
Journal of ELECTRICAL ENGINEERING, VOL. 51, NO. 12/s, 2000, 54–58

UNIQUENESS OF THE FIXED POINTS OF
SINGLE–STEP OPERATORS DETERMINED

BY BELNAP’S1 FOUR–VALUED LOGIC

Eleanor Clifford — Anthony Karel Seda
∗

Recently, Hitzler and Seda showed how a domain-theoretic proof can be given of the fact that, for a locally hierarchical
program, the single-step operator TP , defined in two-valued logic, has a unique fixed point. Their approach employed a
construction which turned a Scott-Ershov domain into a generalized ultrametric space. Finally, a fixed-point theorem of
Priess-Crampe and Ribenboim was applied to TP to establish the result. In this paper, we extend these methods and
results to the corresponding well-known single-step operators ΦP and ΨP determined by P and defined, respectively, in
three-valued and four-valued logics.

K e y w o r d s: Fixed point, operator, many-valued logic, Scott-Ershov domain, locally hierarchical program.

2000 Mathematics Subject Classification: Primary 68N17, Secondary 03B70, 03G10

1 INTRODUCTION

A common approach to giving meaning or “semantics”
to programming language constructs is to assign an oper-
ator to the construct and look for its fixed points. In this
approach, one often finds that the operator in question
is monotonic and defined on a complete lattice or com-
plete partial order (cpo), so that the well-known Knaster-
Tarski theorem can be applied to obtain the required
fixed points. However, in the case of logic programs P ,
see [9], the presence of negation (which enhances syntax
and expressibility) leads to non-monotonicity of the usual
single-step operator TP associated with P and hence to
inapplicability of the Knaster-Tarski theorem.

Various ways of overcoming this problem have been
proposed in the literature, including the use of analytical
and topological methods, see for example [12] and its ref-
erences. Another approach, see [3,4], is to consider other
operators such as ΦP and ΨP defined in three-valued
and four-valued logics. In particular, Fitting in [3,4] has
drawn attention to an operator ΨP defined on the space
IP,4 of FOUR -valued interpretations, or valuations, of
the underlying first order language L of P , where FOUR

denotes the four-valued logic due to Belnap [1] as em-
ployed by Fitting in [4]. Indeed, FOUR includes conven-
tional two-valued and Kleene’s strong three-valued logic,
and others, as sublogics. In fact, IP,4 carries two natural
orderings ≤k and ≤t . Under the first of these, ΨP ex-
tends the operator ΦP defined over Kleene’s strong three-
valued logic and is monotonic; under the second, ΨP ex-
tends the operator TP defined over two-valued logic, and
is only monotonic when P is definite (does not contain
negation). Thus, any result about ΨP pertains to TP and

ΦP so that IP,4 and ΨP provide a very convenient setting
to study logic programming semantics in great generality.

The foregoing remarks raise several questions concern-
ing the fixed points of TP , ΦP , ΨP and their interaction.
Many of these questions have been pursued in [4], see also
the references there, and they will be discussed briefly
here in Section 2. The tool usually employed to obtain
fixed points is the Knaster-Tarski theorem or variants of
it based on order-theoretic arguments. Such theorems do
not provide conditions under which one has uniqueness of
fixed points, and indeed fixed points need not be unique
in general. Nevertheless, this question of uniqueness is
interesting because it is closely related to coincidence of
various standard models of programs as shown in [8], and
this point is also discussed in Section 2. In [6,12], the issue
of uniqueness was taken up and solved in the case of the
operator TP for the class of locally hierarchical programs,
see [2], by methods entirely different from those employed
in [2]. In fact, it was done by showing that Scott-Ershov
domains, familiar in programming language semantics,
can be turned into generalized ultrametric spaces in the
sense of [10] and by then applying a fixed-point theorem
to be found in [10]. In this paper, our main objective is to
show how the approach of [6,12] can be extended to the
operators ΨP and ΦP in the context of the logic FOUR .
Indeed, our approach extends very generally to any many-
valued logic whose associated space of valuations forms
a domain under the construction we give later, see The-
orem 3.4. We will confine our attention here to ΨP but
we obtain, as a corollary, the fact that our results apply
to ΦP also and to TP (trivially) in view of our earlier
remarks.

∗ Department of Mathematics, University College Cork, Ireland, E-mail: e.clifford@student.ucc.ie , aks@ucc.ie
1 In fact, we are working with a slight variant of Belnap’s logic, due to Melvin Fitting.

