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RECURSIVE IDENTIFICATION OF HAMMERSTEIN
SYSTEMS WITH POLYNOMIAL NONLINEARITIES

Jozef Vörös
∗

The paper deals with recursive identification of nonlinear dynamic systems using Hammerstein models with two-segment

polynomial nonlinearities. A special form of Hammerstein model is considered, which is linear-in-parameters. The proposed
algorithm is a direct application of the known recursive least squares method supplemented with the estimation of internal
variables.
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1 INTRODUCTION

For the subclasses of nonlinear dynamic systems that
can be considered as block-oriented systems there exist
several identification methods using topologically identi-
cal models [1]. One of the simplest nonlinear models of
this category is the so-called Hammerstein model consist-
ing of one nonlinear static block and one linear dynamic
block and many processes have this structure (eg , [2, 3]).
The linear block is mostly described by its transfer func-
tion and the static nonlinearity is often characterized by
a simple polynomial approximation, although other ap-
proaches have also been applied (eg , Haar approxima-
tions [4], piecewise linear maps [5], etc).

Recursive identification methods are important not
only for the property that they can be computed in real
time, but they may be combined with on-line control
strategies to produce adaptive control algorithms. Some
of them were applied to the nonlinear systems of Ham-
merstein type where a certain redundancy was consid-
ered in the chosen form of model description because of
the combination of linear and nonlinear block parameters
[6–8]. Despite the fact that this increases the total num-
ber of parameters and it is not easy to separate them,
this approach is the only one where the chosen model is
linear-in-parameters.

In this paper a special form of the Hammerstein model,
based on a decomposition technique [9], is considered
where the nonlinear static block is characterized by a two-
segment polynomial approximation. This model is linear-
in-parameters and is used for the recursive identification
of nonlinear dynamic systems. The proposed algorithm is
a direct application of the known recursive least squares
method [10] supplemented with the estimation of inter-
nal variables. It enables the estimation of both the pa-
rameters of linear block transfer functions and the coef-
ficients of polynomials approximating nonlinear charac-

teristics using the system inputs, outputs and estimated
internal variables.

2 HAMMERSTEIN MODELS WITH

POLYNOMIAL NONLINEARITIES

The Hammerstein model is given by the cascade con-
nection of a static nonlinearity block followed by a linear
dynamic system shown in Fig. 1. The linear dynamic sys-
tem can be described as

y(t) = q−dB(q−1)x(t) − [A(q−1) − 1]y(t) + v(t) (1)

where q−d represents the pure time delay of the system,
x(t) and y(t) are the inputs and outputs, respectively,

A(q−1) and B(q−1) are scalar polynomials in the unit

delay operator q−1

A(q−1) = 1 + a1q
−1 + · · · + amq−m , (2)

B(q−1) = b0 + b1q
−1 + · · · + bnq−n (3)

and v(t) is the output noise. The nonlinear block is char-
acterized by the mapping C(·):

x(t) = C[u(t)] (4)

where u(t) and x(t) are the inputs and outputs, respec-
tively.

Although a polynomial approximation of the mapping
C(·) may be quite appropriate, there are nonlinearities
with significantly different characteristics for the posi-
tive and negative inputs, with discontinuities or discon-
tinuous derivatives in the origin, where a single polyno-
mial approximation may fail. In these cases the so-called
two-segment polynomial approximation can be used [11]
where the nonlinear block is characterized as follows:

x(t) =

{

f [u(t)] if u(t) ≥ 0 ,

g[u(t)] if u(t) < 0 .
(5)
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Fig. 1. Hammerstein model

After defining the switching function

h(t) = h[u(t)] =

{

0 if u(t) ≥ 0 ,

1 if u(t) < 0
(6)

the relation between the input u(t) and the output x(t)
of the assumed nonlinearity can be written as follows:

x(t) = C[u(t)] = f [u(t)] +
{

g[u(t)] − f [u(t)]
}

h(t) . (7)

