x, y, z \in [0, 1]$ the following four axioms are satisfied: (T1) Commutativity

$$T(x,y) = T(y,x),$$

(T2) Associativity

$$T(x, T(y, z)) = T(T(x, y), z),$$

(T3) Monotonicity

$$T(x,y) \le T(x,z)$$
 whenever $y \le z$,

(T4) Boundary Condition

$$T(x,1) = x.$$

Proposition 1. A *t*-norm *T* is left-continuous if and only if it is left-continuous in its first component, i.e., if for each $y \in [0, 1]$ and for each sequence $(x_n)_{n \in N} \in [0, 1]^N$ we have

$$\sup_{n \in \mathbb{N}} T(x_n, y) = T(\sup_{n \in \mathbb{N}} x_n, y).$$

Proposition 2. A *t*-norm *T* is Archimedean if and only if for each $x \in]0,1[$ we have

$$\lim_{n \to \infty} x_T^{(n)} = 0$$

where
$$x_T^{(n)} = \begin{cases} x & \text{if } n = 1 \\ T(x, x_T^{(n-1)}) & \text{if } n > 1. \end{cases}$$

Proposition 3. A *t*-norm *T* is strictly monotone if and only if the cancellation law holds, i.e., if T(x, y) = T(x, z) and x > 0 imply y = z.

Definition 2. Let T be a t-norm. An element $a \in]0,1[$ is called a nilpotent element of T if there exists $n \in N$ such that $a_T^{(n)} = 0$.

Definition 3. A multiplicative generator φ of a triangular norm is a strictly increasing function $\varphi : [0,1] \rightarrow [0,1]$ such that $\varphi(1) = 1$ and $\varphi(x) \cdot \varphi(y) \in H(\varphi)$ or $\varphi(x) \cdot \varphi(y) < \varphi(0)$. The corresponding *t*-norm *T* is defined by means of φ as follows:

$$T(x,y) = \varphi^{(-1)}(\varphi(x) \cdot \varphi(y)),$$

where $\varphi^{(-1)} \colon [0,1] \to [0,1]$ is the so-called pseudo-inverse of φ defined by

$$\varphi^{(-1)}(t) = \sup(x \in [0, 1]; \varphi(x) < t)$$

with convention $\sup \emptyset = 0$.

The triangular norms which are generated by the multiplicative generator are Archimedean t-norms. Continuous t-norms which are not Archimedean cannot be generated by means of the multiplicative (additive) generator. However, there are several non-continuous t-norms

^{*} Faculty of Natural Science, Matej Bel University, Department of Mathematics, Tajovského 40, 974 01 Banská Bystrica, SLOVAKIA, E-mail: smutna@fpv.umb.sk

Research supported by grant VEGA 1/7146/20

which are generated, e.g., the drastic product T_D . A more general method how to construct *t*-norms can be found in Viceník [7]. The *t*-norms which are constructed by this method are not necessarily Archimedean. But assuming the left-continuity of a *t*-norm, note that the generated *t*-norms are then continuous and consequently Archimedean.

For $x \in [0, 1]$, we can write

$$x = \sum_{i=1}^{\infty} \frac{x_i}{2^i},$$

which is the unique infinite dyadic expansion of x, where $x_i \in \{0, 1\}$ for $i \in N$. The set $\{i; x_i = 1\}$ is infinite. It is easy to see that each $x \in [0, 1]$ is in a one to one correspondence with $(x_i)_{i \in N}$, where $x_i \in \{0, 1\}$ and $\operatorname{card}\{i; x_i = 1\}$ is infinite. We will use the following notation:

$$x \approx (x_i)_{i \in N}$$

Remark 1. Let $x \approx (x_i)_{i \in N}$ and $y \approx (y_i)_{i \in N}$. Then x < y if and only if there exists $k \in N$ such that for all $i \in N$, $i \leq k$, we have

$$x_i = y_i$$
 and $x_{k+1} < y_{k+1}$.

