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“SUBMERSIVITY” OF A SOLUTION OF THE EQUATION

z(n)(t) + p1(t) z
(n−1)(t) + · · · + pn(t) z(t) = α · q(t)

Monika Kováčová
∗

The main goal is to study certain properties of the solution of the differential equation (2) which are very appropriate
for exploring the Property A. One can describe these properties verbally as the ability of the function not to overcome a
certain level ε for a certain time interval [t0, t0 + δ] .

The function having these properties behaves as follows: from a certain t > t0 , it dives under a certain level of ε and
keeps being under this level maximally during a time interval δ . For the sake of brevity let us call this behavior of the
function “submersivity ”.

We have found a criterion of “submersivity” as the simplest possible conditions to be imposed on the left side of the

equation (2).
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1 INTRODUCTION

A new idea in the investigation of oscillatory solutions
has been brought by Kiguradze in [6]. In that paper the
following equation was studied

u(n)(t) + u(n−2)(t) = f(t, u′(t), . . . , u(n−1)(t)) . (1)

Here n ≥ 3 and f : [a,∞) × Rn → R , a ≥ 0, satisfies
local Caratheodory conditions and has the sign property
f(t, x0, x1, . . . , xn−1) signx0 ≤ 0. In the case of an oscilla-
tory left-hand side the question of oscillation of solutions
of (1) had not been studied before [1]. The results given
in it filled this gap to some extent. Consequently the os-
cillatory cases were studied in a few other papers. The
results of this kind were presented only for the third or-
der differential equations. See Došlá [2], Cecchi, Došlá,
Marini [1], Greguš, Graef [3], Greguš, Gera, Graef, [4, 5].

“Submersivity” properties can help us to explore the
questions of oscillation of solutions in the case of the
oscillatory left-hand side operator.

The aim of this contribution is to study the properties
of solutions of the nth -order differential equation of the
form

z(n)(t) + p1(t) z
(n−1)(t) + · · ·+ pn(t) z(t) = α · q(t) (2)

where α > 0 and the functions pi(·), q(·) ∈ C[0, 1] satisfy
conditions

0 < qmin ≤ q(t) ≤ qmax , ∀t ∈ [0, 1] , (3)

P (t) =
n
∑

i=1

|pi(t)| ≤ P , ∀t ∈ [0, 1] , (4)

Let us find a criterion of “submersivity” as the simplest
possible conditions to be imposed on the left side of equa-
tion (2).

One can describe these properties verbally as the abil-
ity of the function not to overcome a certain level ε for a
certain time interval [t0, t0 + δ] .

The function having these properties behaves as fol-
lows: from a certain t > t0 , it dives under a certain level
of ε and keeps being under this level maximally during
a time interval δ . For the sake of brevity let us call this
behavior of the function “submersivity”.

This property is of major importance for exploring the
questions about the oscillating and nonoscillating prop-
erties of a solution.

2 MATHEMATICAL PRELIMINARIES

If ~x = (x1, x2, . . . xn) ∈ Rn then the norm

‖~x‖ = max
i∈{1,...,n}

|xi| .

Denote further by ~u(t) the vector

~u(t) = (u(t), u′(t), . . . , u(n−1)(t)). All the vectors in this
paper are considered to be column vectors. Let the norm
of ~u(t) be defined by

‖~u‖ = max
t

‖~u(t)‖ = max
t

(max
j

|u(j)(t)|) .

∗ Department of Mathematics, Faculty of Mechanical Engineering, Nám. Slobody 17, 812 31 Bratislava, Slovak Republic Email:
kovacova@cvt.stuba.sk

ISSN 1335-3632 c© 2000 FEI STU



Journal of ELECTRICAL ENGINEERING VOL. 51, NO. 12/s, 2000 77

3 “SUBMERSIVITY” OF THE SOLUTION

OF THE EQUATION u
(n)(t) = α q(t) .

First, we will study the “submersivity” properties of

the equation u(n)(t) = α q(t). These properties will be
generalized to different types of the equations in the next
sections.