If the nonlinear maps f(·) and g(·) can be approximated
by the polynomials

f [u(t)] =
r

∑

k=0

fkuk(t) , (8)

g[u(t)] =
r

∑

k=0

gkuk(t) (9)

then (7) can be written as follows:

x(t) =

r
∑

k=0

fkuk(t) +

r
∑

k=0

pkuk(t)h(t) (10)

where pk = gk − fk . After substituting (10) into (1) the
Hammerstein model is described by the equation

y(t) =

n
∑

i=1

bi

{

r
∑

k=0

fkuk(t−d− i)+

r
∑

k=0

pkuk(t−d− i)h(t−d− i)
}

−

m
∑

j=1

ajy(t − j) + v(t) (11)

which is linear in the parameters aj and the combinations
of parameters bifk and bipk . The estimates of unknown
parameters can be generated by the standard recursive
least squares (RLS) algorithm [10] using the measured
system inputs and outputs. However, the number of pa-
rameters is 2(r + 1)(n + 1) + m and it is not a trivial
problem to separate the parameters bi , fk and pk .

To separate the parameters in the above model, the de-
composition of Hammerstein operator can be performed
using the key term separation principle [9]. Assuming
b0 = 1 (one parameter can be always fixed in this model),
the internal variable can be separated in the linear block
description as follows:

y(t) = x(t− d)+

n
∑

i=1

bix(t− d− i)−

m
∑

j=1

ajy(t− j)+ v(t) .

(12)

Then the half-substitution of (10) into (12) only for the

separated x(t-d) will lead to the Hammerstein model out-

put equation in the form

y(t) =
r

∑

k=0

fkuk(t − d) +
r

∑

k=0

pkuk(t − d)h(t − d)

+
n

∑

i=1

bix(t − d − i) −
m

∑

j=1

ajy(t − j) + v(t) . (13)

Now the decomposed Hammerstein model is given by

Eqs. (10) and (13). Both equations are linear-in-parame-

ters and the output equation contains the minimum num-

ber of parameters, ie , 2(r + 1) + n + m , because all the

model parameters are separated.

3 RECURSIVE IDENTIFICATION

The problem with the decomposed form of Hammer-

stein model given by (10) and (13) is that the internal

variable x(t) is not accessible for measurement. There-

fore an iterative identification method was proposed with

the internal variable estimation [9]. The values of internal

variable x(t) are recomputed in each iteration using the

previous estimates of nonlinear block parameters. This

off-line (batch) method can be easily converted into an

on-line version.

Defining the following parameter and data vectors

θ =
[

f0, f1, . . . , fr, p0, p1, . . . , pr, b1, . . . , bn, a1 . . . , bm

]⊤
,

(14)

ϕ(t) =
[

1, u(t − d), . . . , ur(t − d), h(t − d),

u(t − d)h(t − d), . . . , ur(t − d)h(t − d), x(t − d − 1), . . . ,

x(t − d − n),−y(t − 1), . . . ,−y(t − m)
]⊤

. (15)

the Hammerstein model equation can be written in the

concise form as:

y(t) = ϕ⊤(t)θ (16)

where the internal variable x(t) depends on the vector θ

and therefore (implicitly) ϕ(t) = ϕ(t, θ).

The estimates of the parameter vector can be evalu-

ated using the modified RLS algorithm, minimizing the

least-squares criterion

θ̂ = arg min
θ

t
∑

k=1

[

y(k) − ϕ̂⊤(k)θ
]

(17)
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Fig. 2. Example 1 — nonlinearity Fig. 4. Example 2 — nonlinearity

Fig. 3. Example 1 — parameter estimates Fig. 5. Example 2 — parameter estimates

based on (16), where the data vector ϕ(t) is replaced by
ϕ̂(t) with the estimates of the internal variable. The for-
mulae of recursive identification algorithm supplemented
with the internal variable estimation are as follows:

θ̂(t) = θ̂(t − 1) +
P (t − 1)ϕ̂(t)[y(t) − ϕ̂⊤(t)θ̂(t − 1)]

λ + ϕ̂⊤(t)P (t − 1)ϕ̂(t)
,

(18)

P (t) =
1

λ

[

P (t − 1) −
P (t − 1)ϕ̂(t)ϕ̂⊤(t)P (t − 1)