Both authors wish to extend their thanks to the conference organizers, and to the Slovak University of Technology for the hospitality and
support they received in presenting the results of this paper. They also wish to thank an anonymous referee for making several suggestions
which helped to improve the presentation of the paper. The first-named author also wishes to thank the School of Mathematics, Applied
Mathematics and Statistics at UCC, and the UCC Mathematical Society for their support.

ISSN 1335-3632 c© 2000 FEI STU

Journal of ELECTRICAL ENGINEERING VOL. 51, NO. 12/s, 2000 55

2 FOUR–VALUED INTERPRETATIONS

The logic FOUR has the four truth values true (t),
false (f), none (n), and both (b). The first two of these are
the familiar truth values of two-valued logic. The third
truth value none (or underdefined) is found in Kleene’s
strong (and weak) three-valued logic (as undefined), and
is the truth value given to something about which we
have no information; it is also used in computation to rep-
resent non-termination. The fourth truth value both (or
overdefined) can be thought of as the truth value given to
something which we have been told is both true and false.
Belnap in [1] offers some interesting motivation for this
logic. He sees it as a means of dealing with a situation
where a computer is relying on two different human op-
erators, which may contradict each other. Fitting in [4]
argues that it is an appropriate logic for handling con-
flicting information in distributed computing systems. In
[14], Visser shows how this logic can be used as a means
of investigating paradoxes such as that of the Liar.

Following [4], we note that ¬t = f ; ¬f = t , ¬n = n

and ¬b = b . Furthermore, we define the operations ∧
and ∨ by means of the following truth tables:

∧ n f t b

n n f n f

f f f f f

t n f t b

b f f b b

∨ n f t b

n n n t t

f n f t b

t t t t t

b t b t b

We impose ordered structures on FOUR by defining
the truth ordering ≤t and the knowledge ordering ≤k as
in the Hasse diagram below.

both

false

✇✇✇✇✇✇✇✇✇

true

❋❋❋❋❋❋❋❋❋

none

❍❍❍❍❍❍❍❍❍

✇✇✇✇✇✇✇✇✇

≤t

//

≤k

OO

It is an interesting and important fact that FOUR is
a complete lattice in each of these orderings, and hence
is a complete bilattice, see [4]. In the truth ordering, the
bottom element is false and the top element is true. In the
knowledge ordering, the bottom element is none and the
top element is both. We note that negation is the left-right
inversion of the Hasse diagram above. Further details of
this are to be found in [4].

These orderings, and indeed any partial order on
FOUR , immediately extend to the set I(X) of all func-
tions I from any set X into FOUR when ordered point-
wise by: I1 ≤ I2 iff I1(A) ≤ I2(A) for all A ∈ X , where
≤ denotes either of the orderings ≤k and ≤t , and we

note that our usage of the symbol ≤ to order both truth
values and functions should not cause any confusion. In-
deed, the bottom resp. top element of I(X) is simply the
function identically equal to the bottom resp. top ele-
ment of FOUR in the ordering ≤ on FOUR . Moreover,
given any family M = {Ik; k ∈ K} of elements of I(X),
whether directed or not, the supremum ⊔M exists and is
given by ⊔M(A) = ⊔k∈KIk(A) for all A ∈ X . Similarly,
the infimum ⊓M of M is given by ⊓M(A) = ⊓k∈KIk(A)
for all A ∈ X .

Now let P denote a normal logic program whose un-
derlying first order language is L ; we refer to [9] for
notation and basic facts concerning logic programming.
Thus, P consists of a finite set of clauses of the form
A ← L1, . . . , Ln , where A is an atomic formula, called
the head of the clause, and L1, . . . , Ln denotes a con-
junction of literals Li (atoms or negated atoms) called
the body of the clause. In other words, a typical clause
in P is of the form A ← A1, . . . , An1

,¬B1, . . . ,¬Bn2
.

It will be convenient to add two atoms false and true
to L . We let BP denote the Herbrand base of P , that
is, the set of all ground (or variable free) atoms formed
from the symbols in L . Taking X = BP in the previ-
ous paragraph, the set I(BP) is precisely the set of all
FOUR -valued valuations or interpretations in the usual
sense of mathematical logic, where we always assume that
I(false) = false and I(true) = true for any interpretation
I . In future, we will denote the set I(BP) by IP,4 and we
note that it is a complete bilattice under the operations
defined earlier.

