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AXIOMATIZATIONS OF STANDARD ALGEBRAS
FOR FUZZY PC BY USE OF TRUTH CONSTANTS

Zuzana Honźıková
∗

This paper deals with fuzzy propositional calculi (PC) given by continuous t -norms. The logical approach is that of
[3]; enlarging upon that, we try to axiomatize a logic given by a particular t -norm, namely, an ordered sum of a copy of
 Lukasiewicz’s t -norm and a copy of product t -norm. We enrich the propositional language by a truth constant denoting the
one delimiting idempotent; then the axiomatization can be obtained in a uniform way.
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NOTATION AND CONVENTIONS

Closed intervals (mostly of reals) are denoted by
square brackets, like [0, 1]; open intervals by round brack-
ets, like (0, 1).

By a ‘formula’ we mean a propositional formula in
the corresponding language. Formulas are always denoted
with Greek letters.

Precedence of connectives in decreasing order: nega-
tion, conjunctions, disjunction, implication, equivalence.
We sometimes omit parentheses for readability’s sake.
Thus ¬ϕ&ψ → χ should be parsed as ((¬ϕ) &ψ) → χ .

We say at times that ‘intervals are isomorphic’, which
should be read as ‘isomorphic w.r.t. all operations de-
fined’; or that ‘t-norms are isomorphic on [x, y] ’, which
in turn means that the underlying interval(s) are isomor-
phic w.r.t. the t-norms; we refrain from such abbrevia-
tions where confusion could arise.

1 A READER’S DIGEST OF FUZZY PC

This section gives a very brief overview of basic notions
and statements of fuzzy propositional calculus, following
the approach of [3]. It is intended as a referential back-
ground to the results in the following section; those who
wish to pursue the matter in depth are referred to [3] as
a good starting point.

1.1 t-norms and their residua

We define truth functions for the basic propositional
connectives of fuzzy PC, namely &, → , and the constant
0. We start with the strong conjunction &; note that the
choice of the truth function for & uniquely determines
the whole algebra of truth values.

Definition 1.1.1. A t-norm is a binary operation ∗ on
[0, 1], satisfying the following conditions:

(i) ∗ is commutative and associative

(ii) ∗ is non-decreasing in both arguments

(iii) 1 ∗ x = x and 0 ∗ x = 0 for all x ∈ [0, 1].

We shall only be interested in continuous t-norms1

(i.e., continuous mappings of [0, 1]2 onto [0, 1]) as possi-
ble truth functions for &.

For each continuous t-norm ∗ there is a unique op-
eration ⇒ , defined (for x, y ∈ [0, 1]) as x ⇒ y =
max{z;x ∗ z ≤ y} ; this operation is called the residuum

of the t-norm ∗ , and is used as the truth function for
the implication → . Note that by the above definition,
x⇒ y = 1 iff x ≤ y .

There are three outstanding examples of continuous
t-norms (their importance is justified by a theorem in-
cluded further on):  Lukasiewicz’s t-norm ∗ L , Gödel’s
t-norm ∗G , and product t-norm ∗Π ; their definitions,
including the respective residua for x > y , are listed be-
low:

 L: x ∗ y = max(0, x+ y − 1) x =⇒ y = 1 − x+ y

G: x ∗ y = min(x, y) x =⇒ y = y

Π: x ∗ y = x · y x =⇒ y =
y

x

A continuous t-norm ∗ determines the algebra
[0, 1]∗ = ([0, 1], 0, ∗,⇒); these structures are called stan-

dard algebras for fuzzy PC.

We introduce a theorem which characterizes all contin-
uous t-norms and explains the importance of the three ex-
amples above. Let ∗ be a continuous t-norm. An element
x ∈ [0, 1]∗ is idempotent (w.r.t. ∗) iff x∗x = x . The set of
all idempotents of ∗ is a closed subset of [0, 1]. Its com-
plement is a union of countably many non-overlapping
open intervals; denote this set of intervals Io . Let I be
the set of closures of intervals in Io .

1Should t-norms appear in this paper without the attribute

‘continuous’, we mean continuous t-norms.

∗ Institute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou věž́ı 8, 182 07 Prague, Czech Republic,
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Theorem1.1.2.

(i) For each [a, b] ∈ I , ∗ on [a, b] is isomorphic either
to the product t-norm (on [0, 1]) or to  Lukasiewicz
t-norm (on [0, 1]).

(ii) If for x, y ∈ [0, 1] there is no [a, b] ∈ I such that
x, y ∈ [a, b] , then x ∗ y = min(x, y) .

To close this section we include a useful lemma.

Lemma 1.1.3. For x, u, y ∈ [0, 1] , for any t-norm ∗ :

(i) if y ≤ x , then ∃z ∈ [0, 1] (y = z ∗ x)

(ii) 1 ⇒ y = y

1.2 Basic logic and its extensions

The language and syntax of fuzzy PC are almost the
same as in classical propositional logic: the language has
in addition a truth constant 0 (which is not definable
here) and the connective ∧ (or &). Formulas, proofs etc.
are defined as usual. Propositional connectives of fuzzy
PC are defined from &, → , and 0 as follows:

ϕ ∧ ψ is ϕ & (ϕ→ ψ)

ϕ ∨ ψ is
(

(ϕ→ ψ) → ψ
)

∧
(

(ψ → ϕ) → ϕ
)

¬ϕ is ∗ ϕ→ 0

ϕ ≡ ψ is (ϕ→ ψ) & (ψ → ϕ)

Fix a continuous t-norm ∗ ; this determines uniquely a
standard algebra [0, 1]∗ and the corresponding proposi-
tional calculus PC(∗), where evaluations of propositional
variables extend to formulas as follows:

e(0) = 0

e(ϕ & ψ) = e(ϕ) ∗ e(ψ)

e(ϕ→ ψ) = e(ϕ) ⇒ e(ψ)

The shortcuts for evaluating other propositional connec-
tives are the precomplement (the truth function of nega-
tion ¬), defined as −x = x ⇒ 0, and the operations
min(x, y) and max(x, y) (truth functions of ∧ and ∨).

