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SOME PROPERTIES OF SYSTEMS
WITH QUADRATIC HAMILTONIANS

Marcel Polakovič
∗

For a quadratic Hamiltonian the classical evolution, the evolution of mean values of quantum position and momentum,
classical projection, nonlinear evolution and the projection of quantum evolution by the momentum mapping are investigated.
All these evolutions can be, in a sense, regarded as being identical. For some of them the Planck constant is considered to
have a varying value.
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1 INTRODUCTION

Quadratic Hamiltonians can be considered both in
classical mechanics and in quantum mechanics (QM). Ex-
amples of systems given by quadratic Hamiltonians are
the free particle and harmonic oscillator. In the present
paper, we shall investigate some properties of systems
with quadratic Hamiltonians. We shall consider vari-
ous constructions of time evolutions based on quadratic
Hamiltonians, e.g. classical evolution, evolution of mean
values of quantum position and momentum, classical pro-
jection, nonlinear evolution. We shall show that these evo-
lutions can be in a natural way regarded as being iden-
tical. We shall also consider the Planck constant to be a
variable in some of these cases, and investigate the sys-
tem given by a quadratic Hamiltonian with the changed
value of the Planck constant. In the case ℏ → 0 this will
lead to the classical limit of QM.

In Section 1, some preliminary considerations are pre-
sented. In Section 2, the time evolution of the mean val-
ues of quantum position and momentum is investigated
where the Planck constant is a variable. This is related
to the approach to the classical limit of QM given in [3].
In Section 4, the classical projections [1] are considered
where the Planck constant is also a variable. This also has
a connection to the classical limit of QM. In Section 5, the
nonlinear evolution [2] is considered and in Section 6 the
projection of the quantum evolution by the momentum
mapping is investigated.

2 PRELIMINARIES

Let R
2n ∋ x = (x1, x2, . . . , x2n) = (q, p)

= (q1, . . . , qn, p1, . . . , pn)

be the 2n-tuple of coordinates of position and momentum

in the 2n-dimensional classical “flat” phase space. Let H

be the state space of a quantum mechanical system with

n degrees of freedom and

X = (X1, . . . , X2n) = (Q1, . . . , Qn, P1, . . . , Pn)

be the corresponding operators of position and momen-

tum. They generate an irreducible representation of the

Heisenberg canonical commutation relations (CCR).

The Planck constant ℏ is a fundamental constant of

Nature, but it is useful to investigate the limit transition

ℏ → 0 for some purposes. Therefore we shall consider

varying values of this constant. The changed value will
be denoted by λ2ℏ where λ 6= 1. The original value of

the Planck constant will be obtained by setting λ = 1.

The limit transition ℏ → 0 will be represented by λ→ 0

in this context. Now, for the possibly changed value of
Planck constant λ2ℏ we have

Xλ = (Xλ
1 , . . . , X

λ
2n) = (Qλ1 , . . . , Q

λ
n, P

λ
1 , . . . , P

λ
n )

the operators of position and momentum where we define

Qλi = λQi , Pλi = λPi , i = 1, . . . , n .

It can be straightforward checked that the operators Qλi ,

Pλi form an irreducible representation of CCR with the

value λ2ℏ of the Planck constant. Obviously, for λ = 1
we obtain X1 = X . Let us consider a projective represen-
tation of the additive group R

2n given by the well-known

Weyl operators

Ux = exp
( i

ℏ
X · S · x

)

where S is the standard symplectic matrix 2n× 2n with

elements

Sj j+n = −Sj+n j = 1 , j = 1, 2, . . . , n;

Sjk = 0 otherwise.
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For λ possibly different from 1 we have also the Weyl
operators

Uλx = exp
( i

λ2ℏ
Xλ · S · x

)

.

Obviously Uλx = U x

λ
.

We shall consider the quantum quadratic Hamiltonian

H =
1

2

2n
∑

i,j=1

aijXiXj (1)

where the real constants satisfy the relation aij = aji
in order to make the operator H symmetric. In fact, in
this case the operator H is essentially selfadjoint on a
common domain of all operators Xj . For the changed

value of Planck constant λ2ℏ it is natural to take the
following version of the quantum quadratic Hamiltonian:

Hλ =
1

2

2n
∑

i,j=1

aijX
λ
i X

λ
j . (2)

Obviously H1 = H . We shall also use the classical coun-
terpart of these quantum Hamiltonians:

h(x) =
1

2

2n
∑

i,j=1

aijxixj , (3)

which can be considered to be the their “classical limit”.