λ + ϕ̂⊤(t)P (t − 1)ϕ̂(t)
, (19)

x̂(t) =

r
∑

k=0

f̂k(t − 1)uk(t) +

r
∑

k=0

p̂k(t − 1)uk(t)h(t) , (20)

ϕ̂(t) =
[

1, u(t−d), . . . , ur(t−d), h(t−d), u(t−d)h(t−d),

. . . , ur(t − d)h(t − d), x̂(t − d − 1), . . . ,

x̂(t − d − n),−y(t − 1), . . . ,−y(t − m)
]⊤

(21)

P (0) = µI , 0 < µ < ∞ (22)

where the new values (estimates) of internal variable for
the data vector (21) in each recursion are computed by
(20) with the previous estimates of parameters fk and pk

and λ ≤ 1 is the so-called forgetting factor.

A bad initialization of a recursive algorithm leads gen-
erally to various problems such as convergence to a local
minimum, to a wrong estimate or instability. However,
there is no approach, which can be recommended as be-
ing universal to give an analytic solution to this problem.
This fact is related to the many different features that
the nonlinear relation can introduce.

For the decomposed form of Hammerstein model, one
way to overcome the initialization difficulty is to consider
the output as a linear parameter representation where the
data vector contains only (measured) input and output
data. There are some alternatives for the initialization
of the above algorithm depending on the first estimates
of internal variable x(t). In all the cases the nonlinear
block parameters, which determine the internal variable,
are included into the estimation process immediately.
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In the simplest case of a quasi-Hammerstein model the
estimation of parameters bi can be omitted in the first
step, ie , x(t − d − i) = 0. The second alternative is to
start the recursion with the internal variable x(t−d−i) =
u(t − d − i) in the first step. Other possibilities are to
run the recursion for some times (about 10–20 steps)
only with the above alternatives and then to continue
with the inclusion of the estimates of internal variable.
This would correspond with the first step of the iterative
method in [9].

Further problems may be caused by wild fluctuations
occurring in the early steps of recursion. If they appear
with the parameters of nonlinear block determining the
internal variable estimates the recursive process can be
prolonged or eventually become unstable. Using a proper
forgetting factor in the RLS algorithm can positively in-
fluence these problems. Finally note that there is no gen-
eral proof of convergence for the identification methods
using the Hammerstein model [12], or block-oriented non-
linear models with internal variable estimation [13], al-
though they are satisfactory for most practical applica-
tions.

4 SIMULATION STUDIES

The presented method for the recursive identification
of nonlinear dynamic systems using the Hammerstein
model with polynomial nonlinearities was implemented
and tested by means of MATLAB. Several systems were
simulated and the estimation of all the model parameters
(those of linear and nonlinear blocks) and the internal
variables were carried out on the basis of input/output
records.

To illustrate the feasibility of the proposed identifica-
tion method, the following examples show the parameter
estimation process for simulated Hammerstein systems.
In the first example the nonlinear block of the Hammer-
stein model was given by the two-segment characteristic
shown in Fig. 2, where

f [u(t)] = 1.2u(t) − 0.3u2(t) − 0.1u3(t)

p[u(t)] = −1.1u(t) + 0.6u2(t) + 0.8u3(t)

and the linear block was described by

y(t) = x(t− 1) + 0.5x(t− 2) + 0.2y(t− 1)− 0.35y(t− 2) .

The identification was carried out with 2000 samples
of uniformly distributed random inputs |u(t)| ≤ 1 and
simulated outputs. The initial values of the parameters
were chosen zero. The output noise was generated as a
zero mean white noise and the signal to noise ratio (the
square root of the ratio of output and noise variances) was
SNR = 50. Generally, the internal variable estimation re-
quires the use of lower forgetting factor λ to reduce the
influence of old data, while a value of λ close or equal to
1 is less sensitive to disturbance [10], [14]. Therefore two

forgetting factors were used in this example, ie , λ = 0.98
for the first 200 samples and λ = 1.0 for the rest of data.
The process of parameter estimation is shown in Fig. 3
(the top-down order of parameters is f1 , p3 , p2 , b1 , a2 ,
f3 , a1 , f2 , p1 ) and the estimated values converge to the
true values after about 750 steps.