In order to define the operators we want, we need
first to define two sets P ∗ and P ∗∗ associated with P .
To define P ∗ : first, put in P ∗ all ground instances of
members of P ; second, if a clause A ← with empty
body occurs in P ∗ , replace it with A ← true ; finally, if
the ground atom A is not yet the head of any member
of P ∗ , add A ← false to P ∗ . To define P ∗∗ : first, in
P ∗ replace each ground clause A ← L1, . . . , Ln with
A ← L1 ∧ . . . ∧ Ln . Next, if there are several clauses
in the resulting set having the same head, A ← C1 ,
A ← C2 , . . . , replace them with A ← C1 ∨ C2 ∨
Since there could be infinitely many members in P ∗ with
the same head, we may have a countable disjunction at
this point, but this is semantically unproblematic. We
note that each ground atom A is the head of exactly one
element A← C1 ∨ C2 ∨ . . . of P ∗∗ .

Following [4], we are now in a position to define the
operator ΨP .

Definition 2.1. Let P be a normal logic program. We
define the operator ΨP : IP,4 → IP,4 as follows. For any
I ∈ IP,4 and A ∈ BP , we set

ΨP (I)(A) = I(C1 ∨ C2 ∨ . . .) ,

where A ← C1 ∨ C2 ∨ . . . is the unique element of P ∗∗

whose head is A .

If we restrict attention to the truth values true, false
and none, we obtain the conventional three-valued op-
erator ΦP , see [3,4], from this definition. If we further

56 E. Clifford — A.K. Seda: UNIQUENESS OF THE FIXED POINTS OF SINGLE-STEP OPERATORS DETERMINED BY . . .

restrict to the truth values true and false, we obtain the
two-valued operator TP . In fact, as noted in [4], the form
of the definition of ΨP just given suggests great gen-
eralization of such operators to any logic on any set of
interpretations, even to the context of uncertain reason-
ing systems. However, this point of view combined with
that of the current paper will be considered elsewhere.
Indeed, by considering different definitions of conjunc-
tion and disjunction, it was shown in [5] how one may
characterize different classes of programs by means of the
operator ΦP .

Next, we note that ΨP is monotonic for all programs
P with respect to the ≤k ordering, and this important
fact led Fitting [3] to his well-known treatment of nega-
tion using ΦP . Moreover, ΨP is also monotonic with re-
spect to the ≤t ordering for definite programs. Thus, us-
ing the Knaster-Tarski theorem, one always obtains least
(vk) and greatest (Vk) fixed points of ΨP relative to ≤k ,
and, for definite programs, least (vt) and greatest (Vt)
fixed points of Ψp (and hence of TP) relative to ≤t .
All these fixed points are different, in general. However,
vk, vt and Vt are closely related, see [4, Proposition 15].
Indeed, as shown in [4], there are great advantages ob-
tained by working in the bilattice FOUR . Not only does
one have a unified framework in which to study the two
standard approaches to negation, but also, amongst other
things, the interconnections between the fixed points can
be stated in simple and elegant (algebraic) fashion. Fur-
thermore, vt and Vt play a fundamental role in logic pro-
gramming semantics: the former being the least Herbrand
model of a definite program; the latter, also a model of
P , being fundamental in treatments of the completeness
of SLDNF-resolution, see [2,9]. Of course, if ΨP has a
unique fixed point, then all these fixed points coincide
(with the well-known Clark-completion semantics) and
this fact simplifies much of the analysis. There is another
reason, also, why this situation is important, as follows.

One issue which is not addressed when applying the
Knaster-Tarski theorem, and indeed cannot be, is the
uniqueness (or otherwise) of the fixed points it provides
(the Knaster-Tarski theorem says nothing about unique-
ness). As already noted, classes of programs P for which
TP and ΦP have unique respectively unique total fixed
points are interesting. Indeed, using the operator ΦP

(and a variant of it) such classes were defined in [5,7,8] in
a quite natural way. These classes were shown in [5,7,8]
not only to be computationally adequate (can compute all
partial recursive functions), but to be semantically unam-
biguous as well in that for each program in them the sta-
ble, well-founded, and weakly perfect models all coincide.
They therefore provide an interesting framework within
which to do logic programming, since one has simulta-
neously available within them both full computational
power and a well-defined semantics which is the same in a
number of the current, fashionable ways of viewing non-
monotonic reasoning. Thus, fixed-point theorems which
supply uniqueness criteria have an important role in logic
programming. One such is the theorem of Priess-Crampe
and Ribenboim [10] which has found application in [10]

to the operator TP in discussing some specific examples
considered in [11], see also [6] for applications of the mul-
tivalued version to disjunctive databases. Our intention
here is to show how the Priess-Crampe and Ribenboim
theorem can be applied, in conjunction with elementary
domain theory, to the operator ΨP , and hence to ΦP ,
for certain programs, and we proceed to do this next.

