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PSEUDO–EFFECT ALGEBRAS

Thomas Vetterlein
∗

As a non-commutative generalization of effect algebras, we introduce pseudo-effect algebras. We list some of their basic
properties, and we introduce a property of Riesz type in a similar manner as known for po-groups. We then show that any
Riesz pseudo-effect algebra is representable by a unit interval of some po-group.
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0 INTRODUCTION

In the field of quantum structures, various algebras
originating from Hilbert space have been studied, so as
to give way to a better understanding of the quantum-
mechanical formalism. The probably most prominent one
is the orthomodular lattice of closed subspaces of the
standard Hilbert space.

In recent times, the attention moved to another part of
the Hilbert space; instead of the closed subspaces, which
correspond to the projection operators, all the positive
operators lying below the identity, called (quantum) ef-
fects, have been taken into consideration. To model this
set, several axiom systems were proposed, among which
we find the one corresponding to effect algebras [6].

In this paper, we shall generalize the latter structure.
We basically keep all axioms of effect algebras, but we
drop commutativity.

We are working towards a structure theory of the new
kind of algebra. Since not much is known here even for
effect algebras, we assume a certain further property com-
parable to the Riesz Decomposition Property as known
for po-groups. It is then in fact possible to show that our
algebras are representable by intervals of — not necessar-
ily abelian — po-groups.

Most of the proofs are not shown in this paper; they
may be found in [4, 5].

1 PSEUDO–EFFECT ALGEBRAS

We introduce the notion of a pseudo-effect algebra.
The axioms are similar to those of effect algebras; but
the axiom of commutativity is dropped.

Definition 1.1. A structure (E; +, 0, 1), where + is a
partial binary operation and 0 and 1 are constants, is
called a pseudo-effect algebra if, for all a, b, c ∈ E , the
following holds.

(E1) a+ b and (a+ b) + c exist if and only if b+ c and
a + (b + c) exist, and in this case (a + b) + c =
a+ (b+ c).

(E2) There is exactly one d ∈ E and exactly one e ∈ E

such that a+ d = e+ a = 1.

(E3) If a + b exists, there are elements d, e ∈ E such
that a+ b = d+ a = b+ e .

(E4) If 1 + a or a+ 1 exists, then a = 0.

In view of (E2), we may define the two unary operations
∼ and − by requiring for any a ∈ E

(EC) a+ a∼ = a− + a = 1.

It is clear that effect algebras are exactly those pseudo-
effect algebras (E; +, 0, 1) in which the following holds for
any a, b ∈ E :

(A) a+ b exists if and only if b+ a exists, in which case
a+ b = b+ a .

In the sequel, by any sentence to hold we mean: All
terms that occur in it are defined, and it holds. Further-
more, we will denote finite sums usually without brackets,
which is justified by axiom (E1).

Lemma 1.2. Let (E; +, 0, 1) be a pseudo-effect algebra.

For all a, b, c ∈ E we have the following.

(i) a+ 0 = 0 + a = a .

(ii) a+ b = 0 implies a = b = 0 .

(iii) 0∼ = 0− = 1 , 1∼ = 1− = 0 .

(iv) a∼− = a−∼ = a .

(v) a + b = a + c implies b = c ; and b + a = c + a

implies b = c .

(vi) a+ b = c iff a = (b + c∼)− iff b = (c− + a)∼ .

In the usual way, pseudo-effect algebras may be par-
tially ordered.

Definition 1.3. Let (E; +, 0, 1) be a pseudo-effect alge-
bra. We define for a, b ∈ E

a ≤ b iff a+ c = b for some c ∈ E .

Lemma 1.4. Let (E; +, 0, 1) be a pseudo-effect algebra.

The following holds in E for all a, a1, b, b1, c ∈ E .

(i) ≤ is a partial order on E . E is, by ≤ , naturally

ordered, i.e. a ≤ b iff a+ c = b for some c ∈ E iff

d+ a = b for some d ∈ E .

(ii) a ≤ b iff b− ≤ a− iff b∼ ≤ a∼ .

(iii) a+ b exists iff a ≤ b− iff b ≤ a∼ .
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(iv) If b+ c exists, then a ≤ b if and only if a+ c exists

and a+ c ≤ b+ c . If c+ b exists, then a ≤ b if and

only if c+ a exists and c+ a ≤ c+ b .

2 INTERVAL PSEUDO–EFFECT ALGEBRAS

We are interested in pseudo-effect algebras that arise
from intervals in partially ordered groups in the following
manner.

Definition 2.1. Let (G; +,≤) be a po-group and u a
positive element of G . We denote by (G, u) the structure
(G; +,≤, u), i.e. we add the element u as a constant.
(G, u) is called a unital po-group if u is a strong unit of
G .

We call the set

Γ(G, u)
def
= {g ∈ G+ : g ≤ u}

the unit interval of (G, u). We denote by (Γ(G, u); +, 0, u)
the structure consisting of the unit interval of (G, u),
the partial binary operation + that is the restriction of
the group addition to those pairs of elements of Γ(G, u)
whose sum lies again in Γ(G, u), the neutral element of
G , 0 , and the positive element u .