A formula ϕ is a 1-tautology of a standard algebra
[0, 1]∗ iff it evaluates to 1 under any evaluation in [0, 1]∗ .
ϕ is a t-tautology iff it is a 1-tautology of [0, 1]∗ for
any continuous t-norm ∗ . Note that formulas translate
to terms, i.e., for each formula ϕ there is a term τ in
the language of standard algebras, such that for every
standard algebra [0, 1]∗ and every evaluation e in this
algebra, τ evaluates to 1 under e iff [0, 1]∗ |= e(ϕ).

Now we define the basic logic; its axioms are t-
tautologies.

Definition 1.2.1. The following formulas are the axioms
of the basic logic (denoted BL).

(A1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))

(A2) (ϕ & ψ) → ϕ

(A3) (ϕ & ψ) → (ψ & ϕ)

(A4) (ϕ & (ϕ→ ψ)) → (ψ & (ψ → ϕ))

(A5a) (ϕ→ (ψ → χ)) → ((ϕ & ψ) → χ)

(A5b) ((ϕ & ψ) → χ) → (ϕ→ (ψ → χ))

(A6) ((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ)

(A7) 0 → ϕ The inference rule of BL is modus ponens.

For example and for convenience, we list formulas
provable in BL that will be used further in this work;
for proofs and/or more examples of BL-provable formu-
las, see [3].

Lemma 1.2.2. BL proves these formulas:

(i) ϕ→ (ψ → ϕ)

(ii) (ϕ→ (ψ → χ)) → (ψ → (ϕ→ χ))

(iii) ϕ→ (ψ → (ϕ & ψ))

(iv) (ϕ & (ϕ→ ψ)) → ψ

(v) ((α → β) & (γ → δ)) → ((α & γ) → (β & δ))

(vi) ϕ ∧ ψ → ϕ , ϕ ∧ ψ → ψ , ϕ & ψ → ϕ ∧ ψ

(vii) ((ϕ→ ψ) ∧ (ϕ→ χ)) → (ϕ→ (ψ ∧ χ))

(viii) ϕ→ (ϕ ∨ ψ) , ψ → (ϕ ∨ ψ) , (ϕ ∨ ψ) → (ψ ∨ ϕ)

(ix) (ϕ & (ψ ∧ χ)) ≡ ((ϕ & ψ) ∧ (ϕ & χ))

BL may be extended by additional axioms (or, schemas
of axioms); below are listed those that yield the calculi
given by  Lukasiewicz’s, Gödel’s, and product t-norm, re-
spectively:
 Lukasiewicz’s logic: ¬¬ϕ→ ϕ ( L)
Gödel’s logic: ϕ→ (ϕ & ϕ) (G)
Product logic:

¬¬χ → [((ϕ & χ) → (ψ & χ)) → (ϕ→ ψ)] (Π1)

and ϕ ∧ ¬ϕ→ 0 (Π2)

1.3 BL-algebras and completeness theorems

In this section we define a general version of algebras
of truth values for fuzzy PC (i.e., BL and its extensions).
Standard algebras are a subclass of these.

Definition 1.3.1. A residuated lattice is an algebra
L = (L,∪,∩, ∗,⇒, 0, 1) with four binary operations and
two constants such that

(i) (L,∪,∩, 0, 1) is a lattice with largest element 1 and
least element 0 (with respect to the lattice ordering
≤)

(ii) (L, ∗, 1) is a commutative semigroup with unit ele-
ment 1, i.e., ∗ is commutative, associative, 1∗x = x

for all x

(iii) ∗ and ⇒ form an adjoint pair, i.e., z ≤ (x ⇒ y) iff
x ∗ z ≤ y for all x, y, z ∈ L .

A residuated lattice is a BL-algebra iff the following
identities hold for all x, y ∈ L :

(i) x ∩ y = x ∗ (x⇒ y)

(ii) (x⇒ y) ∪ (y ⇒ x) = 1

A BL-algebra is linearly ordered iff its lattice order-
ing is linear, i.e., for any x, y ∈ L , x∩y = x or x∩y = y .
Linearly ordered BL-algebras are also called BL-chains.

Note that the class of BL-algebras is a variety.

Lemma 1.3.2. Let L = (L,∪,∩, ∗,⇒, 0, 1)
be a BL-algebra and x, y, u ∈ L . Then

(i) if x ≤ u ≤ y and u is idempotent then x ∗ y = x

(ii) if x < u ≤ y and u is idempotent then y ⇒ x = x

For proof, see [2].
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Let L be a BL-algebra. An L-evaluation of proposi-
tional variables is a mapping e , assigning to each propo-
sitional variable an element of L ; evaluation of formulas
is obtained using 0, ∗ , and ⇒ (in L) to evaluate 0, &,
and → . A formula ϕ is an L-tautology iff e(ϕ) = 1 for
all L -evaluations e . A formula is a BL-tautology iff it is
an L -tautology for all BL-algebras L .

Let C be a schematic extension of BL (i.e., a set
of propositional formulas, including the axioms of BL).
A BL-algebra L is a C -algebra iff any ϕ ∈ C is an
L-tautology, i.e., e(ϕ) = 1 for all L -evaluations e . A
formula is a C -tautology iff it is an L-tautology for all
C -algebras L . A C -chain is a linearly ordered C -algebra.

Theorem 1.3.3. BL is sound w.r.t. BL-algebras, i.e.,
if ϕ is provable in BL, it is an L -tautology for each
BL-algebra. Generally, if a schematic extension C proves
ϕ , then ϕ is an L-tautology for each C -algebra L .

Theorem 1.3.4 (Completeness). The following three
conditions are equivalent:

(i) ϕ is provable in BL

(ii) for each BL-algebra L , ϕ is an L-tautology

(iii) for each linearly ordered BL-algebra L , ϕ is
an L -tautology.

The proof of this statement also shows that a schematic
extension C of BL proves ϕ iff ϕ is an L -tautology for
each C -algebra L iff ϕ is an L-tautology for each linearly
ordered C -algebra L .

