ESTIMATION OF THE SUPPORT REGION FOR
LAPLACIAN SOURCE SCALAR QUANTIZERS

Zoran Peric∗ — Jelena Nikolic∗ — Dragoljub Pokrajac**

The goal of this paper is finding an asymptotic equation which determines the amplitude range of asymptotically optimal scalar quantizers for Laplacian input signals with an unrestricted amplitude range. It is very important to show how the amplitude range depends on the number of quantization levels. The approximation method for determining the amplitude range is suggested. This method can be used for simple and fast estimation of the amplitude range for scalar quantizer, as a result the quantizer is ideally loaded.

Key words: Laplacian source, scalar quantizer, support region

1 INTRODUCTION

Considerable attention has been focused on the design of optimal quantizers for sources encountered in image, speech and other compression applications. Sources having exponential and Laplacian probability density functions (pdf) are commonly in use [1], [2] and the methods for designing quantizers for these sources are very similar. The support region is a key issue in quantizer implementation and when a quantizer is applied to a random variable other than the one for which it was optimized. Lloyd-Max style algorithms for designing optimal scalar quantizers [3], [4] begin with an estimate of the support region, the better the estimate, the more rapidly the algorithm converges. In this paper we suggest an approximation method for determining the amplitude range. This method can be used for simple and fast estimation of the amplitude range for scalar quantizer, as the approximation method converges. In this paper we suggest an approximation method for determining the amplitude range.

Optimization of scalar quantizer

We begin by defining the terms and reviewing relevant scalar quantization characteristics. Let an $N$-level quantizer $Q_i^{(N)}$ be defined in terms of a set of $N$ positive step sizes $\{\alpha_t\}_{t=1}^N$ and a set of $N$ distances from the representative levels to the $i$th decision thresholds $\{\delta_i\}_{i=1}^N$. Let $\{t_i\}_{i=1}^N$ be $N+1$ decision thresholds of the quantizer such that:

$$t_0 = -\infty < t_1^{(N)} < \cdots < t_{N-1}^{(N)} < t_N^{(N)} = \infty$$

and quantizer cells are derived via

$$S_i^{(N)} = (t_{i-1}^{(N)}, t_{i}^{(N)})$$

Cells $S_1^{(N)}, \ldots, S_N^{(N)}$ will be called the inner cells, while $S_1^{(N)}$ and $S_N^{(N)}$ will be called the outer cells.

Let $N$ output values of the quantizer (representative levels) $\{y_i^{(N)}\}_{i=1}^N$ be given by

$$y_i^{(N)} = t_i^{(N)} + \delta_i, \quad i = 1, 2, \ldots, N.$$ (3)

The $N$-level scalar quantizer is defined as a functional mapping of an input value onto an output representation such that

$$Q^{(N)}(x) = y_i^{(N)}, \quad t_{i-1}^{(N)} < x \leq t_i^{(N)}.$$ (4)

In this paper, an optimal $N$-level scalar quantizer, denoted $Q^{*^{(N)}}$, for a source characterized as a continuous random variable $X$ with probability density $p(x)$ is a quantizer that minimizes the mean squared error:

$$D(Q^{(N)}) = E \{ (X - Q^{(N)}(X))^2 \}.$$ (5)

$$D(Q^{(N)}) = \sum_{i=1}^N \int_{t_{i-1}^{(N)}}^{t_i^{(N)}} (x - y_i^{(N)})^2 p(x)dx.$$ (6)

Such a quantizer is optimal in the sense that no other scalar quantizer with $N$ levels can obtain a lower distortion. Let distortion of an optimal $N$-level scalar quantizer be

$$D^{*^{(N)}} = D(Q^{*^{(N)}}).$$ (7)

As first discovered by Panter and Dite [5], for large $N$:

$$D^{*^{(N)}} \approx C_{\infty} / N^2.$$ (8)

where $C_{\infty}$ is the Panter-Dite constant

$$C_{\infty} \triangleq \frac{1}{12} \left( \int_{-\infty}^{\infty} x^{1/3} p(x)dx \right)^3.$$ (9)