Let

x(0) =
(

x1(0), . . . , x2n(0)
)

=
(

q(0), p(0)
)

=
(

q1(0), . . . , qn(0), p1(0), . . . , pn(0)
)

(4)

be the initial state of the system with classical Hamilto-
nian h given by (3),

x(t) =
(

x1(t), . . . , x2n(t)
)

=
(

q(t), p(t)
)

=
(

q1(t), . . . , qn(t), p1(t), . . . , pn(t)
)

(5)

be the state evolved at time t .

Let us consider the symplectic reformulation of QM
given, e.g. in the work [1]. The role of phase space will be
played by the projective Hilbert space P (H). If ψ ∈ H
then Pψ ∈ P (H) is the corresponding onedimensional
projector. Given a λ > 0 and ψ ∈ H , the orbit of
generalized coherent states will be

Oλψ = {Uλxψ;x ∈ R
2n}.

Its natural projection into P (H) is

P
(

Oλψ
)

={Pη; η ∈ Oλψ}={UλxPψ
(

Uλx
)

−1
=PUλ

x
ψ;x ∈ R

2n}.

The orbits Oλψ are all identical sets if ψ is fixed, only the

parametrization by x is different for different λ . On each
orbit P (Oλψ) there is a unique Pφ ∈ P (H) such that for

all i = 1, 2, . . . , 2n , Tr
(

PφXi

)

= 0. Now if λ is fixed, for

each Pψ ∈ P (Oλφ) there exist unique x ∈ R
2n such that

Pψ = Pλx = UλxPφ
(

Uλx
)

−1
.

It would be correct to denote Pλx = Pλx,φ as this projector

depends also on the choice of φ . We shall not do this but

always if we deal with projectors Pλx where x or λ is

a variable, we consider φ to be fixed. From now on φ

will always denote such a natural “initial” element of the
orbit, i.e. with zero mean values of the observables Xi ,
i = 1, . . . , 2n . It can easily be seen now that the orbit
P (Oλφ) can be naturally identified with the “flat” space

R
2n . It is Tr

(

PλxX
λ
i

)

= xi for all i = 1, . . . , 2n .

Within this framework, we can consider classical pro-
jections [1]. These are classical systems given on the orbits

P (Oλφ) in the following way: If λ > 0 be given, let Hλ
q be

an arbitrary quantum Hamiltonian then the Hamiltonian
of the classical projection is given

hλcp
(

Pλx
)

= hλcp(x) = Tr
(

PλxH
λ
q

)

.

As the orbits P (Oλφ) can be identified with R
2n , the

classical projection can be considered to be a classical
Hamiltonian system on the phase space R

2n .

The next material is taken from [2]. Let GWH be the
Weyl Heisenberg group parametrized by
q = (q1, . . . , qn) ∈ R

n, p = (p1, . . . , pn) ∈ R
n , s ∈ R

with group multiplication

g(q, p, s)g(q′, p′, s′) = g
(

q+q′, p+p′, s+s′+
1

2
(q′ ·p−p′·q)

)

where q·p denotes the scalar product of q, p . If Lie(GWH)
denotes the Lie algebra of GWH and Lie(GWH)

∗ is
its dual, then the elements F ∈ Lie(GWH)

∗ can be
parametrized by parameters q0, p0 ∈ R

n, s0 ∈ R : F =
F (q0, p0, s0). For s0 6= 0 the coadjoint action of GWH

in the space Lie(GWH)
∗ in this parametrization has the

simple form

Ad∗(g(q, p, s))F (q0, p0, s0) = F (q + q0, p+ p0, s0) . (6)

The group GWH is a central extension of the additive
group R

2n . The abovementioned projective representa-
tion Ux of R2n can be extended to a unitary representa-
tion U(GWH) of GWH in this way: if x = (q, p) then

U(g(q, p, s)) = exp
( is

ℏ

)

Ux .

Given a unitary representation U of a Lie Group G , let
us define the corresponding momentum mapping

F : P (H) → Lie(G)∗ ,

F(Pψ) = Fψ ∈ Lie(G)∗ , Fψ(ξ) = Tr(PψXξ)

where ξ ∈ Lie(G) and Xξ is given by

U(exp tξ) = exp(−itXξ) .