This means that the three calculi  L, G, and Π are
complete w.r.t. the respective classes of algebras. In
particular, BL-algebras  L for which ¬¬ϕ → ϕ is an
 L-tautology are called MV-algebras (MV standing for
“many-valued”). BL-algebras satisfying the axiom G are
called regular Heyting algebras or simply G-algebras;
BL-algebras satisfying the two axioms of Π are called
product algebras or Π-algebras.

In the following we shall also need the notion of an
ordered (or ordinal) sum of BL-chains.

Definition 1.3.5. Let C be a linearly ordered set with
least element 0 and largest element 1. For c ∈ C , let c+

be the upper neighbour of c in C if it exists, otherwise
c+ = c . For each c ∈ C , let Ac be an isomorphic copy
of a BL-chain with the least element c and the largest
element c+ . Assume that the non-extremal elements of
Ac; c ∈ C are not elements of any Ac′ , c

′ ∈ C, c 6= c′ .

The ordered sum
⊕

c∈C
Ac is defined as follows:

(i) the domain is
⋃

c∈C
Ac

(ii) for x ∈ Ac1 , y ∈ Ac2 define x ≤ y iff either c1 = c2
and x ≤c1 y , or c1 < c2 , c1, c2 ∈ C

(iii) x ∗ y = x ∗c y for x, y ∈ Ac, c ∈ C , otherwise
x ∗ y = min(x, y)

(iv) x⇒ y = 1 iff x ≤ y

(v) x⇒ y = x⇒c y for x, y ∈ Ac , x > y , c ∈ C

(vi) x ⇒ y = y for x ∈ Ac1 , y ∈ Ac2 , c1, c2 ∈ C , and
c1 > c2 .

Lemma 1.3.6. In the above notation, A =
⊕

c∈C
Ac is

a BL-chain.

For the following statement we need the notion of sat-
uration. A precise definition would demand more termi-
nology and will be found in [2]. Saturation means that
there is an idempotent element delimiting (in the sense
of ordering) each two consecutive copies of BL-chains in
the sum (i.e., some of the elements of C may be dropped
and the result is still a BL-chain). For each BL-chain there
is a (unique) saturation with the same set of tautologies.
We shall only deal with saturated BL-chains.

Theorem 1.3.7. Each saturated BL-chain is an ordered
sum of isomorphic copies of MV-chains, G-chains, and
Π-chains.

For proof, see [1].

1.4 Standard completeness

It has long been an open problem whether BL is com-
plete w.r.t. the class of standard algebras. In [2], this
problem is reduced to the question of whether two ad-
ditional axioms B1 and B2 are redundant (provable in
BL). An affirmative answer to this question was recently
presented in [1].

Theorem 1.4.1. BL is complete w.r.t. standard alge-
bras; i.e., a formula ϕ is a theorem of BL iff it is a t-
tautology.

Theorem 1.4.2.  L is complete w.r.t. [0, 1] L , G is com-
plete w.r.t. [0, 1]G , Π is complete w.r.t. [0, 1]Π .

The standard completeness proofs are carried out in
slightly different fashion in each case. In all three cases
the crucial point is the statement that each finite subset of
a linearly ordered MV-algebra (G-algebra, Π-algebra re-
spectively) can be locally embedded into [0, 1] L ([0, 1]G ,
[0, 1]Π respectively). For example, let  L be a linearly or-
dered MV-algebra, and S be a finite subset of L . Then
there is a partial isomorphism of S into [0, 1] L , i.e., a 1–1
mapping f s.t. for all x, y, z ∈ S ,

z = x ∗ y iff f(z) = f(x) ∗ f(y)

z = x⇒ y iff f(z) = f(x) ⇒ f(y)

x ≤ y iff f(x) ≤ f(y)

The same result can be obtained (through a different
construction) for G and Π.

Therefore, if a formula ϕ is not provable in  L and
consequently is not an L-tautology of an MV-chain L ,
then it is not a tautology of [0, 1] L ; similarly for G and
Π.

2  L⊕Π–NORMS

This chapter investigates the logic given by one par-
ticular example of a continuous t-norm. A truth con-
stant has been added to the propositional language to
ease the task. Axiomatization of this logic without the
additional constant is yet to be found; BL is not com-
plete w.r.t. the standard algebra given by this t-norm,
i.e., some schematic extension is needed.



Journal of ELECTRICAL ENGINEERING VOL. 51, NO. 12/s, 2000 71

2.1 L⊕Π-norms

Informally, an L⊕Π-norm is obtained by sticking to-
gether an isomorphic copy of the  Lukasiewicz’s t-norm
and an isomorphic copy of the product t-norm on [0, 1],
in the sense of the representation theorem for continu-
ous t-norms, i.e., delimited with one idempotent element
named h (for ‘half’). We require that h 6= 0 and h 6= 1;
it does not matter which element plays the role of h , as
long as it is neither 0 nor 1.

Definition 2.1.1. A continuous t-norm ∗ L⊕Π is an
L⊕Π-norm iff there is an element h ∈ (0, 1) such that
h ∗ L⊕Π h = h , and bijective mappings f and g ,

f : [0, 1] → [0, h] , g : [0, 1] → [h, 1] ,

such that for a, b ∈ [0, 1],

f(a ∗ L b) = f(a) ∗ L⊕Π f(b) , g(a ∗Π b) = g(a) ∗ L⊕Π g(b) .

Lemma 2.1.2. The mapping f from the previous defi-
nition is increasing and continuous. Moreover, if 0 ≤ x <
y ≤ h , then also f(y ⇒ x) = f(y) ⇒ f(x) . Similarly for
g .

We prove a more general version of this statement:

Theorem 2.1.3. Let ∗a , ∗b be two continuous t-norms,
let 0 ≤ a1 < a2 ≤ 1 , where a1 and a2 are idempotents of
∗a , let 0 ≤ b1 < b2 ≤ 1 and let f be a bijective mapping
of [a1, a2] onto [b1, b2] , such that (∀x, y ∈ [a1, a2]) f(x ∗a
y) = f(x) ∗b f(y) . Then

(i) f is increasing (and hence continuous) on [a1, a2] ,
and

(ii) (∀x, y ∈ [a1, a2]) , x > y implies f(x ⇒a y) =
f(x) ⇒b f(y) .

