NON-CONTINUOUS t-NORMS WITH CONTINUOUS DIAGONAL

Dana Smutná *

Abstract

During the workshops at the 2nd International Conference on Fuzzy Sets Theory and Its Applications (Liptovský Mikuláš, Slovak Republic, January 31-February 4, 1994), several open problems were specified by the participants, see [4]. One of them was the question: If T is an Archimedean t-norm with a continuous diagonal, is T necessarily continuous on $[0,1] \times[0,1]$? (This problem was stated in the book of Schweizer and Sklar [5] and Kimberling [1] has given an example of a continuous Archimedean t-norm which is not uniquely determined by its diagonal.) However, the above problem was already negatively solved by Gerianne Krause, but not yet published. In the paper we show a new class of Archimedean, non-continuous t-norms with a continuous diagonal.

Keywords: triangular norms, multiplicative generator, non-continuous Archimedean t-norms
2000 Mathematics Subject Classification: 03B52,26B99

1 INTRODUCTION

First we recall some well-known definitions and propositions which we will use:

Definition 1. A triangular norm (t-norm for short) is a binary operation on the unit interval $[0,1]$, i.e., a function $T:[0,1]^{2} \rightarrow[0,1]$ such that for all $x, y, z \in[0,1]$ the following four axioms are satisfied:
(T1) Commutativity

$$
T(x, y)=T(y, x)
$$

(T2) Associativity

$$
T(x, T(y, z))=T(T(x, y), z)
$$

(T3) Monotonicity

$$
T(x, y) \leq T(x, z) \quad \text { whenever } y \leq z
$$

(T4) Boundary Condition

$$
T(x, 1)=x
$$

Proposition 1. A t-norm T is left-continuous if and only if it is left-continuous in its first component, i.e., if for each $y \in[0,1]$ and for each sequence $\left(x_{n}\right)_{n \in N} \in[0,1]^{N}$ we have

$$
\sup _{n \in N} T\left(x_{n}, y\right)=T\left(\sup _{n \in N} x_{n}, y\right)
$$

Proposition 2. A t-norm T is Archimedean if and only if for each $x \in] 0,1[$ we have

$$
\lim _{n \rightarrow \infty} x_{T}^{(n)}=0
$$

where $x_{T}^{(n)}= \begin{cases}x & \text { if } n=1 \\ T\left(x, x_{T}^{(n-1)}\right. & \text { if } n>1 .\end{cases}$
Proposition 3. A t-norm T is strictly monotone if and only if the cancellation law holds, i.e., if $T(x, y)=T(x, z)$ and $x>0$ imply $y=z$.

Definition 2. Let T be a t-norm. An element $a \in] 0,1[$ is called a nilpotent element of T if there exists $n \in N$ such that $a_{T}^{(n)}=0$.

Definition 3. A multiplicative generator φ of a triangular norm is a strictly increasing function $\varphi:[0,1] \rightarrow$ $[0,1]$ such that $\varphi(1)=1$ and $\varphi(x) \cdot \varphi(y) \in H(\varphi)$ or $\varphi(x) \cdot \varphi(y)<\varphi(0)$. The corresponding t-norm T is defined by means of φ as follows:

$$
T(x, y)=\varphi^{(-1)}(\varphi(x) \cdot \varphi(y))
$$

where $\varphi^{(-1)}:[0,1] \rightarrow[0,1]$ is the so-called pseudo-inverse of φ defined by

$$
\varphi^{(-1)}(t)=\sup (x \in[0,1] ; \varphi(x)<t)
$$

with convention $\sup \emptyset=0$.
The triangular norms which are generated by the multiplicative generator are Archimedean t-norms. Continuous t-norms which are not Archimedean cannot be generated by means of the multiplicative (additive) generator. However, there are several non-continuous t-norms

[^0]which are generated, e.g., the drastic product T_{D}. A more general method how to construct t-norms can be found in Viceník [7]. The t-norms which are constructed by this method are not necessarily Archimedean. But assuming the left-continuity of a t-norm, note that the generated t-norms are then continuous and consequently Archimedean.

For $x \in] 0,1]$, we can write

$$
x=\sum_{i=1}^{\infty} \frac{x_{i}}{2^{i}},
$$

which is the unique infinite dyadic expansion of x, where $x_{i} \in\{0,1\}$ for $i \in N$. The set $\left\{i ; x_{i}=1\right\}$ is infinite. It is easy to see that each $x \in] 0,1]$ is in a one to one correspondence with $\left(x_{i}\right)_{i \in N}$, where $x_{i} \in\{0,1\}$ and $\operatorname{card}\left\{i ; x_{i}=1\right\}$ is infinite. We will use the following notation:

$$
x \approx\left(x_{i}\right)_{i \in N}
$$

Remark 1. Let $x \approx\left(x_{i}\right)_{i \in N}$ and $y \approx\left(y_{i}\right)_{i \in N}$. Then $x<y$ if and only if there exists $k \in N$ such that for all $i \in N, i \leq k$, we have

$$
x_{i}=y_{i} \quad \text { and } \quad x_{k+1}<y_{k+1}
$$

We will discuss a t-norm based on the above described dyadic expansion which is generated by a non-continuous multiplicative generator.