∗ Faculty of Electronic Engineering, Aleksandra Medvedeva 14 18000 Niš, Serbia; E-mail: peric@elfak.ni.ac.yu; ** Delaware State University, USA
Estimation of support region

Construction of optimal scalar quantizer is possible using the analysis given in [6]. The problem of determining the maximal amplitude of the input signal, say the problem of determining the granular region, is very important and was considered in [7] and [8]. Roughly speaking, the support region of the quantizer, also called the granular region, is the interval where quantization errors are small or at least bounded. Correspondingly, errors are large or at least unbounded on the complement of the support region, usually called the overload region. The following equations describe a symmetrical quantizer with nonuniform amplitude range divided into quantization cells. The total distortion can be found as a sum of granular and overload distortions:

\[ D = D_{\text{gran}} + D_{\text{ol}}. \] (10)

Estimates of the support region are useful in specifying the essential limits in the Panter-Dite formula (8):

\[ D_{\text{gran}} = \frac{1}{12N^2} \left( \int_{-x_{\text{max}}}^{x_{\text{max}}} p^*(x) dx \right)^3. \] (11)

Let us consider the Laplacian source with memoryless property. Laplacian pdf of the original random variable \( x \) can be expressed by

\[ p(x) = \frac{e^{-|x|\sqrt{2/\sigma^2}}}{\sqrt{2\sigma^2}}. \] (12)

Without loss of generality we can assume that \( \sigma^2 = 1 \) and (12) becomes

\[ p(x) = \frac{1}{\sqrt{2}} e^{-\sqrt{2} |x|}. \] (13)

By substituting (13) in (11), the expression for determining granular distortion is derived as

\[ D_{\text{gran}} = \frac{9}{2N^2} \left( 1 - e^{-\sqrt{2} x_{\text{max}}} \right)^3. \] (14)

The overload distortion is given by

\[ D_{\text{ol}} = 2 \int_{x_{\text{max}}}^{\infty} (x - y_{\text{gran}})^2 p(x) dx \] (15)

where the symmetry of Laplacian distribution is used. By substituting (13) in (15), the expression for determining overload distortion is derived as

\[ D_{\text{ol}} = e^{-\sqrt{2} x_{\text{max}}} \left( x_{\text{max}}^2 + \sqrt{2} x_{\text{max}} + 1 - 2 y_{\text{gran}}^2 - 2 y_{\text{gran}}^2 + y_{\text{gran}}^2 \right). \] (16)

In the case of an optimal scalar quantizer with a large number of quantization cells we can assume that representation levels \( \{y_i^{(N)}\}_{i=1}^N \) lie in the middle of the interval \( S_i^{(N)} \), \( i = 1, \ldots, N \). Therefore is

\[ y_{i}^{(N)} = \frac{1}{2} (t_{i-1}^{(N)} + t_{i}^{(N)}), \] (17)

\[ y_{N}^{(N)} = x_{\text{max}} - \frac{\Delta_N}{2}. \] (18)

\( \Delta_N \) denotes the width of \( N \)th interval. A nonuniform scalar quantizer for \( \Delta_N = 1 \) is designed in [6]. Using the assumption that representation levels are centred in appropriate cells we can conclude that \( \Delta_N = 2 \). Using this fact and equations (16) and (18), final expression for overload distortion is derived as

\[ D_{\text{ol}} = e^{-\sqrt{2} x_{\text{max}}} \left( 2 + \sqrt{2} \right). \] (19)

By using (14) and (19), the expression for total distortion is obtained as

\[ D = \frac{9}{2N^2} \int \left( 1 - e^{-\sqrt{2} x_{\text{max}}} + e^{-\sqrt{2} x_{\text{max}}} (2 + \sqrt{2}) \right). \] (20)

For large values of \( x_{\text{max}} \) expression (14) can be approximated as

\[ D_{\text{gran}} = \frac{9}{2N^2} \int \left( 1 - 3e^{-\sqrt{2} x_{\text{max}}} \right). \] (21)