P r o o f . (i) Suppose x < y , x, y ∈ [a1, a2] . Then, by
1.1.3 (i), ∃z(z∗ay = x). In this case a1 ≤ z ≤ a2 , because
a1 ∗a y = a1 and a2 ∗a y = y . Thus f(z) ∗b f(y) = f(x)
and therefore f(x) ≤ f(y). Because f(x) = f(y) is
impossible, f(x) < f(y).
(ii) We want to prove f(x ⇒a y) = f(x) ⇒b f(y) for
x > y , x, y ∈ [a1, a2] . By definition, f(x) ⇒b f(y) =
max{z; z ∗b f(x) ≤ f(y)} . Since f is increasing, this is
equal to f(max{u;u ∗a x ≤ y}), i.e., f(x⇒a y).

Corollary 2.1.4. Let ∗1 , ∗2 be two L⊕Π-norms. Then
the two standard algebras [0, 1]∗1

and [0, 1]∗2
are isomor-

phic.

In a fixed language, all isomorphic structures have
the same set of tautologies, therefore in the following we
pick any representative from the (uncountable) class of
L⊕Π-norms.

2.2 Axioms of L⊕Π

We assemble propositional formulas which determine,
as closely as possible, the particulars of the L⊕Π-norm
defined above. For a revision, the formulas should guar-
antee the existence of a non-extremal idempotent, should
specify that ∗ on the “bottom” behaves like  Lukasiewicz’s
t-norm, and on the “top” like product t-norm. In the first
attempt, we include all promising formulas, disregarding
independence claims. Refinements will follow in 2.5.

We introduce a new truth constant h , and add an

axiom

h & h ≡ h (Id)

This states the existence of an idempotent element h .

Adding another axiom ¬¬h ascertains that h 6= 0.

Whenever h is idempotent (as secured by (Id) in this

case), e(¬¬h) = 1 iff e(h) 6= 0 for any t-norm ∗ and

any evaluation e . There is however, as shown in 2.3.2, no

formula expressing h 6= 1.

The rest of intended axioms will be “translated” ax-

ioms of  Lukasiewicz and product logics (including the ax-

ioms of BL). We introduce two functions ♭ and ♯ , oper-

ating on formulas, defined as follows2:

0
♭

= 0 0
♯

= h

1
♭

= h 1
♯

= 1

p♭ = p ∧ h p♯ = p ∨ h

(ϕ&ψ)♭ = ϕ♭&ψ♭ (ϕ&ψ)♯ = ϕ♯&ψ♯

(ϕ→ ψ)♭ = (ϕ♭ → ψ♭) ∧ h (ϕ→ ψ)♯ = ϕ♯ → ψ♯

Theorem 2.2.1. If ♭ and ♯ are as above, ϕ and ψ are

formulas, then:

(i) ϕ ≡ ψ is a tautology of [0, 1] L iff ϕ♭ ≡ ψ♭ is a

tautology of [0, 1] L⊕Π

(ii) ϕ ≡ ψ is a tautology of [0, 1]Π iff ϕ♯ ≡ ψ♯ is a

tautology of [0, 1] L⊕Π

P r o o f . In [0, 1] L⊕Π , define new operations 1h = h

and a ⇒h b = min{a ⇒ L⊕Π b, h} . Then [0, h] is closed

with respect to ∗ L⊕Π and ⇒h , and the structure

 L♭ = ([0, h], 0, 1h, ∗ L⊕Π,⇒
h)

is isomorphic to [0, 1] L using Lemma 2.1.2; denote this

isomorphism f . Therefore, if ϕ and ψ are equivalent

under an evaluation e in [0, 1] L , they are equivalent under

an evaluation e′ in  L♭ , where e′(pi) = f(e(pi)) for each

propositional variable in ϕ or ψ , and vice versa.

By induction on ϕ one proves that ϕ♭(a1, . . . , an) eval-

uated in [0, 1] L⊕Π yields the same element as

ϕ(min(a1, h), . . . ,min(an, h)) in  L♭ .

The case of ♯ is analogous; define 0h = h , then the

structure

Π♯ = ([h, 1], 0h, 1, ∗ L⊕Π,⇒ L⊕Π)

is isomorphic to [0, 1]Π .

In particular, if ϕ is a tautology of [0, 1] L , then ϕ♭ ≡ h

is a tautology of [0, 1] L⊕Π . Let BL♭ be the set of formulas

{ϕ♭ ≡ h ; ϕ is an axiom of BL} . Applying ♭ to ( L), one

gets
(

[([ (ϕ♭ → 0) ∧ h ] → 0) ∧ h ] → ϕ♭
)

∧ h

2though 1 is definable in BL, we include it for clarity’s sake
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which can be simplified using negation; the desired axiom
is

[

([¬[¬ϕ♭ ∧ h ] ∧ h ] → ϕ♭) ∧ h
]

≡ h (  L♭ )

Similarly, BL♯ are the axioms of BL translated using
♯ , and ♯ applied to (Π1) and (Π2) in turn yields
(

(χ♯ → h) → h
)

→
(

(ϕ♯ &χ♯ → ψ♯ &χ♯) → (ϕ♯ → ψ♯)
)

(

ϕ♯ ∧ (ϕ♯ → h)
)

→ h

respectively; these formulas will be denoted Π1♯ and Π2♯

respectively.

Definition 2.2.2. The set of axioms of the logic  L ⊕ Π
is as follows:

 L ⊕ Π = BL ∪ {h & h ≡ h} ∪ {¬¬h}

∪ BL♭ ∪ BL♯ ∪ { L♭} ∪ {Π1♯} ∪ {Π2♯}

From Theorem 2.2.1, and considering that h is fixed
as a nonzero element of [0, 1], we immediately obtain:

Lemma 2.2.3. The axioms of  L ⊕ Π are sound with
respect to any [0, 1] L⊕Π .

2.3 L ⊕ Π-algebras

Definition 2.3.1. An L ⊕ Π-algebra is a BL-algebra
with an additional constant element h , satisfying all the
axioms of L ⊕ Π.

