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ON GEOMETRICAL PROPERTIES OF RANDOM
TORI AND RANDOM GRAPH MODELS

Martin Nehéz *

In this paper we prove that for a given random d-dimensional torus T' of order n¢, the upper bound on the size r of

the largest d-dimensional grid that is asymptotically almost surely contained in T is O([log n}l/ 4. To prove this result we
use both probabilistic and Kolmogorov complexity arguments. Possible applications are indicated.
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1 INTRODUCTION

The theory of random graphs is often used to prove
the existence of an object (graph) in a nonconstructive
way. There are four known ways to introduce the random
graph:

— static model [12], [14],

— dynamic model [14],

— probabilistic model [3],

— Kolmogorov random model [7].

The probabilistic model seems to be used most frequently;
however, the Kolmogorov model has recently become
quite popular as well. In what follows we focus on these
two models in our paper. To compare the proving tech-
niques used in both above mentioned models we investi-
gate the geometrical properties of random tori.

We consider a d-dimensional torus T2 with randomly
deleted edges. Accordingly, we introduce the probabilis-
tic space of all random d-dimensional tori, denoted by
G(T4,p). (The parameter p is called the probability of
an edge.)

Important geometrical properties of the random torus
are the structure of its subgraphs. The most important
convex subgraph is a grid. We estimate the upper bound
of the size r of the largest grid G¢ C T, where T €
G(T?,p). This problem is, in some sense, analogous to
estimating the largest order of a clique in a random graph
(see [9], or [11] for stronger results).

In this paper it is shown that for the size of the largest
d-dimensional grid G¢ C T the following inequality holds
asymptotically almost surely:

r < (logl/pn)l/dJr 1.

This result holds for both the probabilistic and Kol-
mogorov random models.

Finally, we comment the obtained results and give
some remarks on possible applications.

2 PRELIMINARIES

Let n,d be positive integers, such that n > 2. De-
note the set of n integers {0,1,...,n — 1} by [n]. The
Cartesian product of d sets [n] is denoted by [n]?.
A d-dimensional vector over [n] is the d-tuple T =
(21,...,24) such that x; € [n] for i =1,...,d. We can
also write T € [n]?. For two vectors Z,7 € [n]¢, their
Hamming distance is defined as p(z,y) = Zle |z — yil -

For n,d as above, a d-dimensional torus is the undi-
rected graph 79 = (V, E), where V(T?) = [n]¢ (that is
each vertex is labeled by a d-dimensional vector T € [n]¢)
and E(T?) is defined as follows. Vertices 7,7 € V(T%)
are adjacent iff
(i) p(z,y) =1, or
(ii) p(Z,y) =n —1 and Z,7y differ only in one number.
The degree of each vertex of 79 is equal to 2d. The
order (number of vertices) of the torus 7 is given by
[V(T4)| = n? and its number of edges is |E(T%)| = dn®.

For n,d as above, a d-dimensional grid is the undi-
rected graph G¢ = (V, E), where V(G?%) = [n]? and
E(G;iz) = {(fvy) | T,y € [n]d7 p(fay) = 1}' The pa-
rameter n is called the size of the grid G%. The order
of the grid G¢ is |[V(G%)| = n? and its number of edges
is given by |E(G%)| = d(n — 1)n?~1. For the torus T2
and for a positive integer 7, 1 < r < n, we denote the d-
dimensional grid on r¢ vertices which is a subgraph of the
torus T¢ by G¢ C T2. The grid G¢ C T¢ is induced by
the set of vertices S(a) = {(a1 +k,...,aq+k) |0 <k <
r}, for arbitrary @ € V(T9), where + denotes addition
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mod n. The vertex @ will be called the reference ver-
tex of the grid G¢. Hence, each d-dimensional torus 7%
contains n? (possibly overlapping) d-dimensional grids
G C T. These grids differ in the labels of at least r4~*
vertices.

The O, €, 0 notation will be used in a standard way.
The notation lgx denotes the binary logarithm of z. The
ceiling of a real number z is denoted by [z].

3 PROBABILISTIC MODEL

In this section we prove the upper bound on the pa-
rameter 7 such that the grid G¢ is asymptotically almost
surely a subgraph of the torus with randomly deleted
edges. We use probabilistic arguments.

3.1 Random Tori

Let p € R be a constant such that 0 < p < 1. Con-
sider that for a given d-dimensional torus T each edge
exists in 7% independently and with the probability p.
It means that Pr[{Z,y} € E(T%)] = p for all adjacent
vertices 7,7 € V(T'%). The constant p is called the prob-
ability of an edge. We can introduce the corresponding
probabilistic space, now.