3 IP,4 AS A DOMAIN AND AS

AN ULTRAMETRIC SPACE

Let (D,⊑) denote a partially ordered set, or poset.

Definition 3.1. (1) A subset M of D is said to be
directed if every finite subset of M has an upper bound
in M (equivalently, if every pair of elements of M has
an upper bound in M).

(2) We call (D,⊑) a complete partial order (cpo) if it has
a bottom element ⊥ and the supremum ⊔M of M exists
in D for all directed subsets M of D .

(3) An element x ∈ D is called compact iff whenever M is
a directed subset of D and x ⊑ ⊔M , there exists y ∈M

such that x ⊑ y . We denote by DC the set of compact
elements of D .

(4) A subset A of D is called consistent if there exists
x ∈ D such that a ⊑ x for all a ∈ A . In particular, the
set {a, b} ⊆ D is consistent if there exists x ∈ D such
that a ⊑ x and b ⊑ x .

Definition 3.2. Let (D,⊑) be a poset, and let DC de-
note its set of compact elements. Then (D,⊑) is called a
Scott-Ershov domain or simply a domain, see [13], if the
following conditions hold:
(1) (D,⊑) is a cpo.
(2) For each x ∈ D , the set approx(x) = {a ∈ DC ; a ⊑ x}
is directed and x = ⊔ approx(x) (called the algebraicity
of D).
(3) If A ⊆ D is consistent, then ⊔A exists in D (called
the consistent completeness of D).

Definition 3.3. Let ≤ denote a partial order on FOUR

in which FOUR is a complete lattice with bottom el-
ement ⊥ . Then I ∈ IP,4 is called finite if the set
{A ∈ BP ; I(A) 6= ⊥} is finite. In particular, we define the
finite interpretation I⊥ by I⊥(A) = ⊥ for all A ∈ BP .

Theorem 3.4. Let ≤ denote a partial order on FOUR

in which FOUR is a complete lattice with bottom ele-

ment ⊥ . Then (IP,4,≤) is a domain whose bottom el-

ement is I⊥ and whose compact elements are the finite

interpretations.

P r o o f . First, because (IP,4,≤) is a complete lat-
tice, it is immediate that it is a cpo with bottom element
I⊥ and also that it is consistently complete.

Next, we show that any finite interpretation is a com-
pact element. Suppose that I is a finite interpretation
and let I⋆ = {A ∈ BP ; I(A) 6= ⊥} . Then I⋆ is a finite
set, I⋆ = {A1, . . . , An} , say. Suppose M = {Ik; k ∈ K}
is a directed subset of IP,4 such that I ≤ ⊔M . Thus,
I(A) ≤ ⊔k∈KIk(A) for all A ∈ BP . Then, using the di-
rectedness of M , there is, for each i = 1, . . . , n , Iki

∈M

Journal of ELECTRICAL ENGINEERING VOL. 51, NO. 12/s, 2000 57

such that I(Ai) ≤ Iki
(Ai). Since {Iki

; i = 1, . . . , n} is
finite, and using again the fact that M is directed, there

exists J ∈ M such that Iki
≤ J for i = 1, . . . , n . But

then I ≤ J as required and therefore I is a compact

element of IP,4 .

Conversely, we show that the compact elements of
(IP,4,≤) are the finite interpretations. Let M be the

set of all finite interpretations. Then M is directed.
To see this, let I1, I2 ∈ M . Define I3 by I3(A) =

⊔{I1(A), I2(A)} for all A ∈ BP . Then I1 ≤ I3 and
I2 ≤ I3 and clearly I3 is a finite interpretation. Thus,
I3 ∈ M also. Hence, M is a directed subset of IP,4 .