As it is easily checked, (Γ(G, u); +, 0, u) is a pseudo-
effect algebra. For g ∈ Γ(G, u) we have here g∼ = −g+u

and g− = u − g . Furthermore, it is clear that the order
defined for (Γ(G, u); +, 0, u) coincides with the order of
the po-group G restricted to Γ(G, u).

Definition 2.2. A pseudo-effect algebra (E; +, 0, 1) is
called an interval pseudoeffect algebra if there is a unital
po-group (G, u) such that
(E; +, 0, 1) and (Γ(G, u); +, 0, u) are isomorphic.

An example of a non-commutative po-group leading to
a non-commutative pseudo-effect algebra is the following
[3, Example 4.1].

Example 2.3. Let G = Z× Z×Z ; define for every two
elements of G

(a1, b1, c1) + (a2, b2, c2)

def
=

{

(a1 + a2, b1 + b2, c1 + c2) if a2 is even,

(a1 + a2, b2 + c1, b1 + c2) if a2 is odd;

and define (a1, b1, c1) ≤ (a2, b2, c2) to hold if a1 < a2
or a1 = a2 , b1 ≤ b2 and c1 ≤ c2 . Then (G; +,≤) is an
ℓ -group, and

Γ(G, (1, 0, 0)) = {(0, b, c) : b, c ≥ 0} ∪ {(1, b, c) : b, c ≤ 0}

becomes a pseudo-effect algebra with the sum and con-
stants defined according to Definition 2.1. Both structures
are non-commutative, since e.g. (0, 1, 2) + (1,−2,−2) =
(1, 0,−1), but (1,−2,−2) + (0, 1, 2) = (1,−1, 0).

3 RIESZ PROPERTIES FOR PSEUDO–EFFECT

ALGEBRAS AND po–GROUPS

For the purpose of a structure theory, we now intro-
duce a Riesz-like property for pseudo-effect algebras.

Definition 3.1. Let (E; +, 0, 1) be a pseudo-effect alge-
bra.

(a) For a, b ∈ E , we write a com b to mean that for all
a1 ≤ a and b1 ≤ b , a1 and b1 commute.

(b) We say that E fulfils the Commutational Riesz De-

composition Property, (RDPc ) for short, if for any
a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 + b2 there
are d1, d2, d3, d4 ∈ E such that

(i) d1 + d2 = a1 , d3 + d4 = a2 ,
d1 + d3 = b1 , d2 + d4 = b2 ,

(ii) d2 com d3 .

A pseudo-effect algebra fulfilling (RDPc) will be called
a Riesz pseudo-effect algebra in the sequel.

R e m a r k 3.2 . Clearly, the com -relation is symmet-
ric. Furthermore, it is easy to see that when assuming
(RDPc), it is also additive: For any elements a, b, c of a
Riesz pseudo-effect algebra such that a + b exist, from
a com c and b com c it follows a + b com c . (RDPc) is
equivalent to a stronger version of Riesz property, involv-
ing any finite number of elements rather than just pairs
of two.

Lemma 3.3. Let (E; +, 0, 1) be a Riesz pseudo-effect

algebra. Let

a1 + · · ·+ am = b1 + · · ·+ bn ,

where m,n ≥ 1 . Then there are d11, . . . , d1n, . . . ,

dm1, . . . , dmn ∈ E such that

(i) di1 + · · ·+ din = ai for i = 1, . . . ,m and

d1j + · · ·+ dmj = bj for j = 1, . . . , n ,

(ii) for 1 ≤ i < m , 1 ≤ j < n we have

di+1,j + · · ·+ dmj com di,j+1 + · · ·+ din .

P r o o f . Similar to the proof of [7, Theorem V.1].

In exact analogy to the case of pseudo-effect algebras,
we define the Commutational Riesz Decomposition Prop-
erty also for po-groups. The Riesz Decomposition Prop-
erty of po-groups, as it is known from literature, is usually
defined similarly, but requires just condition (i) of Defi-
nition 3.4 (b) to hold.

Definition 3.4. Let (G; +,≤) be a directed po-group.

(a) For a, b ≥ 0, we write a com b to mean that for all
a1, b1 such that 0 ≤ a1 ≤ a and 0 ≤ b1 ≤ b , a1 and
b1 commute.

(b) We say that G fulfils the Commutational Riesz De-

composition Property, (RDPc) for short, if for any
a1, a2, b1, b2 ≥ 0 such that a1 + a2 = b1 + b2 there
are d1, d2, d3, d4 ≥ 0 such that

(i) d1 + d2 = a1 , d3 + d4 = a2 ,
d1 + d3 = b1 , d2 + d4 = b2 ,

(ii) d2 com d3 .

Proposition 3.5. Any ℓ -group fulfils (RDPc) .

P r o o f . Given elements a1, a2, b1, b2 ≥ 0 of an
ℓ -group such that a1 + a2 = b1 + b2 , there are
d1, d2, d3, d4 ≥ 0 such that (i) d1+d2 = a1 , d3+d4 = a2 ,
d1 + d3 = b1 , d2 + d4 = b2 , and (ii) d2 ∧ d3 = 0 by [7,
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Theorem V.1]. Two elements of ℓ -groups whose infimum
is 0 commute by [2, XIII, §3, Eq. (13)]. It follows that
(RDPc) holds.