2 A NON-CONTINUOUS t-NORM BASED ON DYADIC EXPANSION

In Smutná [6] we have investigated the function $g:[0,1] \rightarrow[0,1]$ which is based on the dyadic expansion. This function is given by

$$
g(x)= \begin{cases}0 & \text { if } x=0 \\ \sum_{i=1}^{\infty} \frac{2 x_{i}}{3^{i}} & \text { otherwise }\end{cases}
$$

where if $x \in] 0,1]$ then $x \approx\left(x_{i}\right)_{i \in N}$. The function g is strictly increasing and left-continuous. This function is not right-continuous, each finite dyadic rational is a point of discontinuity of the function g.

Remark 2. We can define $f(x)=g^{(-1)}(x)=$ $\sup (z \in[0,1] ; g(z)<x)$ as the pseudo-inverse of the function g. Because of the properties of this function, the new function f is continuous and $f^{(-1)}=g$. Note that f is just the well-known Cantor function.

Example 1. Let $T^{*}:[0,1]^{2} \rightarrow[0,1]$ be given by

$$
T^{*}(x, y)=f(g(x) \cdot g(y)),
$$

where g is the function from Smutná [6], and f is its pseudo-inverse.

Then T^{*} is an operator which is not a t-norm. T^{*} is commutative, monotone, it fulfils the boundary condition, however, the associativity is violated. For example

$$
T^{*}\left(\frac{1}{2}, T^{*}\left(\frac{3}{4}, \frac{3}{4}\right)\right)=\frac{1}{4}<\frac{1}{2}=T^{*}\left(T^{*}\left(\frac{1}{2}, \frac{3}{4}\right), \frac{3}{4}\right) .
$$

On the other hand, the operation

$$
T_{*}(x, y)= \begin{cases}\min (x, y) & \text { if } \max (x, y)=1 \\ g(f(x) \cdot f(y)) & \text { otherwise }\end{cases}
$$

defines a t-norm. The axioms $\mathrm{T}(1), \mathrm{T}(3), \mathrm{T}(4)$ are evidently fulfilled. The associativity follows from the continuity of f and the fact that $f(g(x))=x$ for all $x \in[0,1]$. For more detail see [6].

Remark 3. As already mentioned, $f(g(x))=x$ for $x \in[0,1]$. Therefore $T_{*}\left(x, T_{*}(x, x)\right)=g\left(f(x)^{3}\right)$ for $x \in[0,1]$, which implies $x_{T_{*}}^{(n)}=g\left(f(x)^{n}\right)$ for $x \in[0,1]$.

Remark 4. The t-norm T_{*} is an example of a t-norm which is left-continuous on $\left[0,1\left[^{2}\right.\right.$ and continuous in point $(1,1)$, but non-left-continuous on $[0,1]^{2}$ and non-continuous on its diagonal. Moreover, this t-norm is Archimedean but neither strictly monotone nor nilpotent in any point from $] 0,1[$.

Indeed, let $\left.a \in] \frac{1}{3^{n}}, \frac{2}{3^{n}}\right]$ for some $n \in N$. Then $a_{T_{*}}^{(m)}=\frac{1}{3^{m \cdot n}}>0$ for all $m \in N$. Consequently, no element $b \in] 0,1\left[, b>a\right.$, can be a nilpotent element of T_{*}.

3 THE NON-CONTINUOUS ARCHIMEDEAN t-NORM WITH CONTINUOUS DIAGONAL

Again we deal with the function g and we define the next functions $t^{*}:[0,1] \rightarrow[0,1], t^{* *}:[0,1] \rightarrow[0,1]$ and $h:[0,1] \rightarrow[0,1]$ as follows:

$$
\begin{aligned}
t^{*}(x) & =\sup (g(z) ; g(z) \leq x), \\
t^{* *}(x) & =\inf (g(z) ; g(z) \geq x), \\
h(x) & =\frac{x-t^{*}(x)}{t^{* *}(x)-t^{*}(x)},
\end{aligned}
$$

with convention $\frac{0}{0}=0$.
Remark 5. Note that $t^{*}(x)=g \circ g^{(-1)}(x)$. Moreover, if $x \in H(g)$ then $h(x)=0$.