If G = GWH then we can choose a basis {ξi; i =
0, 1, . . . , 2n} in Lie(GWH) such that Xξi = Xi for
i = 1, . . . , 2n , Xξ0 = X0 = ℏI .

3 EVOLUTION OF MEAN VALUES OF

QUANTUM POSITION AND MOMENTUM

In [3], an approach to the classical limit of QM is given
which relates the time evolution of the mean values of
position and momentum of a quantum system to the time
evolution of its classical limit via the transition to the
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limit ℏ → 0. For each value of ℏ , there is given a quantum
Hamiltonian Hℏ , operators of position and momentum
qℏ, pℏ and an initial state of the system. This initial state
is for each ℏ chosen conveniently on the orbit of Glauber
coherent states. Then it is shown that for ℏ → 0 the
time evolution of the mean values of quantum position
and momentum converges to the time evolution of the
classical limit.

We shall proceed in a similar way but only for quadratic

Hamiltonians. Let λ > 0 be given and Hλ be given by
(2). As in [3], a crucial role will be played by a convenient
choice of the initial state for given λ . In [3] Glauber
coherent states were used; we shall use the generalized
(Perelomov) coherent states (see, e.g. [5]). Let Pφ ∈ P (H)
be such that Tr(PφXi) = 0 for all i = 1, . . . , 2n . For each

λ > 0 we choose the initial state on the orbit P (Oλφ):

Pλx(0) = Uλx(0)Pφ(U
λ
x(0))

−1 .

Here x(0) ∈ R
2n parametrizes the initial state. It will be

fixed and λ will converge to 0.

For these initial states we shall investigate the time
evolution of mean values of observables Xλ

i (which play
the role of position and momentum). For a given value

λ > 0 and Hamiltonian Hλ let us denote the quantal
time evolution by

ϕH
λ

t,λ (P
λ
x(0)) = exp

(−it

λ2ℏ
Hλ

)

Pλx(0) exp
( it

λ2ℏ
Hλ

)

.

The mean value of the observable Xλ
i in this evolved state

will be Tr(ϕH
λ

t,λ (P
λ
x(0))X

λ
i ). The result is that these values

are for all λ > 0 identical to their classical counterparts
xi(t).

Theorem 1. Let x(0), x(t) be the classical states de-
fined by (4) , (5) . Let λ > 0 be arbitrary. Then

Tr
(

ϕH
λ

t,λ (P
λ
x(0))X

λ
i

)

= xi(t) , i = 1, . . . , 2n .

P r o o f . Let us first note that

exp
( it

λ2ℏ
Hλ

)

= exp
( it

λ2ℏ
λ2H

)

= exp
( it

ℏ
H
)

,

so

ϕH
λ

t,λ ≡ ϕHt,1.

For the initial state Pλ
x(0) the mean value of the observ-

able Xi is

Tr
(

Pλx(0)Xi

)

= Tr
(

Px(0)
λ

Xi

)

=
xi(0)

λ
.

Now we can use the well-known Ehrenfest theorem [4] for

the quadratic Hamiltonian H = H1 and the fact that for
a quadratic Hamiltonian the right-hand side of Hamilton
equations consists of linear functions. We obtain

Tr
(

ϕH
λ

t,λ (P
λ
x(0))Xi

)

= Tr
(

ϕHt,1
(

Px(0)
λ

)

Xi

)

=
xi(t)

λ
.

So we have

Tr
(

ϕH
λ

t,λ (P
λ
x(0))X

λ
i

)

= λTr
(

ϕH
λ

t,λ (P
λ
x(0))Xi

)

= λ
xi(t)

λ

= xi(t) which completes the proof.

Corollary. It is obvious that

lim
λ→0

Tr
(

ϕH
λ

t,λ (P
λ
x(0))X

λ
i

)

= xi(t) .

4 CLASSICAL PROJECTIONS

Another approach to the classical limit is by using the
classical projections [1], [6], [7]. If Hλ

q is a oneparameter

family of quantum Hamiltonians, the classical projection

for a given value of λ is given by the Hamiltonian

hλcp(x) = Tr(PλxH
λ
q ) .

if hcl is the corresponding classical limit, then it can be

shown

hλcp(x) −−−→
λ→0

hcl(x) .