4 REPRESENTATION OF

PSEUDO–EFFECT ALGEBRAS BY

UNIT–INTERVALS OF GROUPS

We present in this section our main result; we will
show that any Riesz pseudo-effect algebra is an interval
pseudo-effect algebra.

We make use of the word technique, as introduced
by Baer [1] and Wyler [9], which was also successfully
applied to effect algebras with a Riesz-like Property [8].
In a first step, we embed a given pseudo-effect algebra
into a semigroup. The semigroup will then, in a second
step, be extended to a po-group.

Definition 4.1. Let (E; +, 0, 1) be a pseudo-effect alge-
bra.

(i) A sequence A = (a1, . . . , an) of finite, but non-
zero, length with entries from E is called a word

in E . We denote by W(E) the set of all words;

that is W(E)
def
= {(a1, . . . , an) : a1, . . . , an ∈ E ,

n ≥ 1} . We define an addition in W(E) as the
concatenation; that is +: W(E) × W(E) → W(E),
(

(a1, . . . , am), (b1, . . . , bn)) 7→ (a1, . . . , am, b1, . . . bn).

(ii) We call two words A and B of E directly similar, in
symbols A ∼ B , if one of it has the form (a1, . . . , an),
n ≥ 2, and the other one has the form (a1, . . . , ap +
ap+1, . . . , an), 1 ≤ p < n .

We call two words A and B similar, in symbols
A ≃ B , if there are words A0, . . . , Ak , k ≥ 0, such
that A = A0 ∼ A1 ∼ · · · ∼ Ak = B . In such a case
we say that A and B are connected by a chain of

length k .

We set for a1, . . . , an ∈ E , n ≥ 1, [a1, . . . , an]
def
=

{A ∈ W(E) : A ≃ (a1, . . . , an)} , and we put C(E)
def
=

{[a1, . . . , an] : a1, . . . , an ∈ E, n ≥ 1} .

Lemma 4.2. Let (E; +, 0, 1) be a Riesz pseudo-effect

algebra.

Then similarity in W(E) is an equivalence rela-

tion compatible with + . + being the induced relation,

(C(E); +) is a semigroup in which the following holds for

any a , b , c ∈ C(E) .

(i) [0] is a neutral element.

(ii) From a+ b = [0] it follows a = b = [0] .

(iii) From a+ b = a+ c it follows b = c ;

from b+ a = c+ a it follows b = c .

(iv) There is a d ∈ C(E) such that a + b = d + a , and

there is an e ∈ C(E) such that a+ b = b+ e .

S k e t c h o f p r o o f . Evidently, C(E) is well-de-
fined as a semigroup. (i) is also obvious.
(ii) For any word x = [x1, . . . , xn] ∈ C(E), it follows from
x = [0] by induction on the length of the chain by which
(x1, . . . , xn) is connected with (0), that x1+· · ·+xn = 0,
whence x1 = · · · = xn = 0. So from a+ b = [0] it follows

a = b = [0].
(iii) We may assume a = [a] , a ∈ E . We apply
Lemma 3.3, extended to a case that two equal words
are given rather than two equal sums of elements of E ,
to [a]+b = [a]+c or b+[a] = c+[a] , respectively. Taking
into account the com-relations provided by Lemma 3.3,
we see that b = c .
(iv) We may assume a = [a] and b = [b] , a, b ∈ E . By
(RDPc) there are d1, . . . , d4 ∈ E such that d1 + d2 = a ,
d3 + d4 = a∼ , d1 + d3 = b− , d2 + d4 = b . By
(E3) there are elements d′2, d

′

4 ∈ E such that (a, b) =
(d1 + d2, d2 + d4) ∼ (d′2 + d1, d2, d4) ≃ (d′2, a + d4) =
(d′2, d

′

4 + a) ∼ (d′2, d
′

4) + (a). This shows one half; the
other one is seen analogously.

By [7 Theorem II.4], the conditions (i) to (iv) of this
Lemma are necessary and sufficient conditions for a semi-
group being the positive cone of some po-group. So we
arrive at our main theorem:

Theorem 4.3. Let (E; +, 0, 1) be a Riesz pseudo-effect

algebra. Then we have C(E) = G(E)+ for some po-group

G(E) . The map ιE : E → G(E) a 7→ [a] determines an

isomorphism between (E; +, 0, 1) and
(

Γ(G(E), [1]); +, [0], [1]
)

. [1] is a strong unit of G(E) .

In particular, E is an interval pseudo-effect algebra.

We finally note that the mapping ∆, that associates
with every pseudo-effect algebra E its representing unital
po-group (G(E), [1]), and the mapping Γ, that associates
with any unital po-group (G, u) the interval pseudo-effect
algebra Γ(G, u), define a categorical equivalence between
pseudo-effect algebras and unital po-groups that both
fulfil (RDPc).
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