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ENHANCED CRYPTANALYSIS OF A
CLOCK–CONTROLLED RUNNING KEY GENERATOR

Milan Vojvoda
∗

One simple running key generator which combines the outputs of two asynchronously clocked LFSRs has been proposed
in [15]. In this paper the period of the keystream and several theorems concerning the number of runs in a ml-sequence are
proved. Conditions for passing the Golomb’s randomness postulates are proposed. Results of applied statistical tests (FIPS
140-1, gap test, serial correlation test) are presented. Finally, a modification of the generator using substitution of FCSRs
(feedback with carry shift registers) for LFSRs is studied.
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1 INTRODUCTION

LFSRs are still common building blocks of running key
generators for binary additional stream ciphers [9], [12],
[13]. They are fast, easy to implement in hardware, and
allow the usage of algebraic methods in cryptanalysis.

One of such generators (denote it as G) was presented
and studied in [16]. The generator G consists of two
asynchronously clocked (in a stop-and-go fashion) LFSRs
L1 and L2. Assume the polynomials c1(x), c2(x) ∈
GF (2)[X ] associated to the registers L1, L2 are prim-

itive. Let us denote ã = ã0, ã1, . . . , resp. b̃ = b̃0, b̃1, . . .

the binary sequence produced by clock-controlled (as used
in generator G) register L1 and L2. Moreover, denote
a = a0, a1, . . . and b = b0, b1, . . . the binary sequence
produced by the regularly clocked register L1, L2, re-
spectively.

Algorithm of the generator G :

1. Keystream bit production: st = L1(t)⊕L2(t) = ãt⊕b̃t .

2. Next-state function: if st = 1, then L1 clocks, other-
wise (st = 0) L2 clocks.

2 PRELIMINARIES

Example 1. Assume the following realization of the gen-
erator G : c1(x) = 1+x+x2 and c2(x) = 1+x+x3 . Let
us look at the changes of the registers L1 and L2 states
during the keystream generation. (Output bits ãt , resp

b̃t are the underlined bits of the L1, resp. L2 states. The
state of a register that clocks at a given time t is bold
typed. The underlined bits of bold typed states of register
L1 or L2 form runs (either blocks Ba

i or Bb
i , or gaps Ga

i

or Gb
i ) of the sequences a or b .

Table 1. The generation of the keystream of the generator G

t State of L1 State of L2 st Runs of a Runs of b

0 01 001 0 Gb
0

1 01 011 0

2 01 111 1 Ga
0

3 11 111 0 Bb
1

4 11 110 0
5 11 101 0

6 11 010 1 Ba
1

7 10 010 1

8 01 010 0 Gb
2

9 01 100 1 Ga
0

10 11 100 0 Bb
3

11 11 001 1 Ba
1

12 10 001 1

13 01 001 0

Observation 2. The keystream production could be

characterized as joining of transformed runs of sequences
a and b (look at the relation between underlined bold

typed bits, st , and runs of the sequences a and b).

Definition 3. If a polynomial c(x) ∈ GF (2)[X ] ,

deg c(x) = |L| associated to a register L is primitive, then
L is called a maximum-length (ml) LFSR. The output

of an ml-LFSR with non-zero initial state is called an
ml-sequence.

The following theorem characterizes the distribution
of patterns in an ml-sequence.
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Ilkovičova 3, 812 19 Bratislava, Slovakia, E-mail: vojvoda@kmat.elf.stuba.sk.

This research was supported by VEGA-grant 1/7611/20.

ISSN 1335-3632 c© 2000 FEI STU



82 M. Vojvoda: ENHANCED CRYPTANALYSIS OF A CLOCK-CONTROLLED RUNNING KEY GENERATOR

Theorem 4. [11, p. 197, Fact 6.14] Let u be an
ml-sequence generated by a ml-LFSR L . Let k be an

integer, 1 ≤ k ≤ |L| , and let ū be any subsequence of

u of length 2|L| + k − 2 . Then each non-zero sequence of

length k appears exactly 2|L|−k times as a subsequence

of u . Furthermore, the zero sequence of length k appears

exactly 2|L|−k − 1 times as a subsequence of u .

3 RESULTS

Theorem 5. Let u be an ml-sequence generated by

an ml-LFSR with associated primitive polynomial c(x) ,
deg c(x) > 1 . Let u0 = u1 = · · · = udeg c(x)−2 = 0 ,

udeg c(x)−1 = 1 . Then the number of runs in one period of

the sequence u is even. Moreover, the number of blocks
is equal to the number of gaps.

P r o o f . This theorem follows immediately due to
u2deg c(x)−2 = 1.

We determine the exact number of runs in one period
of an ml-sequence in the following.

Theorem 6. Let u denote a sequence generated by an
ml-LFSR with associated primitive polynomial c(x) ∈

GF (2)[X ] , deg c(x) > 1 . Assume u0 = 0 , u1 = 0 , . . . ,
udeg c(x)−2 = 0 , udeg c(x)−1 = 1 . Then the exact number

of runs in one period of the sequence u is 2deg c(x)−1 .

