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ON GEOMETRICAL PROPERTIES OF RANDOM
TORI AND RANDOM GRAPH MODELS

Martin Nehéz
∗

In this paper we prove that for a given random d -dimensional torus T of order nd , the upper bound on the size r of

the largest d -dimensional grid that is asymptotically almost surely contained in T is O([logn]1/d) . To prove this result we
use both probabilistic and Kolmogorov complexity arguments. Possible applications are indicated.
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1 INTRODUCTION

The theory of random graphs is often used to prove
the existence of an object (graph) in a nonconstructive
way. There are four known ways to introduce the random
graph:

– static model [12], [14],

– dynamic model [14],

– probabilistic model [3],

– Kolmogorov random model [7].

The probabilistic model seems to be used most frequently;
however, the Kolmogorov model has recently become
quite popular as well. In what follows we focus on these
two models in our paper. To compare the proving tech-
niques used in both above mentioned models we investi-
gate the geometrical properties of random tori.

We consider a d-dimensional torus T d
n with randomly

deleted edges. Accordingly, we introduce the probabilis-
tic space of all random d-dimensional tori, denoted by

G(T d
n , p). (The parameter p is called the probability of

an edge.)

Important geometrical properties of the random torus
are the structure of its subgraphs. The most important
convex subgraph is a grid. We estimate the upper bound
of the size r of the largest grid Gd

r ⊂ T , where T ∈

G(T d
n , p). This problem is, in some sense, analogous to

estimating the largest order of a clique in a random graph
(see [9], or [11] for stronger results).

In this paper it is shown that for the size of the largest
d-dimensional grid Gd

r ⊆ T the following inequality holds
asymptotically almost surely:

r ≤ (log1/p n)
1/d + 1 .

This result holds for both the probabilistic and Kol-
mogorov random models.

Finally, we comment the obtained results and give
some remarks on possible applications.

2 PRELIMINARIES

Let n, d be positive integers, such that n > 2. De-
note the set of n integers {0, 1, . . . , n − 1} by [n] . The

Cartesian product of d sets [n] is denoted by [n]d .
A d-dimensional vector over [n] is the d-tuple x =
(x1, . . . , xd) such that xi ∈ [n] for i = 1, . . . , d . We can

also write x ∈ [n]d . For two vectors x, y ∈ [n]d , their

Hamming distance is defined as ρ(x, y) =
∑d

i=1 |xi − yi| .

For n, d as above, a d-dimensional torus is the undi-
rected graph T d

n = (V,E), where V (T d
n ) = [n]d (that is

each vertex is labeled by a d-dimensional vector x ∈ [n]d )

and E(T d
n) is defined as follows. Vertices x, y ∈ V (T d

n)
are adjacent iff

(i) ρ(x, y) = 1, or

(ii) ρ(x, y) = n− 1 and x, y differ only in one number.

The degree of each vertex of T d
n is equal to 2d . The

order (number of vertices) of the torus T d
n is given by

|V (T d
n)| = nd and its number of edges is |E(T d

n)| = dnd .

For n, d as above, a d-dimensional grid is the undi-
rected graph Gd

n = (V,E), where V (Gd
n) = [n]d and

E(Gd
n) = {(x, y) | x, y ∈ [n]d , ρ(x, y) = 1} . The pa-

rameter n is called the size of the grid Gd
n . The order

of the grid Gd
n is |V (Gd

n)| = nd and its number of edges

is given by |E(Gd
n)| = d(n − 1)nd−1 . For the torus T d

n

and for a positive integer r , 1 ≤ r ≤ n , we denote the d-
dimensional grid on rd vertices which is a subgraph of the

torus T d
n by Gd

r ⊂ T d
n . The grid Gd

r ⊂ T d
n is induced by

the set of vertices S(a) = {(a1 + k, . . . , ad + k) | 0 ≤ k ≤

r} , for arbitrary a ∈ V (T d
n), where + denotes addition
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mod n . The vertex a will be called the reference ver-

tex of the grid Gd
r . Hence, each d-dimensional torus T d

n

contains nd (possibly overlapping) d-dimensional grids

Gd
r ⊂ T d

n . These grids differ in the labels of at least rd−1

vertices.