Definition 1. Let (2, F, Pr) be a probabilistic space,
where the class Q consists of all (labeled) graphs T' on
nd vertices such that V(T') = V(T¢) and E(T) C E(T?).
If T has g edges, 0 < g < dn?, then the probability of
obtaining 7' as a result of random edge generation is given
by:

Pr{T] = p?(1 — p)®n*=1. (1)

The graph T will be called random d-dimensional torus.
The probabilistic space (€, F, Pr) will be denoted by
G(T4,p) and called probabilistic space of all random d-
dimensional tori.

In order to describe a property of random tori we
will use the notions from probability theory, e.g. random
variables, expectations, etc. We will also use the following

property.

Proposition 1(Markov’s inequality). Let X be a non-
negative random variable with expectation E(X) and let
A > 0. Then the following inequality holds

PriX >\ < E(X) -1, (2)

For more details see [5].
3.2 Upper Bound

Important geometrical properties of the random torus
are the structure of its subgraphs. The most impor-
tant convex subgraph of the torus (corresponding to a
complete subgraph of a graph) is a grid. We investi-
gate the upper bound of the size of the d-dimensional

grid G¢ C T, where T € G(TZ,p) is the random d-
dimensional torus.

Given n,d,r as above and @ € V(T2), let us denote
the set of vertices which induce the grid G¢ c T9 by
S,(@), so that @ is the reference vertex of the grid G¢.
Let the event that a random torus 7' € G(T¢,p) contains
the gird G¢ C T induced by the set S,.(a) be denoted by
A. Let X, be the associated indicator random variable
defined on the probabilistic space G(T%, p). It means that
X, =1 1if T contains the grid induced by the set S,(a),
and X, = 0 otherwise. Let us define a random variable
Y, on G(T% p) as Y, = > X,, the summation over all
sets S,.(a). It means that Y, is the number of grids G¢
in the random torus 7. We compute the expectation of
Y..

Lemma 1. For the expectation of the random variable
Y, the following equality holds

_1)pd-1
E(}/r) _ ndpd(r 1) ) (3)

Proof . From the definition of the X, we have

E(X,) = Pr[A] = p?r—br"

By linearity of expectation (where the summation ranges
over all vertices @ € V(T%))

_1)pd-1
E(Y,) = B(X,) =it

Using this lemma we estimate the upper bound for the
parameter r.

Theorem 1. Let T € G(T9,p) be a random d-di-
mensional torus. Then for the size of the largest d-
dimensional grid G¢ C T the following inequality holds

(4)

with the probability tending to one as n — oo. Hence the
largest grid G¢ has the maximal order logy /,, n+o(logn).

r < (1og1/pn)1/d +1.

Proof . By contradiction. The following inequality
holds
B(Y,) = nfplr=0r < pdpde=DT o (5)

since 0 < p < 1. By the substitution r = (log, /,, n)t/d 41
into (5) we have

E(YT) < ndpdlogl/pn _ nd(l/p)_dlogl/P" — nd . n—d -1.
(6)
From Markov’s inequality (2) for A = 1 and from (6)
follows that
(7)

+ 1. The random variable

PrlY, > 1] < E(Y;) <1

for arbitrary ¢ > (log, ,, n)t/d

Y, counts the number of grids G¢ in the random torus 7.
The inequality (7) yields that there is no such a grid G¢ C
T with the size r > (log, /, n)*/%+1 with the probability
tending to 1 as n — oo. Hence a contradiction.
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4 KOLMOGOROV RANDOM MODEL

In this section we prove the analogous inequality using
the Kolmogorov complexity arguments. We introduce the
basic notions first.

4.1 Kolmogorov Complexity

Identify natural numbers N and a set of finite strings
(words) over the alphabet {0,1} according to the struc-
ture of the following form

(0,€), (1,0), (2

where € denotes the empty word, such that the length
|z| of a natural number z is the number of bits in a
corresponding binary string, |e] = 0.

, 1), (3,00), (4,01), ...,

Let us fix an effective enumeration of Turing ma-
chines 13,75, .... All Turing machines use a tape al-
phabet {0,1,B}. The input to a Turing machine is a
program — the binary string over {0,1} — delimited
by blanks B on both sides, [13]. Using the delimiters,
a Turing machine can recognize the beginning and the
end of its program. The effective enumeration of Turing
machines induces an effective enumeration of partial re-
cursive functions ¢1,¢o,... such that 7; computes ¢;
for each . (For more details se [13].)

Let (-,-): N x N — N denote a standard computable
bijective pairing function of which the inverse is com-
putable too. (It maps the pair (x,y) to the singleton
(z,y).) An example is 11*l0zy. Define (x,y,z) induc-
tively by (=, (y, z)). There exists a universal partial re-
cursive function ¢y which from an input y computes the
output z as follows

do((y, (n,p)))= on((y, 1)) (8)

for all n,y,p. The function ¢ is represented by the
universal Turing machine Ty .