We will discuss a t-norm based on the above described dyadic expansion which is generated by a non-continuous multiplicative generator.

2 A NON-CONTINUOUS *t*-NORM BASED ON DYADIC EXPANSION

In Smutná [6] we have investigated the function $g: [0,1] \rightarrow [0,1]$ which is based on the dyadic expansion. This function is given by

$$g(x) = \begin{cases} 0 & \text{if } x = 0, \\ \sum_{i=1}^{\infty} \frac{2x_i}{3^i} & \text{otherwise,} \end{cases}$$

where if $x \in [0, 1]$ then $x \approx (x_i)_{i \in N}$. The function g is strictly increasing and left-continuous. This function is not right-continuous, each finite dyadic rational is a point of discontinuity of the function g.

Remark 2. We can define $f(x) = g^{(-1)}(x) = \sup(z \in [0,1]; g(z) < x)$ as the pseudo-inverse of the function g. Because of the properties of this function, the new function f is continuous and $f^{(-1)} = g$. Note that f is just the well-known Cantor function.

Example 1. Let $T^* \colon [0,1]^2 \to [0,1]$ be given by

$$T^*(x,y) = f(g(x).g(y)),$$

where g is the function from Smutná [6], and f is its pseudo-inverse.

Then T^* is an operator which is not a *t*-norm. T^* is commutative, monotone, it fulfils the boundary condition, however, the associativity is violated. For example

$$T^*\left(\frac{1}{2}, T^*\left(\frac{3}{4}, \frac{3}{4}\right)\right) = \frac{1}{4} < \frac{1}{2} = T^*\left(T^*\left(\frac{1}{2}, \frac{3}{4}\right), \frac{3}{4}\right).$$

On the other hand, the operation

$$T_*(x,y) = \begin{cases} \min(x,y) & \text{if } \max(x,y) = 1, \\ g(f(x) \cdot f(y)) & \text{otherwise,} \end{cases}$$

defines a *t*-norm. The axioms T(1), T(3), T(4) are evidently fulfilled. The associativity follows from the continuity of f and the fact that f(g(x)) = x for all $x \in [0, 1]$. For more detail see [6].

R e m a r k 3. As already mentioned, f(g(x)) = xfor $x \in [0,1]$. Therefore $T_*(x, T_*(x,x)) = g(f(x)^3)$ for $x \in [0,1]$, which implies $x_{T_*}^{(n)} = g(f(x)^n)$ for $x \in [0,1]$.

R e m a r k 4. The *t*-norm T_* is an example of a *t*-norm which is left-continuous on $[0, 1]^2$ and continuous in point (1, 1), but non-left-continuous on $[0, 1]^2$ and non-continuous on its diagonal. Moreover, this *t*-norm is Archimedean but neither strictly monotone nor nilpotent in any point from]0, 1[.

Indeed, let $a \in \left[\frac{1}{3^n}, \frac{2}{3^n}\right]$ for some $n \in N$. Then $a_{T_*}^{(m)} = \frac{1}{3^{m \cdot n}} > 0$ for all $m \in N$. Consequently, no element $b \in \left[0, 1\right], b > a$, can be a nilpotent element of T_* .

3 THE NON-CONTINUOUS ARCHIMEDEAN *t*-NORM WITH CONTINUOUS DIAGONAL

Again we deal with the function g and we define the next functions $t^* : [0,1] \to [0,1]$, $t^{**} : [0,1] \to [0,1]$ and $h : [0,1] \to [0,1]$ as follows:

$$\begin{split} t^*(x) &= \sup(g(z); g(z) \le x) \,, \\ t^{**}(x) &= \inf(g(z); g(z) \ge x) \,, \\ h(x) &= \frac{x - t^*(x)}{t^{**}(x) - t^*(x)} \,, \end{split}$$

with convention $\frac{0}{0} = 0$.

Remark 5. Note that $t^*(x) = g \circ g^{(-1)}(x)$. Moreover, if $x \in H(g)$ then h(x) = 0.