Granular distortion of an \( N \)-level quantizer can be decomposed into an inner distortion and an outer distortion. Inner distortion is a sum of distortion contribution of the inner cells \( S_2^{(N)}, \ldots, S_{N-1}^{(N)} \). Correspondingly, outer distortion is a sum of distortion contribution of the outer cells \( S_1^{(N)} \) and \( S_N^{(N)} \):

\[ D_{\text{gran}} = 2D_{\text{gran}}(N) + \sum_{i=2}^{N-1} D_{\text{gran}}(i) \] (22)

where

\[ 2D_{\text{gran}}(N) = \int_{x_{\text{max}}-\Delta_N}^{x_{\text{max}}} (x - y_{i}^{(N)})^2 p(x) dx, \] (23)

\[ \sum_{i=2}^{N-1} D_{\text{gran}}(i) = \frac{1}{12(N-2)^2} \int_{0}^{x_{\text{max}}-\Delta_N} p^*(x) dx. \] (24)

For a large number of quantization cells \( N \), pdf can be considered as constant within each of quantization cells and approximated with appropriate values in representation points

\[ 2D_{\text{gran}}(N) \approx 2p(y_{N}^{(N)}) \int_{x_{\text{max}}-\Delta_N}^{x_{\text{max}}}(x - y_{N}^{(N)})^2 dx. \] (25)
By solving integrals (24) and (25) it is possible to determine the following expressions for granular distortion:

\[
2D_{\text{gran}}(N) \approx \frac{2\sqrt{2}}{3} e^{\sqrt{2}x_{\text{max}}^2} e^{-\sqrt{2}x_{\text{max}}^2},
\]

\[
\sum_{i=2}^{N-1} D_{\text{gran}}(i) = \frac{9}{2(N-2)^2} (1 - e^{-\sqrt{2}(x_{\text{max}} - \Delta N)})^3,
\]

\[
\sum_{i=2}^{N-1} D_{\text{gran}}(i) \approx \frac{9}{2(N-2)^2} (1 - 3e^{-\sqrt{2}(x_{\text{max}} - \Delta N)}).
\]

Using (21), (22), (26) and (28) the following equation is obtained:

\[
2\frac{\sqrt{2}}{3} e^{\sqrt{2}x_{\text{max}}^2} + \frac{27}{2} \left( \frac{1}{N^2} - \frac{1}{2(N-2)^2} \right)e^{-\sqrt{2}x_{\text{max}}^2} + \frac{9}{2} \left( \frac{1}{N^2} - \frac{1}{N^2} \right) = 0.
\]

By solving (29) and using approximation for a large \( N \)

\[
\frac{1}{N^2} \approx \frac{1}{(N-2)^2}
\]

it is possible to approximately determine how the optimal amplitude range depends on the number of quantization levels:

\[
x_{\text{max opt}}^{\text{apr}} = \frac{3}{\sqrt{2}} \ln \frac{N}{1.0849}.
\]

The optimal amplitude range, \( x_{\text{max opt}}^{\text{apr}} \), can be evaluated by minimization of distortion. Therefore, differentiating Eq. (20) and equating to zero leads to

\[
\frac{\partial D}{\partial x_{\text{max}}} = \frac{9}{\sqrt{2}N^2} e^{-\sqrt{2}x_{\text{max}}} \left( 1 - e^{-\sqrt{2}x_{\text{max}}} \right)^2 - 2(1 + \sqrt{2})e^{-\sqrt{2}x_{\text{max}}} = 0,
\]

\[
x_{\text{max opt}} = \frac{3}{\sqrt{2}} \ln \frac{N^2 - 1.318}{1.148N - 1.318}.
\]

2 NUMERICAL RESULTS

To easily find nearly exact solutions, we suggest an approximation method for determining the support region of asymptotically optimal scalar quantizers for Laplacian input signals with an unrestricted amplitude range. From Eq. (31) it is easy to calculate the approximate value for \( x_{\text{max opt}}^{\text{apr}} \) and from Eq. (33) the accurate value for \( x_{\text{max opt}} \).