Intuitively, the Kolmogorov complexity of a binary
string x is the shortest description of x. More precisely,
the Kolmogorov complexity can be defined in the follow-
ing way, [7].

Definition 2. Let us fix a universal partial recursive
function ¢ with the property (8). Let z,y,p be natural
numbers such that qﬁ((y,p)): x. The partial recursive
function ¢ together with p and y is a description of x.
The conditional Kolmogorov complexity of x given y is

C(zly) = min{ |p| : ¢((y,p))= 2} . 9)

C(zly) = oo if there is no such a p. We say that
the program p computes z by ¢, given y. The un-
conditional Kolmogorov complexity of z is defined as

C(z) = C(zle).

The function ¢ is called the reference function for
C'. We denote C(z|(y,z)) by C(zly,z). We will use the
following property of Kolmogorov complexity.

Proposition 2. There exists a constant ¢ € N such that
for all xz,y € N the following inequality holds:
Clzly) < |zf +c. (10)

On the other hand, for each y € N there exists an v € N
such that C(z|y) > |z|.

4.2 Kolmogorov random tori

Using the properties of strings with given Kolmogorov
complexity we introduce the Kolmogorov random tori.
This description can be interpreted in the way that oc-
currence/absence of each edge of a torus is chosen inde-
pendently at random.

Let n,d be constants as above. Let us encode (up to
automorphism) each d-dimensional torus 7¢ (T for sim-
plicity) by binary string S(7') with dn¢ bits. Assume
that bits represent the set of edges ordered in standard
lexicographical order without repetition. If the ¢th bit in
the string S(T') attains the value 1 (0), the correspond-
ing edge is present (absent) in the torus 7'. This way we
can identify each torus (with possibly absent edges) by
corresponding binary string.

Definition 3. A d-dimensional torus T on n? vertices

has randomness deficiency at most d6(n) and is called
o(n)-random, if

C(S(T)|n,d,8) > dn® — 5(n). (11)

The main theorem of this section is the following.

Theorem 2. Let §(n) be a function such that 6(n) —
oo as n — oo. Almost all §(n)-random tori T on n?
vertices contain the grid G C T whose size r satisfies
the inequality:

r < (Mgn])"/* +1. (12)

Proof. Let us consider the torus 7 such that the
Kolmogorov complexity of its description is given by (11).
So it is d(n)-random. Assume that the torus T contains
a d-dimensional grid G¢. The size 7 of the grid can
be interpreted as a function of n. The description of
r = r(n) has constant length.

Let us construct a new encoding S*(T) of the torus
T as follows.

e Prefix a code of the reference vertex @ € T of the grid

G?. The length of the code of @ is [lgn?] bits.

e From S(T) let us remove d(r — 1)r(?=1) bits corre-
sponding to the edges of the grid G¢.

e Keep all bits which correspond to the other edges.

e Save a constant number of bits representing this de-
scription.
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The length |S*(T)| of a new code is as follows.
1S*(T)] = |S(T)] — d(r — D)rl™D + Nign®] +¢1. (13)

This is a new description of the T' and from the definition
of the Kolmogorov complexity and from (10) it follows
that there exists a constant co such that

O(S(T)|n, d, 8) < |S*(T)| + e (14)

Equations (11), (13) and (14) yield
dn—6(n) < dn?—d(r—1)r"=Y +dlgn] +c1+co, (15)
which can be simplified to

d(r — 1) < d[lgn] +6(n) + O(1). (16)
Note that é(n) + O(1) > 0. Hence, for a large enough n,
the inequality (16) is satisfied only if » < ([lgn])"/¢ +1.

5 CONCLUSION

For a random d-dimensional torus 7" we studied the
sizes of the largest d-dimensional grid G¢ C T'. We used
the probabilistic and Kolmogorov complexity arguments.
Both inequalities obtained are very similar, they differ
only in the base of the logarithm. (The formulae are the
same if the condition p = 1/2 holds in the probabilis-
tic version.) Analogous relationships between these two
models (namely for the random graphs) are shown in [4],
however, a strong formula as in [2] is still not known.
(In [2] it is shown that static and probabilistic models of
random graphs are closely related if p ~ |E(G)|/(}).)

In our models the random torus can be interpreted
as an interconnection network with random faulty/over-
loaded communicational links. (The case d = 2 has a spe-
cial meaning described bellow.) The faults independently
occur with a constant probability. Analogous models (but
with faulty processors) are described e.g. in [8] and [10].

Our results can be used
(1) in the design of VLSI circuits with random faults (for
d=2),

(2) in the description of the properties of the communi-
cation algorithms in the distributed systems with faulty
communicational links.

In the first case the inequality r < (log , n)t/d 41,
especially for d = 2 and n sufficiently large, describes e.g.
the properties of the layout of fault-free two-dimensional
arrays to its faulty version with dilation 1.
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