Now suppose that I is a compact element of IP,4 . Then
trivially we have I ≤ ⊔M , since ⊔M is the interpreta-

tion whose value on all elements of BP is equal to the
top element of FOUR in the given ordering on FOUR .
Thus, by directedness of M and the compactness of I ,

there exists J ∈ M such that I ≤ J . Since J is a finite
interpretation, it follows that I is finite also. Therefore,
the compact elements of (IP,4,≤) are finite interpreta-

tions and indeed we now see that the compact elements
of (IP,4,≤) are precisely the finite interpretations.

We show next that for any I ∈ IP,4 , approx(I) is
directed. Let I1, I2 ∈ approx(I). Then I1 and I2 are
finite interpretations with I1 ≤ I and I2 ≤ I . Again,
define I3 by I3(A) = ⊔{I1(A), I2(A)} for all A ∈ BP .

Then by definition of supremum, we have I1 ≤ I3 ≤
I and I2 ≤ I3 ≤ I , and of course I3 is finite. Thus,

I3 ∈ approx(I), and so approx(I) is directed. Therefore,
approx(I) is directed for any I ∈ IP,4 .

Finally, we show that for any I ∈ IP,4 , we have I =
⊔ approx(I). Clearly, by definition of approx(I) and of
supremum, we have that ⊔ approx(I) ≤ I . Let A ∈ BP .

Define IA ∈ IP,4 by IA(A) = I(A), and IA(B) = ⊥ for
all B 6= A . Then clearly IA ∈ approx(I). Also, for all

A ∈ BP we have I(A) = IA(A) ≤ ⊔approx(I)(A). Thus,
I ≤ ⊔ approx(I) and it follows that I = ⊔ approx(I), as
required, and the proof is complete.

Of course we obtain, as corollaries of this result, that
IP,4 is a domain in both of the two orderings we have

been considering on FOUR .

We now turn our attention to generalized ultrametric
spaces.

Definition 3.5. Let X be a set and let Γ be a par-
tially ordered set with least element 0. The pair (X, d) is
called a generalized ultrametric space (gum) or simply an

ultrametic space if d : X×X → Γ is a function satisfying
the following conditions for all x, y, z ∈ X and γ ∈ Γ:

(1) d(x, y) = 0 if and only if x = y .
(2) d(x, y) = d(y, x).
(3) If d(x, y) ≤ γ and d(y, z) ≤ γ , then d(x, z) ≤ γ .

Definition 3.6. For 0 6= γ ∈ Γ and x ∈ X , the set
Bγ(x) = {y ∈ X ; d(x, y) ≤ γ} is called a γ -ball or simply
a ball in X with centre x and radius γ .

Definition 3.7. An ultrametric space X is called spher-
ically complete if ∩C 6= ∅ for any chain C of balls in X

(a chain of balls is a set of balls which is totally ordered
by inclusion).

This brings us to an important theorem of Priess-
Crampe and Ribenboim, see [10], which we state in a
reduced form sufficient for our present purposes.

Theorem 3.8. Let (X, d) be a spherically complete ul-

trametric space and let f : X → X be strictly contracting

in the sense that d(f(x), f(y)) < d(x, y) for all x, y ∈ X

with x 6= y . Then f has a unique fixed-point.

It is our intention to apply this theorem to ΨP . To
do this, we first give a general construction which turns a
domain, and IP,4 in particular, into a generalized ultra-
metric space.

Let γ denote an arbitrary countable ordinal, and let
Γγ denote the set {2−α;α ≤ γ} of symbols 2−α ordered

by 2−α < 2−β if and only if β < α , and denote 2−γ by
0. Thus, Γγ is essentially γ+1 endowed with the reverse
order, but for historical reasons we prefer to work with
the set Γγ , see [6]. Now let (D,⊑) be a domain, with set
DC of compact elements.

Definition 3.9. Let r : DC → γ be a function, called
a rank function, and form Γγ . We define the distance

function dr : D × D → Γγ by dr(x, y) = inf{2−α; for
every c ∈ DC with r(c) < α we have c ⊑ x if and only
if c ⊑ y} .

It turns out that dr is an ultrametric which is said to
be induced by r, see [6,12]. In fact, the following theorem
was established in [6,12].

Theorem 3.10. The ultrametric space (D, dr) is spher-

ically complete.

