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CYCLOTOMIC GENERATORS OF ORDER 4

Hana Lichardová — Marek Greško
∗

Some properties of binary cyclotomic generators of order 4 are discussed. Via estimates of difference parameters there is
shown which primes are suitable for designing generators with ideal difference property. For particular generators, statistical
properties of generated sequences are tested.
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1 INTRODUCTION

Cyclotomy generators are intended to produce key-
streams for stream ciphers [2]. Since the security of a
stream cipher depends on the randomness properties of
the keystream, it is important to pay attention to a math-
ematical analysis of the keystream sequence.

We design a keystream generator producing the se-
quence with large both linear and sphere complexity, and
show for which periods it has the ideal difference prop-
erty.

The designed keystream generator is a so-called natu-

ral stream generator (NSG). It consists of a counter mod-
ulo N (which merely counts cyclically numbers from 0 to
N − 1), and a cryptographic function F (x). If the key of
the generator is k (i.e. the counter starts to count from
the number k ), the generated sequence is s∞ = (si)

∞

i=0 ,
where si = F ((i + k)modN).

Let N = dt+1 be a prime. A corresponding cyclotomic

generator of order d over GF (q) is described by

si =
(

(i+ k)(N−1)/d modN
)

mod q .

If N = 4t + 1, q = 2, we have a binary cyclotomic
generator of order 4.

In the following four sections we introduce concep-
tions and relations which will be useful for analyzing some
properties of binary NSG based on cyclotomy. For more
details in the field, we refer the reader to [1], [2], [4], [5].
Then difference parameters of binary cyclotomic genera-
tor of order 4 will be derived. In the last section, results
of some statistical tests are presented.

2 PRIMITIVE ROOTS

Given integers n > 1, q , we say that d is the order

of q modulo n , d = ordn(q), if d is the least positive

integer such that qd ≡ 1 (modn). Analogously, m is the

negative order of q modulo n , m = nordn(q), if m is the
least positive integer such that qm ≡ −1 (modn).

An integer q is said to be a primitive root modulo n
(of n), if ordn(q) = ϕ(n), where Euler’s function ϕ(n)
is the number of all positive integers a < n such that
gcd(a, n) = 1. For given n , we will take into consideration
only primitive roots smaller than n . The classical result
by Gauss is that each prime N has exactly ϕ(N − 1)
primitive roots.

Now we state some properties of primitive roots mod-
ulo a prime N . We recommend the proof of the following
lemma as a good exercise.

Lemma 1. Let N > 4 is a prime. Then q is a primitive
root of N if and only if nordN (q) = (N − 1)/2 .

Lemma 2. If q is a primitive root of a prime N > 4 ,
then q must be quadratic nonresidue modulo N .

P r o o f . We recall that q ∈ ZN is a quadratic
residue modulo N if there exists b ∈ Z∗

N such that q ≡

b2 (modN). Otherwise it is quadratic nonresidue. Since

q is a primitive root of N , q(N−1)/2 ≡ −1 (modN). On

the other hand, by Fermat’s Theorem, bN−1 ≡ 1 (modN)
for each b . It follows immediately that q cannot be a
quadratic residue.

The fact that q ∈ ZN is a quadratic residue may be
expressed by the Legendre symbol — it is 1 in the case q
is a residue, otherwise it is −1.

Lemma 3. For q = 2 and a prime N , there holds the
Legendre symbol formula

( 2

N

)

= (−1)(N
2
−1)/8,

which means that 2 is a quadratic nonresidue only for
N = 8k ± 3 .

The proof may be found in [5].

The next assertion is a straightforward consequence of
the preceeding lemmas.
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Theorem 1. If 2 is a primitive root of a prime N > 4 ,
then N must be of the form 4t±1 with t odd (such N is
called the o-prime, in opposite to e-primes with t even).

We will see in the next section that binary sequences of
period N , with 2 being a primitive root of N , are impor-
tant because of their large linear and sphere complexity.

3 CRYPTOGRAPHIC

ASPECTS OF SEQUENCES

We restrict our attention only to two security aspects
— the first is the linear and sphere complexity, the sec-
ond is the difference property. Due to [2], the ideal dif-
ference property of the cryptographic function F (x) of
a binary generator ensures automatically other security
aspects like ideal nonlinearity, ideal autocorrelation prop-
erty, ideal two-bit pattern distribution property.