Theorem 1. Let α > 0 , 0 < qmin ≤ qmax be real

constants. Then for each p ∈ (0, 1) there exists a constant
ε , 0 < ε < 1 , such that for each t0 ∈ R , δ > 0 , and c ,

ε > c > 0 , for all q ∈ C[t0, t0 + δ] satisfying

0 < qmin ≤ q(t) ≤ qmax , ∀ t ∈ [t0, t0 + δ] ,

and for all solutions u(·) ∈ Cn[t0, t0+δ] of the differential
equation

u(n)(t) = α q(t) , α > 0 ,

with the property

−c ≤ u(t) ≤ u(t0) ∀ t ∈ [t0, t0 + δ] , u(t0) > 0 ,

the inequality

µ
(

u−1[−c, u(t0) ε]
)

≤ δ p

holds, where µ denotes the Lebesgue measure of sets.

P r o o f . First we will consider the case t0 = 0, δ = 1
and u(0) = 1.

Let 0 < ε ≤ 1 be given. Then the set u−1 ([0, ε]) is
closed, and if it is nonempty, then it consists of one-point
sets {aj} and of intervals [tk, tk+1] .

Since u(n)(t) > 0 in [0, 1], there exist at most n−1 ze-
ros (counting their multiplicities) of u′ in [0, 1]. u′(aj) =
0 and except the interval [tk, 1] (if such an interval ex-
ists), in each interval [tk, tk+1] there exists a zero of u′ .
This implies that there exist at most n intervals [tk, tk+1]
where 0 ≤ u(t) ≤ ε , tk ≤ t ≤ tk+1 .

Let their number be m , 0 ≤ m ≤ n . Suppose that

µ
(

u−1[0, ε]
)

= p̃ > 0 .

Then there exists an interval [tk, tk+1] with the length

d greater than or equal to p̃
m

≥ p̃
n
. Write [tk, tk+1] =

[tk0 , tk0 + d] . Clearly, there exists a subinterval

[tkn
+ tkn

+ d
4n ] ⊂ [tk0 , tk0 + d] in which

ε ≥ |u(t)| ≥ α qmin
dn

2n(n+1)
≥ α qmin

p̃n

nn 2n(n+1)
,

t ∈ [tkn
+ tkn

+
d

4n
] .

Hence

ε = α qmin
pn

nn 2n(n+1)
=⇒ µ

(

u−1[0, ε]
)

≤ p . (5)

In the general case we transform the solution u(t)

satisfying all assumptions of the theorem to the solution

u1(s) =
u(t0+s δ)

u(t0)
of the differential equation

u
(n)
1 (s) =

α δn

u(t0)
q(t0 + s δ) =

α δn

u(t0)
q1(s) , ∀s ∈ [0, 1] ,

and u1 satisfies the assumptions of our theorem in the

case t0 = 0, δ = 1 and u(0) = 1. As −c ≤ u1(s) ≤ ε

iff −c u(t0) ≤ u(t) ≤ u(t0) ε at corresponding t , and the

transformation t = h(s) = t0 + s δ where 0 ≤ s ≤ 1 has

the property

µ (h(A)) = δµ(A) ,

for a measurable A , by (5) we come to the implication in

the variable t :

ε =
α δn

u(t0)
qmin

pn

nn 2n(n+1)

=⇒ µ
(

u−1[−c, u(t0) ε]
)

≤ δ p ,

and this gives the statement of our theorem.

4 SOME ESTIMATIONS OF

SOLUTIONS OF THE EQUATION

z
(n)(t) + p1(t) · z

(n−1)(t) + · · · + pn(t) · z(t) = q(t)

Mark ~u(t) := (u(t), u′(t), · · · , u(n−1)(t)) and

‖~u(t)‖ = max
t

(max
j

|u(j)(t)|)

We will deal with the differential equation

z(n)(t) + p1(t) · z
(n−1)(t) + · · ·+ pn(t) · z(t) = q(t) , (6)

where the functions pi(·), q(·) ∈ C[0, 1] and satisfy con-

ditions

|q(t)| ≤ qmax , ∀t ∈ [0, 1] , (7)

P (t) =

n
∑

i=1

|pi(t)| ≤ P , ∀t ∈ [0, 1] . (8)

Let M be the constant defined by

M = sup{‖~r(0)‖ : r(·) ∈ Cn[0, 1], r(n)(t) = 0

and |r(t)| ≤ 1 , ∀t ∈ [0, 1]} .