4 UNIQUE FIXED POINTS OF ΨP

Suppose now that P is a normal logic program. A
level mapping for P is a mapping l : BP → γ , where γ

is a countable ordinal (not necessarily the first infinite
ordinal). Fix an ordering ≤ , such as ≤k or ≤t , in which
FOUR is a complete lattice with bottom element ⊥ ; then
IP,4 is also a complete lattice. By Theorem 3.4, IP,4 is a
domain whose compact elements are the finite interpreta-
tions. Define the rank function rl induced by l as follows:
we put rl(I⊥) = 0 and, for every finite interpretation
I 6= I⊥ , we set rl(I) = max{l(A);A ∈ BP and I(A) 6=
⊥} . We denote by dl the ultrametric resulting from rl in
accordance with Definition 3.9. Indeed, it is easy to see
that dl has a simpler, equivalent definition, as follows: if
I1 = I2 , then dl(I1, I2) = 0; otherwise dl(I1, I2) = 2−α ,
where I1 and I2 differ (i.e. I1(B) 6= I2(B)) on some
ground atom B with l(B) = α ≤ γ but agree (i.e.
I1(A) = I2(A)) on all ground atoms A of lower level.

Level mappings have proved to be important in logic
programming in a number of contexts including stud-
ies concerned with termination and completeness. One

58 E. Clifford — A.K. Seda: UNIQUENESS OF THE FIXED POINTS OF SINGLE-STEP OPERATORS DETERMINED BY . . .

of their main uses is the provision of syntactic condi-
tions which identify tractable classes of programs by pro-
hibiting “negation through recursion”, that is, by pre-
venting an atom occurring in the head of a clause and
simultaneously occurring negated in its body. This is
illustrated by the following definition. Suppose A ←
A1, . . . , An1

,¬B1, . . . ,¬Bn2
is a typical ground instance

of a clause in P , where n1, n2 ≥ 0. We call P locally
stratified (with respect to l) if the inequalities l(A) ≥
l(Ai) and l(A) > l(Bj) hold for all i and j for each
clause, and we call P locally hierarchical (with respect to
l) if the inequalities l(A) > l(Ai), l(Bj) hold for all i and
j for each clause. Both of the classes defined here have
turned out to be important in logic programming.

Our main theorem is the following result which is an
extension to ΨP of an earlier result established in [2,6,12]
for TP .

Theorem 4.1. Let P be a normal logic program which

is locally hierarchical with respect to a level mapping l .

Then ΨP is strictly contracting with respect to dl and

hence has a unique fixed point.

P r o o f . Let I1, I2 ∈ IP,4 be such that dl(I1, I2) =

2−α . There are two cases to consider.

Case 1: α = 0. In this case, I1 and I2 differ on some
ground atom of level 0. Let A ∈ BP be arbitrary with
l(A) = 0. Consider ΨP (I1) and ΨP (I2). By the hypoth-
esis on P and the fact that l(A) = 0, the element A ←
C1∨C2 . . . in P ∗∗ with A in its head must either be of the
form A← true or A← false . But I1(true) = I2(true) = t

and I1(false) = I2(false) = f . Thus, we either have
ΨP (I1)(A) = I1(true) = I2(true) = ΨP (I2)(A) or we
have ΨP (I1)(A) = I1(false) = I2(false) = ΨP (I2)(A).
Hence, ΨP (I1) and ΨP (I2) agree on all ground atoms of

level 0, and it follows that dl(ΨP (I1),ΨP (I2)) < 2−0 =
dl(I1, I2).

Case 2: α > 0. In this case, I1 and I2 differ on some
ground atom of level α , but agree on all ground atoms
of lower level. Let A ∈ BP with l(A) ≤ α . Consider
the unique element A ← C1 ∨ C2 ∨ . . . in P ∗∗ with A

as its head. Since P is locally hierarchical, each atom
occurring in each clause body Ci has level strictly less
than α . Therefore, I1(C1 ∨C2 ∨ . . .) = I2(C1∨C2 ∨ . . .),
by our hypothesis. Hence, ΨP (I1)(A) = I1(C1 ∨ C2 ∨
. . .) = I2(C1∨C2∨ . . .) = ΨP (I2)(A). Thus, ΨP (I1) and
ΨP (I2) agree on all ground atoms of level ≤ α . Hence,

dl(ΨP (I1),ΨP (I2)) < 2−α = dl(I1, I2).

Since cases 1 and 2 cover all possiblities, we see that
ΨP is strictly contracting with respect to dl . Finally,
(IP,4, dl) is spherically complete by Theorem 3.10, and
thus the required second conclusion follows from Theo-
rem 3.8.