Now we will investigate an operator based on the above functions and the t-norm T_{*}. Let the function $T_{K}:[0,1]^{2} \rightarrow[0,1]$ be given by

$$
T_{K}(x, y)=T_{*}(x, y)+F(x, y),
$$

where the function $F:[0,1]^{2} \rightarrow[0,1]$ is given by
$F(x, y)=\min (h(x), h(y)) \cdot\left(t^{* *}\left(T_{*}(x, y)\right)-t^{*}\left(T_{*}(x, y)\right)\right)$.
Evidently the axioms $\mathrm{T}(1), \mathrm{T}(3)$ and $\mathrm{T}(4)$ are fulfilled. The associativity of T_{K} follows from the fact that for all $x, y \in[0,1]$ is

$$
f\left(T_{K}(x, y)\right)=f\left(T_{*}(x, y)\right)=f(x) \cdot f(y) .
$$

Proposition 4. The function $T_{K}:[0,1]^{2} \rightarrow[0,1]$ is a t-norm.

Proposition 5. The triangular norm T_{K} is not strictly monotone.

$$
\begin{aligned}
& \text { Proof. Let } x \in[0,1] \text { and } x \in H(g) \text {. Then } \\
& \qquad T_{*}\left(\frac{1}{2}, x\right)=g\left(\frac{1}{2} \cdot x\right)=T_{*}\left(\frac{2}{3}, x\right) \text { and } h(x)=0 .
\end{aligned}
$$

Therefore $\quad T_{K}\left(\frac{1}{2}, x\right)=g\left(\frac{1}{2} \cdot x\right)$

$$
\begin{aligned}
+\min \left(h(x), h\left(\frac{1}{2}\right)\right) \cdot\left(t ^ { * * } \left(T_{*}\right.\right. & \left.\left.\left(x, \frac{1}{2}\right)\right)-t^{*}\left(T_{*}\left(x, \frac{1}{2}\right)\right)\right) \\
& =g\left(\frac{1}{2} \cdot x\right)=T_{K}\left(\frac{2}{3}, x\right),
\end{aligned}
$$

which is violation of the strict monotonicity of T_{K}.
Proposition 6. The triangular norm T_{K} is Archimedean and T_{K} is not nilpotent in any point from the interval]0, 1 [.

Remark 6. The t-norm T_{K} is an example of a t-norm which is non-continuous, but continuous on its diagonal. Moreover, this t-norm is Archimedean but neither strictly monotone nor nilpotent in any point from] 0,1 [.
Theorem 1. Let $T:[0,1]^{2} \rightarrow[0,1]$ be an arbitrary continuous t-norm. Then

$$
\widetilde{T_{K}}(x, y)=T_{*}(x, y)+\widetilde{F}(x, y),
$$

where function $\widetilde{F}:[0,1]^{2} \rightarrow[0,1]$ is given by

$$
\widetilde{F}(x, y)=T(h(x), h(y)) \cdot\left(t^{* *}\left(T_{*}(x, y)\right)-t^{*}\left(T_{*}(x, y)\right)\right)
$$

is a non-continuous Archimedean t-norm with continuous diagonal.

References

[1] KIMBERLING, C.: On a class of associative function, Publ. Math. Debrecen 20 (1973) 21-39.
[2] KLEMENT, E. P.-MESIAR, R.-PAP, E. : Triangular Norms, Kluwer Acad. Publ., Dordrecht, 2000.
[3] MESIAR, R.: Wild t-norms of G. Krause, Abstracts, The fifth International Conference FSTA 2000, Liptovský Ján, 132-133.
[4] MESIAR, R.-NOVÁK, V. : Open problems from the 2nd International Conference on Fuzzy Sets and Its Applications, Fuzzy Sets and Systems 81 (1996), 185-190.
[5] SCHWEIZER, B.-SKLAR, A.: Probabilistic Metric Spaces, North Holland, New York, 1983.
[6] SMUTNÁ, D.: A note on non-continuous t-norms, BUSEFAL 76 (1998), 19-24.
[7] VICENÍK, P.: A note to a construction of t-norms based on pseudo-inverses of monotone functions, Fuzzy Sets and Systems 104 (1999), 15-18.

Received 15 June 2000

Dana Smutná (Mgr) is a graduate student of applied mathematics at the Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology, Bratislava. Her supervisor is Professor Radko Mesiar.

[^0]: * Faculty of Natural Science, Matej Bel University, Department of Mathematics, Tajovského 40, 97401 Banská Bystrica, SLOVAKIA, E-mail: smutna@fpv.umb.sk

 Research supported by grant VEGA 1/7146/20