P r o o f . According to Theorem 5, it is sufficient to

prove that the number of blocks in one period of u =
u0, u1, . . . , u2deg c(x)−2 or

u = u0, u1, . . . , u2deg c(x)−2+deg c(x)−1 equals 2deg c(x)−2 .

Let Bu[i] denote the number of blocks of length

deg c(x)− i . It follows from Theorem 4 that

Bu[i] = 2deg c(x)−(deg c(x)−i) −

i−1∑

j=0

Bu[j](i− j + 1) .

i∑

j=0

Bu[j] = 2i−1 , 1 ≤ i < |L| , B0 = 1 .

Corollary 7 (of Theorem 6). Let u and v be ml-
sequences generated by ml-LFSRs Lu and Lv with as-

sociated primitive polynomials cu(x), cv(x) ∈ GF (2)[X ] ,
deg cu(x) = deg cv(x) . Let

u0 = u1 = · · · = udeg cu(x)−2 = 0 , udeg cu(x)−1 = 1 and
v0 = v1 = · · · = vdeg cv(x)−2 = 0 , vdeg cv(x)−1 = 1 . Then

the sequences u and v have the same number of blocks,

and gaps of lengths 1, 2, . . . , deg cu(x) = deg cv(x) .

We generalize Theorem 6 for any non-zero initial state

of the generating register.

Theorem 8. Let u denote an ml-sequence generated by

an ml-LFSR (from a non-zero initial state) with associ-

ated primitive polynomial c(x) ∈ GF (2)[X ] , deg c(x) >
1 . Then the number of runs in one period of the sequence

u is either 2deg c(x)−1 or 2deg c(x)−1 + 1 .

P r o o f . Let w denote a sequence u that starts with
u0 = u1 = · · · = udeg c(x)−2 = 0, udeg c(x)−1 = 1. Observe

that any sequence u can be obtained from the sequence

w by shifting [1, pp. 350–351]. The sequence w can be

shifted to the beginning of a new run (2deg c(x)−1 ) or

somewhere inside a run (2deg c(x)−1 + 1).

The following theorem concerning the period of the
keystream of the generator G is based on Observation 2

and Theorem 8. (A conjecture was presented in [15].)

Theorem 9. Assume that registers L1 and L2 with

associated primitive polynomials c1(x) and c2(x) ,
deg c1(x), deg c2(x) > 1 are loaded with a non-zero initial

state. Then the period of the keystream sequence s of the

generator G is

(2max{deg c1(x),deg c2(x)} − 1)

+ 2|deg c1(x)−deg c2(x)|(2min{deg c1(x),deg c2(x)} − 1) . (1)

P r o o f . First, we prove that (1) is an integer multi-

ple of the period of the keystream sequence s . There are

16 possibilities for the start and end runs of one period
of the sequences a and b . Look at one of them (the other

possibilities can be analyzed in a similar way).

Assume that a starts with a gap and ends with a block,
b starts and ends with a gap. (The notation of blocks and

gaps comes from Example 1.) ∗ -denoted runs (as well as

Table 2. Joining of runs during the production of the keystream

L1 G
a

0 B
a

1 · · · B
a

2deg c1(x)−1 G
a

0

L2 G
b

0 B
b

1 · · · G
b

2deg c2(x)−1+1
G

b

0

∗ ∗ ∗ ∗ · · · ∗ ∗

◦ ◦ ◦ · · · ◦ ◦ ◦

◦ -denoted, that have the start and end runs from different

registers) clearly form an integer multiple of the period
of the keystream sequence s .

Finally, observe that the ◦ -denoted part of the key-

stream sequence contains exactly one block of length |L1|
(if |L1| ≥ |L2|) or one gap of length |L2| (if |L1| ≤ |L2|).

Thus the ◦ -denoted part of the keystream forms exactly

one period.

The next theorem characterizes the basic balancedness
of the keystream sequence.
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Table 3. Results of statistical tests

#
Serial correlation Poker test Monobit

test (for quadruples) test

0 0.002385 15.5264 9958
1 0.001986 6.08640 9734
2 -0.005419 9.92 10003
3 0.003574 10.8288 9750
4 0.007899 18.5472 9986
5 0.007897 16.6784 10156
6 0.004948 10.5088 10248
7 -0.002401 18.0352 10067
8 -0.000602 15.904 9973
9 -0.000602 16.6464 10224

[-0.00068,0.00068] [1.03,57.4] [9654,10346]

Theorem 10. Assume that registers L1 and L2 with
associated primitive polynomials c1(x) and c2(x) ,
deg c1(x), deg c2(x) > 1 are loaded with a non-zero initial
state. Then the number of ones and zeros in one period
of the generated keystream sequence is given as:

1. deg c1(x) ≥ deg c2(x)

the number of ones: 2deg c1(x) − 1
the number of zeros: 2| deg c1(x)−deg c2(x)|(2deg c2(x)−1)

2. deg c1(x) < deg c2(x)

the number of ones: 2|deg c1(x)−deg c2(x)|(2deg c1(x) − 1)

the number of zeros: 2deg c2(x) − 1 .