L ⊕ Π-algebras are defined by a set of propositional
formulas and consequently form a variety.

By checking the proof of completeness theorem for
BL and its schematic extensions, we obtain complete-
ness of L ⊕ Π w.r.t. L ⊕ Π-algebras: a propositional for-
mula is provable in L ⊕ Π iff it is a tautology of all
L ⊕ Π-algebras iff it is a tautology of all linearly ordered
L ⊕ Π-algebras.

The aim of the following section will be to prove
completeness with respect to [0, 1] L⊕Π . Note that any
MV-algebra is an L ⊕ Π-algebra with h = 1. (Due to

the axiom ¬¬h , the only L ⊕ Π-algebra satisfying h = 0
is the trivial one-element algebra.) We cannot, however,
prevent h from being equal to 1:

Lemma 2.3.2. The condition h 6= 1 is not expressible
by a propositional formula (in a system extending BL ∪
{Id}).

P r o o f . The proof is based on the observation that
for any linearly ordered algebra (in our language), satis-
fying BL and (Id), there is a homomorphism sending all
elements of [h, 1] to 1.
Add a constant h to the language of standard algebras
and suppose there is a formula ϕ that holds in a standard
algebra iff h ∗ h = h and h 6= 1; let A be the class of all
standard algebras where ϕ holds. Then any [0, 1] L⊕Π

is

in A ; pick one standard L ⊕ Π-algebra A . In [0, 1] L , set
h = 1. Define a mapping f : A −→ [0, 1] L , sending [0, h]
in A isomorphically to [0, 1] (by definition of L⊕Π-norms
such isomorphism always exists), and all elements of [h, 1]
to 1. Then f is a homomorphism: if x ≤ h ≤ y , we get

f(x∗y) = f(min(x, y)) = f(x) = f(x)∗ L1 = f(x)∗ Lf(y);
as to ⇒ , if x < h < y , then f(y ⇒ x) = f(x) =
1 ⇒ L f(x) = f(y) ⇒ L f(x); if h ≤ x ≤ y , then
f(y ⇒ x) ≥ f(x) = 1, and f(y) ⇒ L f(x) = 1 ⇒ L 1 = 1.
Since homomorphisms preserve validity of formulas, ϕ
must hold in [0, 1] L . But in [0, 1] L , h = 1; this is contra-
dictory, and therefore, no such ϕ exists.

This means that all L ⊕ Π-tautologies not contain-

ing h are also MV-tautologies; moreover, all L ⊕ Π-

tautologies without h are also Π-tautologies; this simple
case is easily verified by observing that in any (linearly
ordered) L ⊕ Π-algebra, the subalgebra {0} ∪ (h, 1] is a
linearly ordered Π-algebra). By the completeness theo-

rem therefore, for any formula ϕ not containing h , if
L ⊕ Π ⊢ ϕ then  L ⊢ ϕ and Π ⊢ ϕ . The same is true for
standard algebras: any tautology of [0, 1] L⊕Π not con-

taining h is a tautology of [0, 1] L and of [0, 1]Π .

L ⊕ Π, MV, Π, Π, L ⊕ Π, [0, 1] L⊕Π , [0, 1] L , [0, 1]Π .

Lemma 2.3.3. A BL-chain with a nonzero idempotent
h is an L ⊕ Π-algebra iff it is either trivial, or it is an
ordered sum of a non-trivial MV-chain and a (possibly
trivial) Π-chain.

P r o o f . It is easy to check that in a sum of a non-
trivial MV-chain and a Π-chain, denoting the delimiting
idempotent h , all the axioms of L ⊕ Π hold.

To prove the left-to-right implication, let A be a non-
trivial BL-chain with a nonzero idempotent h , such that
the axioms of L ⊕ Π hold in it. We know that the opera-
tion − , corresponding to negation, applied to any nonzero
element of A except the elements of a potential initial
MV-segment, yields 0. Suppose there is an element a ∈

A; a < h such that −a = 0. Consider the axiom  L♭ for a

propositional variable p , i.e.,
[

([¬[¬(p ∧ h) ∧ h ] ∧ h ] →

(p∧ h)) ∧ h
]

≡ h . If e(p) = a , then all the left-hand side
of the equivalence is p , while the right side is h > p , and
the axiom does not hold; therefore no such element can
exist. Consequently, [0, h] in A is a copy of an MV-chain.

By an equally easy consideration, the translation Π1♯

secures that the segment [h, 1] is either an MV-chain
or a Π-chain (it is violated by any idempotent element

in (h, 1)). The translation Π2♯ excludes the MV-chain,
because if the (only) variable in it is evaluated by an
element a sufficiently close to h in such an MV-chain,
then both a and a⇒ h are greater than h .

2.4 Standard completeness for L ⊕ Π

We aim now at proving the set of axioms L ⊕ Π to be
complete with respect to any [0, 1] L⊕Π . Our definition of
an L ⊕ Π-norm does not allow h to be 0 or 1; this is
necessary, since, if h = 1, we get  Lukasiewicz t-norm —
but L ⊕ Π is obviously not complete with respect to the
standard algebra given by  Lukasiewicz t-norm (¬¬ϕ → ϕ

is not provable in L ⊕ Π).

Thanks to the completeness theorem (for L ⊕ Π-al-
gebras), the question whether L ⊕ Π is complete with
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[0, 1] L⊕Π can be reformulated thus: if a formula is a tau-
tology for all [0, 1] L⊕Π , is it also an L-tautology for any
L ⊕ Π-chain L? (If so, then it is provable in L ⊕ Π.) To be
able to answer this question in the affirmative, we follow
in the footsteps of [3], namely, we use local embeddings.

Theorem 2.4.1 (Standard completeness for
L ⊕ Π). A formula ϕ is provable within L ⊕ Π iff it is a
1 -tautology of any [0, 1] L⊕Π .

P r o o f . We have observed already that all algebras
given by L⊕Π-norms are isomorphic, and hence have the
same sets of tautologies. It is therefore sufficient to prove
the theorem for any [0, 1] L⊕Π .