Now we will investigate an operator based on the above functions and the *t*-norm T_* . Let the function $T_K: [0,1]^2 \to [0,1]$ be given by

$$T_K(x,y) = T_*(x,y) + F(x,y),$$

where the function $F: [0,1]^2 \to [0,1]$ is given by

$$F(x,y) = \min(h(x), h(y)) \cdot \left(t^{**}(T_*(x,y)) - t^*(T_*(x,y))\right)$$

Evidently the axioms T(1), T(3) and T(4) are fulfilled. The associativity of T_K follows from the fact that for all $x, y \in [0, 1]$ is

$$f(T_K(x,y)) = f(T_*(x,y)) = f(x).f(y) \, .$$

Proposition 4. The function $T_K : [0,1]^2 \rightarrow [0,1]$ is a *t*-norm.

Proposition 5. The triangular norm T_K is not strictly monotone.

Proof. Let
$$x \in [0,1]$$
 and $x \in H(g)$. Then
 $T_*\left(\frac{1}{2}, x\right) = g\left(\frac{1}{2} \cdot x\right) = T_*\left(\frac{2}{3}, x\right)$ and $h(x) = 0$

Therefore $T_K\left(\frac{1}{2}, x\right) = g\left(\frac{1}{2} \cdot x\right)$ $+ \min\left(h(x), h\left(\frac{1}{2}\right)\right) \cdot \left(t^{**}\left(T_*\left(x, \frac{1}{2}\right)\right) - t^*\left(T_*\left(x, \frac{1}{2}\right)\right)\right)$ $= g\left(\frac{1}{2} \cdot x\right) = T_K\left(\frac{2}{3}, x\right),$

which is violation of the strict monotonicity of T_K .

Proposition 6. The triangular norm T_K is Archimedean and T_K is not nilpotent in any point from the interval]0,1[.

R e m a r k 6. The *t*-norm T_K is an example of a *t*-norm which is non-continuous, but continuous on its diagonal. Moreover, this *t*-norm is Archimedean but neither strictly monotone nor nilpotent in any point from]0, 1[.

Theorem 1. Let $T: [0,1]^2 \rightarrow [0,1]$ be an arbitrary continuous *t*-norm. Then

$$\widetilde{T_K}(x,y) = T_*(x,y) + \widetilde{F}(x,y) \,,$$

where function $\widetilde{F} \colon [0,1]^2 \to [0,1]$ is given by

$$F(x,y) = T(h(x), h(y)) \cdot (t^{**}(T_*(x,y)) - t^*(T_*(x,y)))$$

is a non-continuous Archimedean t-norm with continuous diagonal.

References

- KIMBERLING, C.: On a class of associative function, Publ. Math. Debrecen 20 (1973) 21-39.
- [2] KLEMENT, E. P.—MESIAR, R.—PAP, E.: Triangular Norms, Kluwer Acad. Publ., Dordrecht, 2000.
- [3] MESIAR, R.: Wild t-norms of G. Krause, Abstracts, The fifth International Conference FSTA 2000, Liptovský Ján, 132–133.
- [4] MESIAR, R.—NOVÁK, V.: Open problems from the 2nd International Conference on Fuzzy Sets and Its Applications, Fuzzy Sets and Systems 81 (1996), 185–190.
- [5] SCHWEIZER, B.—SKLAR, A.: Probabilistic Metric Spaces, North Holland, New York, 1983.
- [6] SMUTNÁ, D.: A note on non-continuous t-norms, BUSEFAL 76 (1998), 19-24.
- [7] VICENÍK, P.: A note to a construction of t-norms based on pseudo-inverses of monotone functions, Fuzzy Sets and Systems 104 (1999), 15–18.

Received 15 June 2000

Dana Smutná (Mgr) is a graduate student of applied mathematics at the Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology, Bratislava. Her supervisor is Professor Radko Mesiar.