In the next theorem we will show that ‖~z(t)‖ , where
z(·) ∈ C[0, 1] solves the problem (6), (7) and (8), can be

bounded by a constant, which depends only on constants

qmax , P , and M .
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Theorem 2. If the function z(·) ∈ Cn[0, 1] is a solution

of the differential equation (6) with the property

0 < z(t) ≤ 1 for all t ∈ [0, 1] , (9)

where functions pi(·), q(·) satisfy conditions (7), (8). Let
the constant P satisfy the inequality

P e2+P <
1

2M
,

Then there exist constant zmax defined by

zmax := e(1 + e1+PP )[2M + qmax + e1+P 2Mqmax] , (10)

with the following property:

‖~z(t)‖ ≤ zmax ∀t ∈ [0, 1] .

P r o o f . The proof will be divided into three parts.
1. In the first part we find the estimation for ‖~z(0)‖ . Let
us consider the auxiliary differential equation

w(n)(t) = 0 , ~w(0) = ~z(0) , (11)

whose solution is a function w ∈ Cn[0, 1]. Clearly, there
exists a positive constant M such that

‖~w(0)‖ ≤ M · max
t∈[0,1]

|w(t)| .

To obtain the estimation of ‖~z(0)‖ we use the estima-
tion of ‖~w(t)− ~z(t)‖ .

If w(·) is a solution of the problem (11), then w(·) is
the solution of the differential equation

w(n)(t) + p1(t)w
(n−1)(t) + · · ·+ pn(t)w(t)

= p1(t)w
(n−1)(t) + · · ·+ pn(t)w(t) . (12)

The function z(·) is a solution of the equation (6) and
w(·) is a solution of the equation (12), hence by (7) and
(8) we immediately obtain

‖~w(t)− ~z(t)‖ ≤ e
∫

t

0
(1+P (τ))dτ

[

∫ t

0

‖~w(τ)‖P (τ) + |q(τ)|dτ
]

≤ e
∫

t

0
(1+P )dτ

[

∫ t

0

(

‖~w(τ)‖P + qmax

)

dτ
]

and further

‖~w(t)− ~z(t)‖ ≤ e1+P
[

P

∫ 1

0

‖~w(τ)‖dτ + qmax

]

. (13)

And now, in order to obtain the estimation of ‖~w(t)‖
we can use the following estimation of ‖~w(0)‖ . Since w(·)
is the solution of (11) on [0, 1], we have

‖~w(t)‖ ≤ ‖~w(0)‖ et , ∀t ∈ [0, 1] . (14)

Applying (13) and (14) we find the estimation of ‖~z(0)‖ .
Using the inequalities (9), (13) and (14) we can show that

‖~w(0)‖

M
≤ max

t∈[0,1]
|w(t)| ≤ max

t∈[0,1]
|z(t)|+ ‖~w(t)− ~z(t)‖

≤ 1 + e1+P
[

P

∫ 1

0

‖~w(τ)‖dτ + qmax

]

≤ 1 + e1+P [P ‖~w(0)‖e+ qmax] ,

which implies

‖~w(0)‖

M
≤ 1 + e2+PP‖~w(0)‖+ e1+P qmax .

By P · e2+P ≤ 1
2M , after a simple reduction we get

‖~w(0)‖

2M
≤ ‖~w(0)‖

( 1

M
− P e2+P

)

≤ 1 + e1+P qmax .

By (11), it is obvious that

‖~z(0)‖ = ‖~w(0)‖ ≤ 2M
(

1 + e1+P qmax

)

(15)

holds.

2. In this part we will find the estimation of ‖~z(t)−~v(t)‖
on the interval [0, 1]. (The function v(t) will be defined
by (16). Let us consider the auxiliary problem

v(n)(t) = q(t) , ~v(0) = ~z(0) , (16)

whose solution is a function v ∈ C(n)[0, 1]. The function
v(·) also solves the differential equation

v(n)(t) +

n
∑

i=1

pi(t) v
(n−i)(t) =

n
∑

i=1

pi(t) v
(n−i)(t) + q(t) .

(17)
As the function z(·) solves the equation (6) and the func-
tion v(·) solves the equation (17), we obtain

‖~z(t)− ~v(t)‖ ≤ e
∫

t

0
(1+P (τ))dτ

∫ t

0

‖~v(τ)‖P (τ)dτ

≤ e1+PP

∫ t

0

‖~v(τ)‖dτ . (18)

Compare the solution of equation (16) with the zero so-
lution of the equation

v
(n)
0 (t) = 0 , ~v0(0) = ~0 . (19)

Equation (19) can be put into the form

v
(n)
0 (t) + p1(t)v

(n−1)
0 (t) + · · ·+ pn(t)v0(t) = q(t) ,
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where pi(t) ≡ 0, and therefore P (t) = 0. Again, we can
derive the estimation:

‖~v(t)− ~v0(t)‖ ≤ e
∫

t

0
dτ · (‖~v(0)‖+ qmax) ,

i.e., ‖~v(t)‖ ≤ et(‖~v(0)‖+ qmax) .