Suppose there is a formula ϕ (in the language of
L ⊕ Π) and a linearly ordered L ⊕ Π-algebra L such
that L 6|= ϕ , i.e., there is an L-evaluation e such that
e(ϕ) 6= 1 (hence ϕ is not provable in  L⊕Π). Fix the al-
gebra L = (L, 0, 1, h,∪,∩, ∗,⇒), the evaluation e in L ,
and the formula ϕ (note that L is non-trivial). We shall
define an evaluation es in [0, 1] L⊕Π such that es(ϕ) 6= 1,
and hence [0, 1] L⊕Π

6|= ϕ either. Therefore, no formula

which is not provable in L ⊕ Π can be valid in [0, 1] L⊕Π .

Formulas translate to terms, i.e., for each formula ϕ
there is a term σ in the language of L ⊕ Π-algebras such
that, for any L ⊕ Π-algebra L , L |= ϕ iff σ = 1 holds in
L .

Let σ = 1 be the identity corresponding to ϕ , and let
{x1, . . . , xn} be all the variables in σ . Since the evalua-
tion e is fixed, let ai = e(xi) and A = {a1, . . . , an} (in

L). Let A = {a ∈ L; a = e(τ), τ subterm of σ} (i.e., A
is the set of evaluations of all subterms of σ under e in
L).

We are looking for an isomorphic embedding α of A
into [0, 1] L⊕Π such that
α(τ(x1 , . . . , xn)) = τ(α(x1), . . . , α(xn)) for any subterm
τ of σ . Once this is accomplished, we put es(xi) = α(ai);
this defines the desired evaluation es in [0, 1] L⊕Π .

It is shown in detail in [3] that any finite part of an
MV-algebra (Π-algebra) can be isomorphically embedded
in [0, 1] L ([0, 1]Π ). Since the L ⊕ Π-algebra is an ordered
sum of an MV-algebra and a Π-algebra, the embedding
may, with slight modifications, be performed separately
for each part. The modifications are as follows: define

L♭ = {x ∈ L : x ≤ h} and L♯ = {x ∈ L : x ≥ h} ,

1h = h , 0h = h , and an operation x ⇒h y = min(x ⇒

y, h). Note that in x, y ∈ L♭ we have x ⇒ y = 1 iff

x⇒h y = h (and in x ∈ L♯ , −x = 0 iff −hx = h). Define

L
♭ = (L♭, 0, 1h,∪,∩, ∗,⇒h) and L

♯ = (L♯, 0h, 1,∪,∩, ∗,⇒

). Then L
♭ is an MV-algebra and L

♯ is a Π-algebra.

Note that if h = 1 in L , we may trivially use the
embedding of MV into [0, 1] L , and then send [0, 1] L iso-
morphically to [0, h)∪1 — a subalgebra in [0, 1] L⊕Π , and
composing these two mappings yields α . In the following
therefore suppose that h 6= 1 in L .

Let A1 = {a ∈ A; a < h} and A2 = {a ∈ A; a ≥ h} .

Then A1 is a finite subset of L♭ ; by [3], an embedding

f1 : A1 −→ [0, 1] L exists so that for a, b, c ∈ A1 , a∗ b = c

iff f1(a) ∗ L f1(b) = f1(c) and a ⇒h b = c iff f1(a) ⇒ L

f1(b) = f1(c); similarly f2 for A2 . By fixing [0, 1] L⊕Π ,
we obtain isomorphisms g1 : [0, 1] L −→ [0, h] L⊕Π and
g1 : [0, 1]Π −→ [h, 1] L⊕Π . Define α(0) = 0, α(h) = h ,

α(1) = 1, for x ∈ A1 put α(x) = g1(f1(x)) and for

x ∈ A2 put α(x) = g2(f2(x)). For x, y, z ∈ A we claim
x ∗ y = z iff α(x) ∗ L⊕Π

α(y) = α(z) and x ⇒ y = z iff

α(x) ⇒ L⊕Π
α(y) = α(z).

First observe that for any x < h ≤ y , x, y ∈ A we
have α(x∗y) = α(x) = min(α(x), α(y)) = α(x)∗ L⊕Π

α(y)

and α(y ⇒ x) = α(x) = α(y) ⇒ L⊕Π
α(x) (and of course

α(x⇒ y) = α(1) = 1 = α(x) ⇒ L⊕Π
α(y)). By definition,

α satisfies the above conditions if the arguments x, y, z

are in [0, h)∩A1 , or if x, y, z are in [h, 1]∩A2 . Other pos-
sibilities follow from basic statements about BL-algebras.

2.5 Reducing the axioms of  L⊕Π

Suppose we extend BL by the axiom of idempotence

for h only; this extension will be denoted BL+ .

Definition 2.5.1. BL+ is the logic BL∪{h & h ≡ h} .

We show that the whole of (BL)♭ and (BL)♯ are prov-
able in BL+ . This reduces the axiomatics of the logic
L ⊕ Π so that it only contains ♭- and ♯-translations of the
axioms actually specifying the behaviour of the t-norm
on the intervals [0, h] and [h, 1].

Again, by an instance of the completeness theorem
(for schematic extensions), any BL+ -tautology is prov-
able in BL+ . We give detailed syntactic proofs of the
translated axioms; note, however, that we need not do so
— it is in some cases easier to verify that the formula is a
BL+ -tautology and contend with the fact that the proof
exists.

We are going to make use of these simple auxiliary
statements:

Lemma 2.5.2. Let C be a schematic extension of BL.
If C ⊢ ϕ and if ψ is any formula (in the language of C ),
then C ⊢ ψ → ϕ .

Lemma 2.5.3. Let C be a schematic extension of BL.
If C ⊢ ϕ and C ⊢ ψ , then C ⊢ ϕ ∧ ψ .

P r o o f . Combine 1.2.2 (iii) and 1.2.2 (vi) using the
transitivity of implication (A1).

Lemma 2.5.4. BL ⊢ (α → β) → ((α ∧ γ) → (β ∧ γ)) .