A special case of two-segment nonlinearity with preloads
(Fig. 4) characterized by

f [u(t)] = 0.2 − 0.1u(t) + 0.8u2(t) − 0.2u3(t)

p[u(t)] = −0.3 + 0.3u(t) − 0.8u2(t) + 0.6u3(t)

was assumed in the second example where the linear sys-
tem was described by

y(t) = x(t− 1) + 0.1x(t− 2) + 0.2y(t− 1)− 0.35y(t− 2) .

The output noise was generated as a zero mean white
noise with SNR = 100. The identification was performed
under the same condition as in the first example. The
process of parameter estimation is shown in Fig. 5 (the
order of parameters is f2 , p3 , a2 , p1 , f0 , b1 , f1 , a1 = f3 ,
p0 , p2 ) and the estimated values converge to the true
values after about 1000 steps.

In the implementation of proposed recursive algorithm
the MISO form of MATLAB function ’rarx’ was used and
the internal variable in the data vector was externally
updated. The recursive algorithm proved good conver-
gence. The parameter estimate fluctuations appearing in
the early steps are not too severe.

5 CONCLUSION

Identification of nonlinear dynamic systems is a very
difficult problem and no approach can be recommended
as being universal. Although several identification meth-
ods using block-oriented models are available, further re-
search is needed, especially in connection with adaptive
control algorithms.

The proposed forms of the Hammerstein models with
two-segment polynomial nonlinearities seem to be appro-
priate for the recursive identification of a broad subclass
of nonlinear dynamic systems. The main potential of the
method is in on-line process monitoring and analysis. As
the model is linear-in-parameters, several approaches to
the adaptive control using linear models can be adopted
for the control of this subclass of nonlinear dynamic sys-
tems [14].

Finally, note that similar approach can be applied
to the Wiener model decomposed into a form, which is
linear-in-parameters [9].
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[11] VÖRÖS, J. : Iterative Algorithm for Parameter Identification of

Hammerstein Systems with Two-Segment Nonlinearities, IEEE

Trans. Automatic Control 1999 44, 2145.

[12] STOICA, P. : On the Convergence of an Iterative Algorithm

Used for Hammerstein System Identification, IEEE Trans. Au-

tomatic Control 26 (1981), 967.

[13] HUNTER, I. W.—KORENBERG, M. J. : The Identification

of Nonlinear Biological Systems: Wiener and Hammerstein Cas-

cade Models, Biological Cybernetics 55 (1986), 135.

[14] CHIDAMBARAM, M. : Computer Control of Processes, CRC

Press, New York, 2001.

Received 26 January 2005

Jozef Vörös (Ing, CSc) was born in Hurbanovo on July

9, 1949. He graduated in automatic control from the Faculty

of Electrical Engineering of the Slovak Technical University,

Bratislava in 1974 and received his PhD degree in control the-

ory from the Institute of Technical Cybernetics of the Slovak

Academy of Sciences, Bratislava in 1983. Since 1992 he has

been with the Faculty of Electrical Engineering and Informa-

tion Technology at the Slovak University of Technology, in

Bratislava, where he is acting as a senior research scientist in

the Department of Automation and Control. His recent re-

search interests include the area of modeling of 2D and 3D

objects in robotics using quadtree and octree representations.

He is also interested in the analysis of nonlinear systems.

E X P O R T - I M P O R T

of periodicals and of non-periodically

printed matters, books and CD - ROM s

Krupinská 4 PO BOX 152, 852 99 Bratislava 5,Slovakia
tel.: ++ 421 2 638 39 472-3, fax.: ++ 421 2 63 839 485

e-mail: gtg@internet.sk, http://www.slovart-gtg.sk

s.r.o.

GmbH

E X P O R T - I M P O R T

G.T.G.SLOVART s.r.o.

GmbH

E X P O R T - I M P O R T

G.T.G.SLOVART