P r o o f . Theorem 10 follows from the proof of the pe-
riod and from the production of the keystream as joining
transformed runs from sequences a and b .

The following theorem about passing the first and sec-
ond Golomb’s postulates easily follows.

Theorem 11. Assume that registers L1 and L2 with
associated primitive polynomials c1(x) and c2(x) ,
deg c1(x), deg c2(x) > 1 , |deg c1(x)− deg c2(x)| ≤ 1 are
loaded with a non-zero initial state. Then the generated
keystream sequence passes the first Golomb’s postulate.
Moreover, if deg c1(x) = deg c2(x) then the keystream
sequence passes the second Golomb’s postulate, too.

3.1 A note on the linear and sphere complexity

Theorem 12 [2, Theorem 3.4.4]. Let N be an odd prime
with gcd(N, q) = 1 , and let q be a primitive root modulo
N . Then for any nonconstant sequence u of period N

over GF (2) ,

1. linear complexity is N or N − 1 ;

2. if k < min{hwt(u0, u1, . . . , uN−1), N−hwt(u0, u1, . . . ,

uN−1)} then the sphere complexity of u is N or N−1 ,
otherwise it is 0 (hwt denotes the Hamming weight).

Theorem 12 puts important restrictions on the choice
of the lengths of registers L1 and L2 (see Expression 1).

3.2 A note on the security of the generator

Assume now that the generator G consists of two
subgenerators G1 and G2, respectively.

Using the known plaintext attack presented in [15]
(another interesting attacks on stream ciphers are in [5],
[14]) it is easy to find sequences a and b generated by
these subgenerators G1 and G2. Thus the security of
the whole generator against the known plaintext attack
depends on the security of G1 and G2 against this kind
of an attack.

Clearly, when using LFSRs L1 and L2 as the subgen-
erators G1 and G2, the key of the generator (the initial
loading of the registers L1 and L2) is directly the begin-
ning part of the sequences a and b .

If we use FCSRs (studied in [6], [7]) F1, F2 as the
subgenerators G1, G2 the initial loading of the shift
registers of F1, F2 can be obtained by the same way
as described above. The remaining contents of the carry
registers of F1, F2 can be found either by solving a set
of equation or by exhaustive search.

4 STATISTICAL TESTS ––– RESULTS

The simulated realization of the generator G was:
c1(x) = 1 + x + x2 + x5 + x19 , c2(x) = 1 + x3 + x31 .
The test set consisted of 1000 keystream sequences (each
20000 bits long) produced by this realization of the gen-
erator.

All of the tested sequences passed all tests given by
FIPS 140-1 [3], 95% of them passed the serial correlation
test [8] and none of them passed the gap test [8].

Table 3 outlines the values of the serial correlation
coefficient, the statistics for the poker test [11, p. 182],
and the number of ones in a sequence for the monobit
test [3]. The last row of the table shows the expected
intervals.

According to the results of the Maurer’s universal sta-
tistical test [10] the keystream sequence is not signifi-
cantly compressable (Q denotes the number of initial
blocks, K denotes the number of tested blocks).

Theorem 13. The keystream sequence produced by the
generator G passes the long run test if 1 < |L1|, |L2| < 34
(and registers L1 or L2 are loaded with a non-zero initial
state).

P r o o f . Observe that the longest run in the key-
stream sequence has max{|L1|, |L2|} bits (see Exam-
ple 1).

5 CONCLUSION

In this paper we presented several theorems determin-
ing the number of runs in an ml-sequence. The period of
the keystream sequence of the cryptanalysed generator is
determined as well as its basic statistical properties. The
results of statistical tests are outlined. The security of the
generator against the known plaintext attack is general-
ized.
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Table 4. Run test — numbers of occurrences of runs with certain lengths

# /
1 2 3 4 5 6

run length

0 2459 1302 693 386 187 123
1 2642 1209 713 267 176 160
2 2340 1179 604 245 173 129
3 2400 1167 530 361 155 134
4 2589 1376 587 378 113 149
5 2512 1391 536 276 180 167
6 2680 1268 568 246 99 187
7 2540 1290 633 358 137 181
8 2397 1104 712 369 169 152
9 2645 1176 589 374 138 192

[2267,2733] [1079,1421] [502,748] [223,402] [90,223] [90,223]

Table 5. Maurer’s universal statistical test - entropy on the 8-bit
block

#
Q = 2560 Q = 25600

K = 256000 K = 2560000
0 8.003677 8.002048
1 7.999273 8.000793
2 8.002426 7.999964
3 8.000400 8.000941
4 8.001049 7.999997
5 7.999030 8.002516
6 7.998300 8.001611
7 8.000900 8.001506
8 7.999110 7.999905
9 8.002141 8.001281
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