P r o o f . By (A5), the desired statement is BL-equiv-
alent to [(α → β) & (α ∧ γ)] → (β ∧ γ). By 1.2.2 (vii),
it is enough to prove the two implications

BL ⊢ ((α → β) & (α ∧ γ)) → β and

BL ⊢ ((α → β) & (α ∧ γ)) → γ .

Take the first one first:

BL ⊢ ((α → β) & (α ∧ γ)) → ((α → β) & α) → α

using again 1.2.2 (iv).

The second case is equally easy:
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BL ⊢ ((α → β) & (α ∧ γ)) → (α ∧ γ)
BL ⊢ ((α → β) & (α ∧ γ)) → γ by transitivity and
1.2.2 (vi).

Now let us prove the translated axioms. We shall start
with ♯ since it is the easier part. Note that (A1)♯–(A6)♯

are obtained from (A1)–(A6) by substitution. It only re-
mains to prove (A7).

Theorem 2.5.5. BL+ ⊢ h→ ϕ♯ for any formula ϕ .

P r o o f . By induction on the structure of ϕ .

Let ϕ be atomic: then ϕ♯ = (ϕ ∨ h), and

BL+ ⊢ h→ (ϕ ∨ h) by 1.2.2 (viii).

From now on suppose BL+ ⊢ h → ϕ♯ , BL+ ⊢ h → ψ♯ .
Then by 1.2.2 (v),

BL+ ⊢ h & h→ ϕ♯ & ψ♯ , and using (Id),

BL+ ⊢ h→ ϕ♯ & ψ♯ .

As to the implication,

BL+ ⊢ (h→ ψ♯) → (ϕ♯ → (h→ ψ♯)) by 1.2.2 (i)

BL+ ⊢ ϕ♯ → (h→ ψ♯) by the induction hypothesis
and, using 2.2.2 (ii),

BL+ ⊢ h→ (ϕ♯ → ψ♯)

Now we are going to prove the ♭-translations.

Theorem 2.5.6. BL+ proves these formulas:

(i)
[ (

[(ϕ♭ → ψ♭) ∧ h ] → [
(

[(ψ♭ → χ♭) ∧ h ] → [(ϕ♭ →

χ♭) ∧ h ]
)

∧ h ]
)

∧ h
]

≡ h

(ii)
[

((ϕ♭ & ψ♭) → ϕ♭) ∧ h
]

≡ h

(iii)
[

((ϕ♭ & ψ♭) → (ψ♭ & ϕ♭)) ∧ h
]

≡ h

(iv)
[ (

(ϕ♭ & [ (ϕ♭ → ψ♭) ∧ h ]) → (ψ♭ & [ (ψ♭ →

ϕ♭) ∧ h ])
)

∧ h
]

≡ h

(va)
[

[ (ϕ♭ → [(ψ♭ → χ♭) ∧ h ] ) ∧ h ] → [((ϕ♭ & ψ♭) →

χ♭) ∧ h ] ∧ h
]

≡ h

(vb)
[

[((ϕ♭ & ψ♭) → χ♭) ∧ h ] → [ (ϕ♭ → [(ψ♭ →

χ♭) ∧ h ] ) ∧ h ] ∧ h
]

≡ h

(vi)
[(

[([(ϕ♭ → ψ♭) ∧ h] → χ♭) ∧ h] → [([([(ψ♭ →

ϕ♭) ∧ h] → χ♭) ∧ h] → χ♭) ∧ h]
)

∧ h
]

≡ h

(vii)
[

(0 → ϕ♭) ∧ h
]

≡ h

P r o o f . All the formulas have the form [α ∧ h] ≡ h .

It is sufficient, of course, to prove h→ [α ∧ h] (in BL+ );

then by 2.2.2 (vii), it is sufficient to prove h→ α (for the
given α), or just to prove α and then use 2.5.2. In all the
proofs, we are going to leave the ♭ ’s out in superscripts
for readability’s sake.

(i)
BL+ ⊢ (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ)) (A1)

BL+ ⊢ ((ψ → χ) → (ϕ → χ)) →
(

[(ψ → χ) ∧ h ] →

[(ϕ → χ) ∧ h ]
)

by 2.5.4; then, using transitivity of the

implication (A1),

BL+ ⊢ (ϕ → ψ) →
(

[(ψ → χ) ∧ h ] → [(ϕ → χ) ∧ h ]
)

.
Using 2.5.4 again, we get

BL+ ⊢ [(ϕ→ ψ) ∧ h ] → [
(

[(ψ → χ) ∧ h ]

→ [(ϕ→ χ) ∧ h ]
)

∧ h ] .

(ii), (iii), (vii)
Take (ii) for example. As discussed above, by 2.5.2

if (ϕ & ψ) → ϕ is provable in BL+ , then BL+ also

proves h → ((ϕ & ψ) → ϕ). Now (ϕ & ψ) → ϕ is the
axiom (A2), therefore provable. Cases (iii) and (vii) are
analogous.

(iv) It is sufficient to show

BL+ ⊢ ϕ & [(ϕ → ψ) ∧ h ] → ψ & [(ψ → ϕ) ∧ h ] ;

by 1.2.2 (ix), this is the same as BL+ ⊢
(

(ϕ & (ϕ →

ψ)) ∧ (ϕ & h)
)

→
(

(ψ & (ψ → ϕ)) ∧ (ψ & h)
)

.

We use 1.2.2 (vii) again; BL+ ⊢ (ϕ & (ϕ → ψ)) →
(ψ & (ψ → ϕ)) holds since it is the axiom (A4), while

BL+ ⊢ ((ϕ & (ϕ → ψ)) ∧ (ϕ & h) → (ψ & h) follows
from 1.2.2 (iv).

(va) By 2.5.4, it is sufficient to prove

(ϕ→ [(ψ → χ)∧h ]) → ((ϕ & ψ) → χ) in BL+ . We

know that BL+ ⊢ [(ψ → χ) ∧ h ] → (ψ → χ); therefore,
using (A1) and 2.2.2 (i),

BL+ ⊢ (ϕ→ [(ψ → χ)∧h ]) → (ϕ→ (ψ → χ)) and, using

(A5a), BL+ ⊢ (ϕ→ [(ψ → χ) ∧ h ]) → ((ϕ & ψ) → χ).