It follows from our earlier remarks that under the
hypothesis of the previous theorem, both TP and ΦP

are strictly contracting and hence also have unique fixed
points. Indeed, the first of these comments was estab-
lished in [6,12], as already observed, and it was this fact
that led to the present extension to ΦP and ΨP . Finally,

we note that certain of these ideas have been generalized
in another direction in [7].

References

[1] BELNAP, Jr., N. D. : A Useful Four-Valued Logic, In: Modern
Uses of Multiple-Valued Logic, Dunn, J.M. and Epstein, G.
(Eds.), D. Reidel, 1977, pp. 5–37.

[2] CAVEDON, L. : Acyclic Logic Programs and the Completeness
of SLDNF-Resolution, Theoretical Computer Science 86 (1991),
81–92.

[3] FITTING, M. C. : A Kripke-Kleene Semantics for Logic Pro-
gramming, Journal of Logic Programming 2 (1985), 295-312.

[4] FITTING, M. C. : Fixpoint Semantics for Logic Programming:
A Survey, Theoretical Computer Science, 32 pages, to appear.

[5] HITZLER, P.—SEDA, A. K. : Characterizations of Classes of
Programs by Three-Valued Operators, In: Gelfond, M., Leone,
N. and Pfeifer, G. (Eds.), Proceedings of the 5th International
Conference on Logic Programming and Non-Monotonic Reason-
ing (LPNMR’99), El Paso, Texas, USA, December 1999. Lecture
Notes in Artificial Intelligence, Vol. 1730. Springer, Berlin, 1999,
pp. 357–371.

[6] HITZLER, P.—SEDA, A. K. : The Fixed-Point Theorems of
Priess-Crampe and Ribenboim in Logic Programming, Proceed-
ings of the International Conference and Workshop on Valuation
Theory, University of Saskatchewan in Saskatoon, Canada, July

1999. Fields Institute Communications Series, American Math-
ematical Society, Providence, R.I., 17 pages, to appear.

[7] HITZLER, P.—SEDA, A. K. : A New Fixed-Point Theorem for
Logic Programming Semantics, Proceedings of the joint IIIS &
IEEE meeting of the 4th World Multiconference on Systemics,
Cybernetics and Informatics (SCI2000) and the 6th Interna-
tional Conference on Information Systems Analysis and Synthe-
sis (ISAS2000), Orlando, Florida, USA, July, 2000. International
Institute of Informatics and Systemics: IIIS, Vol. VII, Computer
Science and Engineering Part 1, 2000, pp. 418-423.

[8] HITZLER, P.—SEDA, A. K. : Localizing Uniquely Determined
Programs, Preprint, Department of Mathematics, University
College, Cork, Ireland, pp. 1–16. Submitted to the Proceedings
of MFCSIT 2000, July, 2000.

[9] LLOYD, J. W. : Foundations of Logic Programming, Springer,
Berlin, 1988.

[10] PRIESS-CRAMPE, S.—RIBENBOIM, P. : Ultrametric Spaces
and Logic Programming, Journal of Logic Programming 42

(2000), 59–70.
[11] SEDA, A. K. : Quasi-metrics and the Semantics of Logic Pro-

grams, Fundamenta Informaticae 29(2) (1997), 97–117.
[12] SEDA, A. K.—HITZLER, P. : Topology and Iterates in Com-

putational Logic, Proceedings of the 12th Summer Conference
on General Topology and its Applications: Special Session on
Topology in Computer Science, Ontario, August 1997, Topol-
ogy Proceedings 22 (1999), 427–469.

[13] STOLTENBERG-HANSEN, V.—LINDSTRÖM, I.—GRIF-
FOR, E. R. : Mathematical Theory of Domains, Cambridge
Tracts in Theoretical Computer Science No. 22, Cambridge Uni-
versity Press, Cambridge, 1994.

[14] VISSER, A. : Four-Valued Semantics and the Liar, Journal of
Philosophical Logic 13 (1984), 181–212.

Received 14 June 2000

Eleanor Clifford (BA) is a postgraduate student in math-
ematics at University College Cork, Ireland working under the
direction of A.K. Seda. Her interests include logic, philosophy
and their connections with mathematics.

Anthony Karel Seda (Dr., C.Math, FIMA) is a Senior
Lecturer in the Department of Mathematics, University Col-
lege Cork. His research interests in the past were concerned
with mathematical analysis, but now are concerned with the
mathematical foundations of computer science and, in partic-
ular, of computational logic and of artificial intelligence.