The O,Ω, o notation will be used in a standard way.
The notation lg x denotes the binary logarithm of x . The
ceiling of a real number x is denoted by ⌈x⌉ .

3 PROBABILISTIC MODEL

In this section we prove the upper bound on the pa-
rameter r such that the grid Gd

r is asymptotically almost
surely a subgraph of the torus with randomly deleted
edges. We use probabilistic arguments.

3.1 Random Tori

Let p ∈ R be a constant such that 0 < p < 1. Con-
sider that for a given d-dimensional torus T d

n each edge

exists in T d
n independently and with the probability p .

It means that Pr[{x, y} ∈ E(T d
n)] = p for all adjacent

vertices x, y ∈ V (T d
n). The constant p is called the prob-

ability of an edge. We can introduce the corresponding
probabilistic space, now.

Definition 1. Let (Ω,F , P r) be a probabilistic space,
where the class Ω consists of all (labeled) graphs T on

nd vertices such that V (T ) = V (T d
n) and E(T ) ⊆ E(T d

n).

If T has q edges, 0 ≤ q ≤ dnd , then the probability of
obtaining T as a result of random edge generation is given
by:

Pr[T ] = pq(1 − p)dn
d−q . (1)

The graph T will be called random d-dimensional torus.
The probabilistic space (Ω,F , P r) will be denoted by

G(T d
n , p) and called probabilistic space of all random d-

dimensional tori.

In order to describe a property of random tori we
will use the notions from probability theory, e.g. random
variables, expectations, etc. We will also use the following
property.

Proposition 1(Markov’s inequality). Let X be a non-

negative random variable with expectation E(X) and let

λ > 0 . Then the following inequality holds

Pr[X ≥ λ] ≤ E(X) · λ−1 . (2)

For more details see [5].

3.2 Upper Bound

Important geometrical properties of the random torus
are the structure of its subgraphs. The most impor-
tant convex subgraph of the torus (corresponding to a
complete subgraph of a graph) is a grid. We investi-
gate the upper bound of the size of the d-dimensional

grid Gd
r ⊆ T , where T ∈ G(T d

n , p) is the random d-
dimensional torus.

Given n, d, r as above and a ∈ V (T d
n), let us denote

the set of vertices which induce the grid Gd
r ⊂ T d

n by

Sr(a), so that a is the reference vertex of the grid Gd
r .

Let the event that a random torus T ∈ G(T d
n , p) contains

the gird Gd
r ⊂ T d

n induced by the set Sr(a) be denoted by
A . Let Xr be the associated indicator random variable
defined on the probabilistic space G(T d

n , p). It means that
Xr = 1 if T contains the grid induced by the set Sr(a),
and Xr = 0 otherwise. Let us define a random variable
Yr on G(T d

n , p) as Yr =
∑

Xr , the summation over all

sets Sr(a). It means that Yr is the number of grids Gd
r

in the random torus T . We compute the expectation of
Yr .

Lemma 1. For the expectation of the random variable

Yr the following equality holds

E(Yr) = ndpd(r−1)rd−1

. (3)

P r o o f . From the definition of the Xr we have

E(Xr) = Pr[A] = pd(r−1)rd−1

.

By linearity of expectation (where the summation ranges

over all vertices a ∈ V (T d
n))

E(Yr) =
∑

E(Xr) = ndpd(r−1)rd−1

.

Using this lemma we estimate the upper bound for the
parameter r .

Theorem 1. Let T ∈ G(T d
n , p) be a random d-di-

mensional torus. Then for the size of the largest d-
dimensional grid Gd

r ⊂ T the following inequality holds

r ≤ (log1/p n)
1/d + 1 . (4)

with the probability tending to one as n → ∞ . Hence the

largest grid Gd
r has the maximal order log1/p n+o(log n) .