3.1 Linear complexity and sphere complexity

Let s∞ denote the sequence s0s1s2 . . . of period N
over a finite field GF (q). The polynomial

f(x) = c0 + c1x+ . . .+ ckx
k

such that

c0sj + c1sj−1 + . . .+ cksj−k = 0, j ≥ k ,

is called the characteristic polynomial of s∞. The char-
acteristic polynomial of a given sequence with minimal
degree is the minimal polynomial. The linear complexity

of s∞, denoted by L(s∞), is defined to be a degree of
its minimal polynomial. In other words, the linear com-
plexity is the length of the shortest linear feedback shift
register that generates the sequence. It should be clear
that L(s∞) ≤ N .

Now consider the space of infinite sequences of pe-
riod N over GF (q) with Hamming distance dH defined
to be the number of places in one period where two se-
quences differ. Correspondingly, Hamming weight of s∞,
WH(s∞), is defined to be the number of nonzero elements
in one period of s∞.

Let O(s∞, u) = {t∞ : 0 < dH(s∞, t∞) ≤ u} be a sphere
with radius u and center s∞. The sphere complexity is
defined by

SCu(s
∞) = min {L(t∞) : t∞ ∈ O(s∞, u)} .

In other words, the sphere complexity is the minimum of
lengths of the shortest linear feedback shift registers that
generate the “nearby” sequences.

Theorem 2. Let N > 2 be a prime, and let q be
a primitive root modulo N . Then for any nonconstant
sequence s∞ of period N over GF (q) ,

1. L(s∞) = N or N − 1 ;

2. SCu(s
∞) = N or N − 1 for u < min

{

WH(s∞),

N −WH(s∞)
}

, otherwise it is zero.

For the proof see [2], §§3.3, 3.4.

This theorem, together with Theorem 1, gives a suffi-
cient assumption on the period of a generator to ensure
the largest possible linear and sphere complexity of a gen-
erated binary sequence. The algorithm is as follows:

1. Choose a large prime N of the form 4t±1 with t odd.
Check whether 2 is a primitive root of N .

2. Design a binary sequence of period N .

To complete the first step, we may use one of special
primes like Stern primes (with t prime), or an o-prime of
the form N = 2p + 1, where p = 2t − 1 is also a prime
(Sophie Germain prime). The second step may be done
by the NSG with a counter modulo N and an arbitrary
nontrivial cryptographic function.

3.2 Differential analysis

Let C = {C0, C1, . . . , Cn−1} be an ordered partition
of ZN , w ∈ Z∗

N . Numbers

dC(i, j, w) = |Ci ∩ (Cj − w)|

are called difference parameters. In other words, a dif-
ference parameter dC(i, j, w) is the number of solutions
(x, y) to the equation

x+ w = y, (x, y) ∈ Ci × Cj .

Consider now the function

F (x) : ZN → GF (q) ,

and the corresponding ordered partition

Ci = {x ∈ ZN : F (x) = pi} , pi ∈ GF (q) .

Then differential analysis of F (x) is the analysis of dif-
ference parameters dC(i, j, w). We say that F has the
ideal difference property if the values dC(i, j, w) are ap-
proximately the same for all possible triples (i, j, w).

In what follows, we show how difference parameters of
cyclotomic generators may be easily estimated by cyclo-
tomic numbers.

4 CYCLOTOMIC NUMBERS

Let N = dt + 1 > 2 be a prime and let θ be a fixed
primitive root of N . We denote by D0 the multiplicative
subgroup

(

θd
)

, and define cyclotomic classes Di , i =

0, 1 . . . d − 1, by Di = θiD0 . Then {D0, . . . , Dd−1} is
the partition of Z∗

N . Let (l,m)d denote the number of
solutions (x, y) to the equation

x+ 1 = y , (x, y) ∈ Dl ×Dm ,

or equivalently

(l,m)d = | (Dl + 1) ∩Dm| .

The constants (l,m)d are called cyclotomic numbers of
order d . Many of their properties may be found in [2].
We now focus on one cryptographically important aspect
of cyclotomic numbers — their relation to difference pa-
rameters.