Using the property ‖~v(0)‖ = ‖~z(0)‖ and estimation
(15) we obtain:

‖~v(t)‖ ≤ et
[

2M(1 + qmax · e
1+P ) + qmax

]

. (20)

3. Finally, we estimate ‖~z(t)‖ on the interval [0, 1]. In
view of (18) and (20) we have

‖~z(t)‖ ≤ ‖~v(t)‖+ ‖~z(t)− ~v(t)‖ ≤ et2M(1 + qmaxe
1+P )

+ etqmax + e1+PP

∫ t

0

‖~v(τ)‖dτ ≤ et2M(1 + qmaxe
1+P )

+ etqmax + e1+PP

∫ t

0

[2M(1+ qmaxe
1+P )eτ + qmaxe

τ ]dτ .

Since t ∈ [0, 1], it is sufficient to put

zmax := (e+ (e − 1)e1+PP )[2M + qmax + e1+P 2Mqmax] ,

which completes the proof.

R e m a r k . If the constant P satisfies the inequality
P · e2+P ≤ 1

M+1 , where M is a positive constant such

that ‖~w(0)‖ ≤ M · max
t∈[0,1]

|w(t)| then instead of (15) we

get

‖~w(0)‖ ≤ M(M + 1)[1 + e1+P qmax] .

Then step by step we come to the inequality

zmax =
(

e + (e− 1)e1+PP
)[

M(M + 1) + qmax

+ e1+PM(M + 1)qmax

]

.

R e m a r k . From the proof of Theorem 2 we can see
that this theorem remains to be true when instead of the
assumption

0 < z(t) ≤ 1 for all t ∈ [0, 1] .

we suppose only that |z(t)| < 1 for all t ∈ [0, 1].

Theorem 3. For each qmax > 0 and each ε > 0 the

constant P > 0 defined by

P =
ε

e zmax
, (21)

where zmax is determined by (10), has the following prop-
erty:

If the function z(·) ∈ Cn[0, 1] is a solution of (6) such
that

0 ≤ z(t) ≤ 1 for all t ∈ [0, 1] , (22)

where the functions pi(·), q(·) ∈ C[0, 1] and satisfy con-

ditions (7) and (8), then for the solution u ∈ Cn[0, 1] of
the differential equation

u(n)(t) = q(t) , ~u(0) = ~z(0) (23)

we have

‖~z(t)− ~u(t)‖ ≤ ε , ∀t ∈ [0, 1] .

P r o o f . Let the function z(·) solve the equation (6)
and satisfy the assumption (22). We will show that P

determined by (21) has the mentioned property. Let us
rewrite the equation (6) into the form

z(n)(t) = q(t)− p1(t)z
(n−1)(t)− · · · − pn(t)z(t) . (24)

Then we can compare the solution of (24) with the solu-
tion of (23). Apparently,

‖~z(t)− ~u(t)‖ ≤ e
∫

t

0
1dτ

∫ t

0

∣

∣p1(τ)z
(n−1)(τ) − · · ·

− pn(τ)z(τ)
∣

∣dτ ≤ e

∫ t

0

P‖~z(t)‖dτ .

Using the definition of P and the fact that the ‖~z(t)‖ ≤
zmax we obtain

‖~z(t)− ~u(t)‖ ≤ ePzmax ≤ ezmax
ε

ezmax
= ε ,

which proves the assertion.

5 “SUBMERSIVITY” OF A

SOLUTION OF THE EQUATION

z
(n)(t) + p1(t)z

(n−1)(t) + · · · + pn(t)z(t) = α · q(t) .