P r o o f . By contradiction. The following inequality
holds

E(Yr) = ndpd(r−1)rd−1

≤ ndpd(r−1)d , (5)

since 0 < p < 1. By the substitution r = (log1/p n)
1/d+1

into (5) we have

E(Yr) ≤ ndpd log
1/p n = nd(1/p)−d log

1/p n = nd · n−d = 1 .
(6)

From Markov’s inequality (2) for λ = 1 and from (6)
follows that

Pr[Yt > 1] ≤ E(Yt) < 1 (7)

for arbitrary t > (log1/p n)
1/d + 1. The random variable

Yr counts the number of grids Gd
r in the random torus T .

The inequality (7) yields that there is no such a grid Gd
r ⊂

T with the size r > (log1/p n)
1/d+1 with the probability

tending to 1 as n → ∞ . Hence a contradiction.



Journal of ELECTRICAL ENGINEERING VOL. 51, NO. 12/s, 2000 61

4 KOLMOGOROV RANDOM MODEL

In this section we prove the analogous inequality using
the Kolmogorov complexity arguments. We introduce the
basic notions first.

4.1 Kolmogorov Complexity

Identify natural numbers N and a set of finite strings
(words) over the alphabet {0, 1} according to the struc-
ture of the following form

(0, ǫ), (1, 0), (2, 1), (3, 00), (4, 01), . . . ,

where ǫ denotes the empty word, such that the length
|x| of a natural number x is the number of bits in a
corresponding binary string, |ǫ| = 0.

Let us fix an effective enumeration of Turing ma-
chines T1, T2, . . . . All Turing machines use a tape al-
phabet {0, 1, B} . The input to a Turing machine is a
program — the binary string over {0, 1} — delimited
by blanks B on both sides, [13]. Using the delimiters,
a Turing machine can recognize the beginning and the
end of its program. The effective enumeration of Turing
machines induces an effective enumeration of partial re-
cursive functions φ1, φ2, . . . such that Ti computes φi

for each i . (For more details se [13].)

Let 〈·, ·〉 : N ×N → N denote a standard computable
bijective pairing function of which the inverse is com-
putable too. (It maps the pair (x, y) to the singleton

〈x, y〉 .) An example is 1|x|0xy . Define 〈x, y, z〉 induc-
tively by 〈x, 〈y, z〉〉 . There exists a universal partial re-
cursive function φ0 which from an input y computes the
output x as follows

φ0

(

〈y, 〈n, p〉〉
)

= φn(〈y, p〉) (8)

for all n, y, p . The function φ0 is represented by the
universal Turing machine TU .

Intuitively, the Kolmogorov complexity of a binary
string x is the shortest description of x . More precisely,
the Kolmogorov complexity can be defined in the follow-
ing way, [7].

Definition 2. Let us fix a universal partial recursive
function φ with the property (8). Let x, y, p be natural

numbers such that φ
(

〈y, p〉
)

= x . The partial recursive

function φ together with p and y is a description of x .
The conditional Kolmogorov complexity of x given y is

C(x|y) = min{ |p| : φ
(

〈y, p〉
)

= x} . (9)

C(x|y) = ∞ if there is no such a p . We say that
the program p computes x by φ , given y . The un-
conditional Kolmogorov complexity of x is defined as
C(x) := C(x|ǫ).

The function φ is called the reference function for

C . We denote C
(

x|〈y, z〉
)

by C(x|y, z). We will use the
following property of Kolmogorov complexity.

Proposition 2. There exists a constant c ∈ N such that

for all x, y ∈ N the following inequality holds:

C(x|y) ≤ |x|+ c . (10)

On the other hand, for each y ∈ N there exists an x ∈ N
such that C(x|y) ≥ |x| .

4.2 Kolmogorov random tori

Using the properties of strings with given Kolmogorov
complexity we introduce the Kolmogorov random tori.
This description can be interpreted in the way that oc-
currence/absence of each edge of a torus is chosen inde-
pendently at random.