Let

C0 = D0 ∪ {0} , Ci = Di , i = 1, . . . , d− 1 .
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It takes a diligent reader just a while to show that

• if ij 6= 0, then

dC(i, j, θ
k) = (i− k +N − 1, j − k +N − 1)d; (1)

• otherwise

0 ≤ dC(0, j, θ
k)− (−k +N − 1, j − k +N − 1)d ≤ 1 ,

0 ≤ dC(i, 0, θ
k)− (i− k +N − 1,−k +N − 1)d ≤ 1 , (2)

0 ≤ dC(0, 0, θ
k)− (−k +N − 1,−k +N − 1)d ≤ 2 .

Consequently, the difference parameters are almost the
same as the cyclotomic numbers. We will use this fact
in calculating difference parameters of cyclotomic gener-
ators.

Let N = 4t+1 be an o-prime. It may be written in the
form N = x2 + 4y2 , where x ≡ 1 (mod4) [3]. It is clear
that there are at most 16 cyclotomic numbers of order 4.
But, thanks to the properties of cyclotomic numbers, the
situation is far more simple.

Theorem 3. For an o-prime N = x2 + 4y2 , x ≡
1 (mod 4) , there are at most five distinct cyclotomic num-
bers of order 4, namely

(0, 0) = (2, 2) = (2, 0) =
p

16
+

2x− 7

16
,

(0, 1) = (1, 3) = (3, 2) =
p

16
+

1 + 2x− 8y

16
,

(1, 2) = (0, 3) = (3, 1) =
p

16
+

1 + 2x+ 8y

16
,

(0, 2) =
p

16
+

1− 6x

16
,

the rest =
p

16
−

3 + 2x

16
.

(3)

For the proof, we refer the reader to [3].

Now we have all necessary prerequisites, and are ready
to design and analyze binary cyclotomic generators of
order 4.

5 CYCLOTOMIC GENERATOR OF ORDER 4

Let N = 4t + 1 be a large o-prime such that 2 is a
primitive root of N . A binary cyclotomic generator of
order 4 is defined by the cryptographic function

F (x) =
(

xt modN
)

mod 2 . (4)

Since 2 is a primitive root of N , we can construct cy-
clotomic classes of order 4 as D0 =

(

24
)

, Di = 2iD0 ,
i = 1, 2, 3.

Proposition 1. Let 2tmodN is even. Then

F (x) =

{

1 , if x ∈ E1 = D0 ∪D3 ,

0 , if x ∈ E0 = D1 ∪D2 ∪ {0} .

P r o o f . Trivially, F (0) = 0. Let x ∈ Z∗

N . Then
x belongs to one of the cyclotomic classes, say Di , i.e.

x = 24l+i , 0 ≤ l ≤ t− 1 . Thus we obtain

F (x) =
(

24lt+it modN
)

mod 2 =
(

2it modN
)

mod 2 ,

where we use the fact that 24t ≡ 1 (modN). Now we
compute the four cases separately:

• x ∈ D0 : xt ≡ 1 (modN), thanks to Fermat’s Theo-
rem;

• x ∈ D1 : (x
t modN) = (2tmodN) , which is even, by

the assumption;

• x ∈ D2 : (x
t modN) =

(

22tmodN
)

= (−1)modN =
N − 1, which is even, since N is odd;

• x ∈ D3 : (xt modN) =
(

23t modN
)

= (−2t)modN ,

which is odd, since 2t modN + (−2t)modN is odd.

If 2t modN is odd, one can proceed analogously to
obtain the same result with ordered partition E1 = D0 ∪
D1 , E0 = D2 ∪D3 .

Theorem 4. Let N have the binary quadratic form
x2 + 4y2 , and set

d1 = t+
y − 1

2
, d2 = t−

y + 1

2
. (5)

Then difference parameters of the cryptographic function
F (x) are

d1, d1 + 1, d1 + 2, d2, d2 + 1, d2 + 2 . (6)

P r o o f . We give the proof only for the case 2tmodN
is even; the case with 2t modN odd is left to the reader.

Difference parameters of F (x) are, by definition, the
same as difference parameters of the ordered partition
E = {E0, E1} . It is easy to check that

dE(0, 0, θ
k) = dD(1, 1, θk) + dD(1, 2, θk)

+ dD(2, 1, θk) + dD(2, 2, θk) ,

dE(0, 1, θ
k) = dD(1, 0, θk) + dD(1, 3, θk)

+ dD(2, 0, θk) + dD(2, 3, θk) ,

dE(1, 0, θ
k) = dD(0, 1, θk) + dD(0, 2, θk)

+ dD(3, 1, θk) + dD(3, 2, θk) ,

dE(1, 1, θ
k) = dD(0, 0, θk) + dD(0, 3, θk)

+ dD(3, 0, θk) + dD(3, 3, θk) .