In [6], an attempt is made to extend the convergence also

to the dynamics. Unfortunately, there is a mistake in the

proof of Theorem 2 in [6] but it seems that Theorem 3

in [6] will hold with some additional assumptions. The

convergence of dynamics means that if for each λ > 0

and corresponding classical projection we have the same

initial condition as for the classical limit then the time

evolution of classical projection will converge to the time

evolution of classical limit as λ→ 0.

We shall again consider only quadratic Hamiltonians

given by (2). Given λ > 0 then the Hamiltonian of the

classical projection is

hλcp(x) = Tr(PλxH
λ).

We will prove a

Lemma. For each λ > 0

(Uλx )
−1Xλ

i U
λ
x = Xλ

i + xiI , i = 1, . . . , 2n .

P r o o f . We have (see [1])

(Ux)
−1XiUx = Xi + xiI .

Then

(Uλx )
−1Xλ

i U
λ
x =

(

U x

λ

)

−1
λXiU x

λ
= λ

(

U x

λ

)

−1
XiU x

λ

= λ
(

Xi +
xi

λ
I
)

= λXi + xiI = Xλ
i + xiI .

Then we have

Theorem 2. Let h be given by (3), Hλ by (2), λ > 0 .

Then there exist a constant Cλ such that

hλcp(x) = Tr
(

PλxH
λ
)

= h(x) + Cλ

and
lim
λ→0

Cλ = 0.

Hence
lim
λ→0

hλcp(x) = h(x).
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P r o o f . It will be sufficient to prove the statement
for Hλ = Xλ

i X
λ
j . We have (here the projector Pφ is the

one specified in Section 2)

hλcp(x) = Tr
(

PλxH
λ
)

= Tr
(

UλxPφ(U
λ
x )

−1Xλ
i X

λ
j

)

= Tr
(

Pφ(U
λ
x )

−1Xλ
i X

λ
j U

λ
x

)

= Tr(Pφ(U
λ
x )

−1Xλ
i U

λ
x (U

λ
x )

−1Xλ
j U

λ
x

)

= Tr
(

Pφ(X
λ
i + xiI)(X

λ
j + xjI)

)

= Tr
(

Pφ(λXi + xiI)(λXj + xjI)
)

= λ2 Tr
(

PφXiXj

)

+λxi Tr
(

PφXj

)

+λxj Tr
(

PφXi

)

+ xixj Tr
(

Pφ
)

= xixj + λ2 Tr
(

PφXiXj

)

.

We can put Cλ = λ2 Tr
(

PφXiXj

)

.

As classical Hamiltonians differing only by a constant
generate the same dynamics, the proof of the next The-
orem is trivial. Let x(0) and x(t) be given by (4), (5);

let xλcp(0) be the initial state for the classical projection

given by Hamiltonian hλcp(x) = Tr
(

PλxH
λ
)

and xλcp(t)

the evolved state at time t .

Theorem 3. Let λ > 0 be given and

x(0) = xλcp(0) .

Then for arbitrary t

x(t) = xλcp(t) .

Corollary. The limit transition lim
λ→0

xλcp(t) = x(t)

is satisfied trivially.

5 NONLINEAR EVOLUTION

We shall look for the solutions of the following nonlin-
ear Schroedinger equation [2, Section 3.5]:

i
d

dt
ψ(t) =

2n
∑

j=1

∂

∂Fj
h
(

Tr(Pψ(t)X1),

. . . ,Tr(Pψ(t)X2n)
)

Xjψ(t) (7)

where the state ψ(0) ∈ H at time t = 0 is an analytic
vector [2] for the representation U(GWH) given in Sec-
tion 2, h is given by (3) and the quantities Tr(Pψ(t)Xj)

are inserted for the components Fj into

∂h(F1, . . . , F2n)

∂Fj
, j = 1, . . . , 2n .

Let
Tr

(

Pψ(0)Xj

)

= xj(0) , j = 1, . . . , 2n ,

so Pψ(0) = P 1
x(0) in the notation of Section 2. (There ex-

ists a corresponding projector Pφ according to Section 2.)
We obtain the following

Theorem 4. The solution ψ(t) of the equation (7) is

such that the projector Pψ(t) ∈ P (O1
ψ(0)) is the unique

one having the property

Tr(Pψ(t)Xj) = xj(t) , j = 1, . . . , 2n

where xj(t) is determined by (5) .