Let n, d be constants as above. Let us encode (up to

automorphism) each d-dimensional torus T d
n (T for sim-

plicity) by binary string S(T ) with dnd bits. Assume
that bits represent the set of edges ordered in standard
lexicographical order without repetition. If the ith bit in
the string S(T ) attains the value 1 (0), the correspond-
ing edge is present (absent) in the torus T . This way we
can identify each torus (with possibly absent edges) by
corresponding binary string.

Definition 3. A d-dimensional torus T on nd vertices
has randomness deficiency at most δ(n) and is called
δ(n)-random, if

C(S(T )|n, d, δ) ≥ dnd − δ(n) . (11)

The main theorem of this section is the following.

Theorem 2. Let δ(n) be a function such that δ(n) →

∞ as n → ∞ . Almost all δ(n)-random tori T on nd

vertices contain the grid Gd
r ⊆ T whose size r satisfies

the inequality:

r ≤ (⌈lg n⌉)1/d + 1 . (12)

P r o o f . Let us consider the torus T such that the
Kolmogorov complexity of its description is given by (11).
So it is δ(n)-random. Assume that the torus T contains

a d-dimensional grid Gd
r . The size r of the grid can

be interpreted as a function of n . The description of
r = r(n) has constant length.

Let us construct a new encoding S∗(T ) of the torus
T as follows.

• Prefix a code of the reference vertex a ∈ T of the grid
Gd

r . The length of the code of a is ⌈lg nd⌉ bits.

• From S(T ) let us remove d(r − 1)r(d−1) bits corre-

sponding to the edges of the grid Gd
r .

• Keep all bits which correspond to the other edges.

• Save a constant number of bits representing this de-
scription.
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The length |S∗(T )| of a new code is as follows.

|S∗(T )| = |S(T )| − d(r − 1)r(d−1) + ⌈lgnd⌉+ c1 . (13)

This is a new description of the T and from the definition
of the Kolmogorov complexity and from (10) it follows
that there exists a constant c2 such that

C(S(T )|n, d, δ) ≤ |S∗(T )|+ c2 . (14)

Equations (11), (13) and (14) yield

dnd−δ(n) ≤ dnd−d(r−1)r(d−1)+d⌈lg n⌉+c1+c2 , (15)

which can be simplified to

d(r − 1)d ≤ d⌈lgn⌉+ δ(n) + O(1) . (16)

Note that δ(n) +O(1) ≥ 0. Hence, for a large enough n ,

the inequality (16) is satisfied only if r ≤ (⌈lg n⌉)1/d +1.

5 CONCLUSION

For a random d-dimensional torus T we studied the
sizes of the largest d-dimensional grid Gd

r ⊂ T . We used
the probabilistic and Kolmogorov complexity arguments.
Both inequalities obtained are very similar, they differ
only in the base of the logarithm. (The formulae are the
same if the condition p = 1/2 holds in the probabilis-
tic version.) Analogous relationships between these two
models (namely for the random graphs) are shown in [4],
however, a strong formula as in [2] is still not known.
(In [2] it is shown that static and probabilistic models of

random graphs are closely related if p ≈ |E(G)|/
(

n
2

)

.)

In our models the random torus can be interpreted
as an interconnection network with random faulty/over-
loaded communicational links. (The case d = 2 has a spe-
cial meaning described bellow.) The faults independently
occur with a constant probability. Analogous models (but
with faulty processors) are described e.g. in [8] and [10].

Our results can be used

(1) in the design of VLSI circuits with random faults (for
d = 2),

(2) in the description of the properties of the communi-
cation algorithms in the distributed systems with faulty
communicational links.

In the first case the inequality r ≤ (log1/p n)
1/d + 1,

especially for d = 2 and n sufficiently large, describes e.g.
the properties of the layout of fault-free two-dimensional
arrays to its faulty version with dilation 1.
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[6] LI, M.—VITÁNYI, P.M.B. : Kolmogorov Complexity Argu-

ments in Combinatorics, J. Comb. Th. Series A. 66 No. 2 (1994),

226–236, Errata, Ibid., 69 (1995), 183.
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