Using (1), we get

dE(0, 0, θ
k) = (a−1, a−1)+(a−1, a)+(a, a−1)+(a, a) ,

where a = (2 − k)mod 4. Substituting a = 0, 1, 2, 3 and

using (3) gives dE(0, 0, θ
k) = d1 , d2 , d1 , d2 , respectively

(depending on a).

For the other difference parameters, we have to use
estimates (2). Thus we obtain

dE(0, 1, θ
k) = (a− 1, a− 2) + x1 + (a− 1, a+ 1)

+ (a, a− 2) + x2 + (a, a+ 1) ,

where x1, x2 ∈ {0, 1} are possible differences between
difference parameters and cyclotomic numbers. As before,
we have that dE(0, 1, θ

k) = d2+1+x1+x2 , d1+1+x1+x2 ,
d2 + x1 + x2 , d1 + x1 + x2 . We continue analogously

to get dE(1, 0, θ
k) = d2 + x3 + x4 , d1 + x3 + x4 , d2 +
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1 + x3 + x4 , d1 + 1 + x3 + x4 with x3, x4 ∈ {0, 1} , and

dE(1, 1, θ
k) = d1 + x5 + x6 + x7 , d2 + x5 + x6 + x7 ,

d1 + x5 + x6 + x7 , d2 + x5 + x6 + x7 with x5 ∈ {0, 1, 2} ,
x6, x7 ∈ {0, 1} . To be more precise, we use the following
simple facts which represent “conservation rules” between
the difference parameters:

1
∑

j=0

dE(i, j, w) = |Ei| , i = 0, 1 ;

1
∑

i=0

dE(i, j, w) = |Ej | , j = 0, 1 ;

1
∑

i,j=0

dE(i, j, w) = N .

Now the assertion of the theorem follows immediately af-
ter solving corresponding simple systems of linear equa-
tions.

Corollary 1. The binary cyclotomic generator of order
4 defined by (4) has the ideal difference property if and

only if we choose N = x2 + 4y2 such that y is a small
odd integer.

P r o o f . By (5) and (6), the biggest difference be-
tween the difference parameters is d1 + 2 − d1 = y + 2.
Particularly, if N = x2+4, the difference parameters are
t− 1, t , t+ 1, t+ 2.

We summarize the obtained results in the following
theorem:

Theorem 5. If we choose N to be an o-prime such that
2 is a primitive root of N , and the quadratic form of N
is x2+4 with x ≡ 1 (modN) , then the binary cyclotomic
generator of order 4 defined by (4) has the largest possible
linear and sphere complexity, and the ideal difference
property.

The last deal of work is to find some primes recom-
mended by Theorem 5 and to test their statistical prop-
erties.

6 STATISTICAL TESTS

We have tested the pattern distribution property (see
[2], [6]) for binary sequences generated by cyclotomic
generators of order 4 with N1 = 64013, N2 = 227533,
N3 = 85853, N4 = 76733, N5 = 205213, N6 = 514093,
N7 = 727613, N8 = 700573, N9 = 458333, N10 =
8323229. By the previous sections, the sequences have
the ideal difference property, which implies, as we have
mentioned in §3, the ideal two-bit pattern distribution
property. Thanks to the construction of generator, the

sequences also pass one-bit pattern distribution test, i.e.
the number of 1’s is approximately the same as the num-
ber of 0’s. As far as the tests on pattern distribution for
patterns of length k ≥ 3, the results vary depending on N
and k . Therefore we have focused on patterns of length 4,
according to the standard FIPS 140-1 [7]. This test has
been passed by all N ′s except for N2 and N5 . Other
tests recommended in FIPS 140-1 (the number of occur-
rences of runs — consecutive 1’s or 0’s — of given length)
have been passed by all N ’s.

7 FINAL REMARKS

We have shown that binary cyclotomic generators of
order 4 have (for a special choice of modul N ) some
“ideal” properties: large linear and sphere complexity,
security against differential attack, randomness. However,
there is still a deal of security aspects that we have not
touched. It could be a subject for further investigations.
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