In this section, we we will study the “submersivity”
properties of the differential equation (2) where α > 0
and the functions pi(·), q(·) ∈ C[0, 1] satisfy conditions

0 < qmin ≤ q(t) ≤ qmax ∀t ∈ [0, 1] ,

P (t) =

n
∑

i=1

|pi(t)| ≤ P ∀t ∈ [0, 1] ,

Theorem 4. For arbitrary constants qmin and qmax ,

such that 0 < qmin ≤ qmax , and αmax > 0 , p ∈ (0, 1) ,
there exist P > 0 and ε ∈ (0, 1) with the following

property:

If z(·) ∈ Cn[0, 1] is a solution of (2) such that

0 ≤ z(t) ≤ 1 for all t ∈ [0, 1] , and z(0) = 1 , (25)

where pi(·), q(·) ∈ C[0, 1] satisfy conditions (3), (4) and

0 < α ≤ αmax , then

µ(z−1[0, ε]) ≤ p .
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P r o o f . Denote by Qmax = αmaxqmax and choose ε1
satisfying

2ε1 <
α

1− ε1
qmin

pn

nn2n(n+1)
< 1− ε1 . (26)

Theorem 3 ensures for constants Qmax and ε1 chosen
by (26) the existence of a constant P > 0, defined by
P = ε1

ezmax
such that:

If z(·) is the solution of the equation (2) satisfying
(25), for which the properties (3), (4) are true, then

‖~z(t)− ~u(t)‖ ≤ ε1 ∀t ∈ [0, 1] ,

where u(·) ∈ Cn[0, 1] solves the equation u(n)(t) = αq(t),
~u(0) = ~z(0) on the interval [0, 1].

Let u1 ∈ C[0, 1] be defined by u1(t) = u(t)− ε1 ∀t ∈
[0, 1]. Then u1(·) satisfies on the interval [0, 1] the equa-
tion

u
(n)
1 (t) = αq(t) , u1(0) = 1− ε1 ,

u
(i)
1 (0) = z(i)(0) , for i = 1, . . . , n− 1 .

(27)

Moreover, the following estimation

‖~z(t)− ~u1(t)‖ ≤ ‖~z(t)− ~u(t)‖ + ‖~u(t)− ~u1(t)‖

≤ ε1 + ε1 ≤ 2ε1

holds. Since min
t∈[0,1]

z(t) ≥ 0 we have

−2ε1 ≤ u1(t) ≤ z(t) , ∀t ∈ [0, 1] .

Since u
(n)
1 (t) = αqmin > 0 in [0, 1] there exist at most

n− 1 zeros (counting their multiplicities) of u′
1 in [0, 1].

Hence u1(t) has at most n−1 extremal points in [0, 1]. It
follows that there exists a finite number, say l , of intervals
such that

u1(t) ≤ 1− ε1 , ∀t ∈ [ti, ti+1] , i = 1, . . . , l − 1 . (28)

Note, that due to (27) at least one such interval exists.

Put M = {t; t ∈
l
⋃

i=1

[ti, ti+1]} , where the intervals

[ti, ti+1] are defined by (28). We thus get

−2ε1 ≤ u1(t) ≤ 1− ε1 = u1(0) , ∀t ∈ M . (29)

Due to (29) u1(·) satisfies on M the assumptions of
Theorem 1. Therefore for all p ∈ (0, 1) there exists ε2 =

α
1−ε1

qmin
pn

nn2n(n+1) such that

µ
(

u−1
1 [−2ε1 , u1(0)ε2] ∩M

)

≤ p .

By (26) we have −2ε1 ≤ ε2 ≤ 1−ε1 . From this we obtain

µ
(

u−1
1 [−2ε1 , u1(0)ε2]

)

= µ
(

u−1
1 [−2ε1 , u1(0)ε2] ∩M

)

+ µ
(

u−1
1 [−2ε1 , u1(0)ε2] ∩ ([0, 1]−M)

)

,

and since µ
(

u−1
1 [−2ε1 , u1(0)ε2] ∩ ([0, 1] − M)

)

= 0 we
have

µ
(

u−1
1 [−2ε1 , u1(0)ε2]

)

= µ
(

u−1
1 [−2ε1 , u1(0)ε2]∩M

)

≤ p .

If we put ε := (1−ε1)ε2 then using the previous result
we obtain

µ
(

z−1[0, ε]
)

= µ
(

z−1[0, (1− ε1)ε2]
)

= µ
(

z−1[0, u1(0)ε2]
)

≤ µ
(

u−1
1 [−2ε1, u1(0)ε2]

)

≤ p ,

which proves the claim.
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[4] GREGUŠ, M.—GRAEF, J. R.—GERA, M. : Oscillating Non-

linear Third Order Differential Equations, Nonlinear Analysis.

Theory, Methods & Applications 28 No. 10 (1997), 1611–1622.
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