(vb) We are going to adjust the antecedent of the desired
implication first:

BL+ ⊢ [((ϕ & ψ) → χ)∧h] → [((ϕ & ψ) → χ)∧(h∧h)] ,

using the fact that h → h ∧ h and 2.5.4; BL+ ⊢ [((ϕ &

ψ) → χ)∧ (h∧h)] → [(((ϕ & ψ) → χ)∧h)∧h ] , since ∧
is associative. By 2.5.4, it is now sufficient to show that

BL+ ⊢ [((ϕ & ψ) → χ) ∧ h] → (ϕ → [(ψ → χ) ∧ h ]) ;

or, using (A5), BL+ ⊢ [(ϕ → (ψ → χ)) ∧ h ] → (ϕ →

[(ψ → χ) ∧ h ]) ; or, using (A5a), BL+ ⊢ ([(ϕ → (ψ →

χ)) ∧ h ] & ϕ) → [(ψ → χ) ∧ h ] . Using 1.2.2 (vii), we
will get this statement from the two implications BL+ ⊢

([(ϕ → (ψ → χ)) ∧ h ] & ϕ) → h , which is quite clear,

and BL+ ⊢ ([(ϕ → (ψ → χ)) ∧ h ] & ϕ) → [ψ → χ ] ,
which follows from 1.2.2 (x) and (iv).

(vi) We are going to show that

BL+ ⊢ [([(ϕ → ψ) ∧ h ] → χ) ∧ h ] → [([([(ψ →

ϕ)∧h ] → χ)∧h ] → χ)∧h ] . By 2.2.2 (vii), it is sufficient

to prove in BL+ the two implications [([(ϕ→ ψ)∧ h ] →

χ) ∧ h ] → h , which is obvious, and [([(ϕ → ψ) ∧ h ] →

χ) ∧ h ] → ([([(ψ → ϕ) ∧ h] → χ) ∧ h ] → χ), which is, by

(A5), the same as [([(ϕ→ ψ) ∧ h ] → χ) ∧ h ] & [([(ψ →

ϕ)∧h ] → χ)∧h ] → χ We will use (A6) now: it says (with

(A5)) that BL+ ⊢ ((ϕ → ψ) → χ) & ((ψ → ϕ) → χ) →
χ ; by transitivity of the implication and 2.2.2 (v), it is

enough to show that BL+ ⊢ [([(ϕ→ ψ)∧h ] → χ)∧h ] →

((ϕ→ ψ) → χ) and BL+ ⊢ [([(ψ → ϕ)∧h ] → χ)∧h ] →

((ψ → ϕ) → χ). Take the first case, rewrite it as: [([(ϕ→

ψ)∧h ] → χ)∧h ] & (ϕ→ ψ) → χ ; for clarity, substitute

α for (ϕ→ ψ): [([α∧h ] → χ)∧h ] & α → χ ; now use the

definition of ∧ : (α & h & (h → ([α ∧ h] → χ))) → χ ;

this is, using (Id), (α & h & h & (h → ([α ∧ h ] →
χ))) → χ . By 1.2.2 (iv), it is now sufficient to show

BL+ ⊢ (α & h & ([α ∧ h ] → χ)) → χ ; if we replace

the first & by ∧ (which is acceptable by 1.2.2 (vi)), we
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get ([α ∧ h ] & ([α ∧ h ] → χ)) → χ , which is exactly
1.2.2 (iv), and hence provable in BL+ . The second case
is analogous.

2.6 Generalizations

We sketch briefly a possible generalization of the devel-
oped method, for countably many truth constants (which
is just as much as is needed, for in any standard algebra
there are at most countably many idempotents delimit-
ing the isomorphic copies of the three algebras [0, 1] L ,
[0, 1]G , and [0, 1]Π ). We do not give proofs for the sug-
gested generalization.

Take a linearly ordered countable set I of indexes, and
introduce a set of truth constants H = {hi}, i ∈ I . We
assume for convenience that for i0 the minimum of I we
have hi0 = 0, and for i1 the maximum of I hi1 = 1. To
indicate idempotence, add an axiom hi & hi ≡ hi for
all i ∈ I , and to indicate that each constant except hi0 is

distinct from 0, add ¬¬hi for all i ∈ I, i 6= 0. Moreover,
for i < j, i, j ∈ I add hi → hj .

For hi ∈ H , we write h+
i for hi+ , i.e. the constant

denoted by the successor of i in I if it exists, otherwise

h+
i = hi .

For each i ∈ I except the maximum i1 , we define
a translation function fi working analogically to ♭ as
follows:

0
fi = hi

1
fi = h+

i

pfi = (p ∨ hi) ∧ h
+
i

(ϕ&ψ)fi = ϕfi&ψfi

(ϕ→ ψ)fi = (ϕfi → ψfi) ∧ h+
i

Now we choose a standard algebra we want to axiom-
atize. Suppose that it is represented as an ordered sum

of isomorphic copies [ci, c
+
i ] of [0, 1] L , [0, 1]G , or [0, 1]Π ,

and the sum is indexed by a set I . We take this set (which
is countable) as the index set of constants, and assign to
each i ∈ I a constant hi as described above. For each
i we add a translation of the axiom of the correspond-
ing schematic extension  L, G, or Π (depending on which

standard algebra the interval [ci, c
+
i ] is a copy of).

The claim is that BL plus this set of formulas is an
axiomatics sound and complete w.r.t. the tautologies of
the chosen standard algebra (in a language enriched with
the added constants). The completeness proof for the
corresponding subvariety of BL-algebras should present
no difficulties. A standard completeness proof will then
depend on a general version of lemma 2.3.3, asserting that
each linearly ordered algebra satisfying all the axioms can
be decomposed as an ordered sum of BL-chains along the
same index set and with the same layout of  L’s, G’s, and
Π’s as the original standard algebra. The local embedding
argument will then be used. Of course this axiomatics is
infinite iff the ordered sum is infinite.
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