P r o o f . According to [2, Theorem 3.5.1] in the cor-
responding notation it is sufficient to find the cocycle el-
ement gh(t, F (0)) ∈ GWH where

F (0) = F(Pψ(0)) = (x1(0), . . . , x2n(0), s0) ,

and 0 6= s0 ∈ R is a constant. Let ϕht denote the classical
flow on Lie(GWH)∗ with Hamiltonian h . The abovemen-
tioned cocycle element is defined by the relation

ϕht F (0) = Ad∗(gh(t, F (0))F (0) .

We have

ϕht F (0) = (x1(t), . . . , x2n(t), s0)

where xj(t) be determined by (5) as ϕht is the usual
Hamiltonian flow on the corresponding coadjoint orbit.
According to (6) we obtain

gh(t, F (0)) = g(q(t)− q(0), p(t)− p(0), s)

for some s ∈ R , so according to [2, Theorem 3.5.1]

ψ(t) = U(g(q(t)− q(0), p(t)− p(0), s))ψ(0).

Since

ψ(0) = U(g(q(0), p(0), s′))φ

where s′ ∈ R and the vector φ determined in Section 2
has the property that Tr

(

PφXj

)

= 0 for j = 1, . . . , 2n ,

we obtain

ψ(t) = U(g(q(t), p(t), s′′))φ

where s′′ ∈ R and finally

Tr
(

Pψ(t)Xj

)

= xj(t) , j = 1, . . . , 2n .

R e m a r k . From Theorem 4 it follows that the non-
linear evolution considered can be formally identified in
a natural sense with the classical evolution.

R e m a r k . If the orbit O1
ψ(0) contains an eigenvec-

tor of H then according to [1] the quantum evolution
given by the Hamiltonian H lies in this orbit. If we use
the Ehrenfest theorem, we obtain that this quantum evo-
lution is identical with the nonlinear evolution considered
here.

6 EVOLUTION PROJECTED

BY MOMENTUM MAPPING

If we have a quantum Hamiltonian H (not necessarily
quadratic), it generates a time evolution in P (H). The
space P (H) is projected into Lie(GWH)

∗ by the mo-
mentum mapping F . More precisely, it is projected onto
a coadjoint orbit of GWH in Lie(GWH)

∗ . There arises
a natural question: if the quantum flow after the pro-
jection by F gives a well defined ”flow” in Lie(GWH)

∗ .
More precisely: if F(Pψ) = F(Pη), does it follow that

F(ϕHt,1(Pψ)) = F(ϕHt,1(Pη))?

It can be shown that if H is quadratic then the answer
is positive.



Journal of ELECTRICAL ENGINEERING VOL. 51, NO. 12/s, 2000 67

Theorem 5. Let H be given by (1). Let ψ, η ∈ H be
such that F(Pψ) = F(Pη) . Then for arbitrary time t

F(ϕHt,1(Pψ)) = F(ϕHt,1(Pη)) .

P r o o f . If we denote

F(Pψ) = F(Pη) = F (0) = (F1(0), . . . , F2n(0), s0)

where 0 6= s0 ∈ R , then

Fi(0) = Tr(PψXi) = Tr(PηXi) = xi(0), i = 1, . . . , 2n.

Let

F(ϕHt,1(Pψ)) = Fψ(t) = (Fψ1 (t), . . . , Fψ2n(t), s0) ,

F(ϕHt,1(Pη)) = F η(t) = (F η1 (t), . . . , F
η
2n(t), s0) .

Then a consequence of Ehrenfest theorem and of the fact
that H is quadratic is that

F
ψ
i (t) = Tr(ϕHt,1(Pψ)Xi) = xi(t) , i = 1, . . . , 2n ,

F
η
i (t) = Tr(ϕHt,1(Pη)Xi) = xi(t), i = 1, . . . , 2n .

R e m a r k . From the proof it is clear that the “pro-
jected” evolution considered in the given coordinates of
Lie(GWH)∗ can be formally identified with the corre-
sponding classical evolution.

7 CONCLUSION

It was shown that for quadratic Hamiltonians various
constructions of time evolutions can be in a natural way

regarded as being identical. There arises a natural ques-

tion if there exist some deeper reasons for this fact.
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