In Table 1 are given the values of the maximal input signal amplitude, calculated by using the suggested approximation method and by using the differentiation method that minimizes the distortion when the numbers of quantization cells are \( N = 64, N = 128, N = 256 \) and \( N = 512 \). In Table 2 are given numerical values of distortion calculated by using the suggested approximation method and using the differentiation method that minimizes distortion for different numbers of quantization cells. The dependence of distortion on the maximal input signal amplitude for nonuniform scalar quantizer with \( N = 64, N = 128, N = 256 \) and \( N = 512 \) for Laplacian source is shown in Figs. 1 to 4. From these figures \( x_{\text{max opt}} \) that corresponds to the minimum of distortion can be ordered. From Figs. 1 to 4 and Tables 1 and 2 it is possible to notice that the appropriate values of \( x_{\text{max opt}}^{\text{apr}} \) and \( x_{\text{max opt}} \), and also the appropriate values of \( D^{\text{apr}} \) and \( D \) are almost identical. The relative distortion error calculated using proposed approximation method is given by

\[
\delta = \left| \frac{D^{\text{apr}} - D}{D} \right|
\]

or expressed in [db]

\[
SNRO - SNRO^{\text{apr}} = 10 \log \frac{\sigma^2}{D^{\text{apr}}} D^{\text{apr}},
\]

\[
SNRQ - SNRQ^{\text{apr}} = 10 \log \frac{D^{\text{apr}}}{D}.
\]
3 CONCLUSION

Method presented in this paper enables estimation of the support region of asymptotically optimal scalar quantizers for Laplacian input signals with an unrestricted amplitude range. It is very important to point out that we derived in closed form the equation which provides easily finding the values of maximum amplitude \( e \) the support region of quantizer. Due to its simplicity the proposed method is useful when designing scalar quantizers. Particularly, it provides fast and efficient design of scalar quantizers that are used for source coding of images [9] and speech [2]. Furthermore, numerical results demonstrate that by using the proposed method relative distortion error is approximately about \( 10^{-5} \). Hereby, the proposed method validity is confirmed.

References


Received 27 January 2006

Zoran H. Peric was born in Nis, Yugoslavia, in 1964. He received the BSc degree in electronics and telecommunications from the Faculty of Electronic Engineering, Nis, Serbia, Yugoslavia, in 1989, and MSc degree in telecommunications from
the University of Nis, in 1994. He received the PhD degree from the University of Nis, also, in 1999. He is currently Professor at the Department of Telecommunications and vice dean of the Faculty of Electronic Engineering, University of Nis, Serbia. His research interests include the information theory, source and channel coding and signal processing. He is particularly working on scalar and vector quantization techniques in speech and image coding. He is author and coauthor in over 100 papers in digital communications. Dr Peric has been a Reviewer for IEEE Transactions on Information Theory. He is member Editorial Board of Journal “Electronics and Electrical Engineering”.

Jelena R. Nikolic was born in Prokuplje, Yugoslavia, in 1978. She received the BSc degree in telecommunications from the Faculty of Electronic Engineering, Nis, Serbia in 2003, and MSc degree in telecommunications from the University of Nis, in 2006. She is currently Research Assistant on a Science Research Program, supported by Serbian government, on Faculty of Electronic Engineering in the laboratory for telecommunications under supervision of prof. Zoran Peric, since 2003. Her current research interests include the information theory, source and channel coding and signal processing. She is particularly working on scalar quantization techniques in speech and image coding. She is author and coauthor in over 20 papers in digital communications.

Dragoljub M. Pokrajac was born in Sibenik, Dalmatia, Croatia, in 1970. He received the BSc degree in electronics and telecommunications from the Faculty of Electronic Engineering, Nis, Serbia, Yugoslavia, in 1993, MSc degree in telecommunications from the University of Nis, 1997. He received the PhD degree at Temple University, USA, 2002. He is currently Assistant Professor at the Computer and Information Sciences Department and Graduate Department of Applied Mathematics and Theoretical Physics Delaware State University, Dover, DE, USA. He is co-principal investigator of DoD/DoA Applied Mathematics Research Center Grant, and co-principal investigator of NIH-funded INBRE grant. His current research interests include video surveillance, data bases and data mining, applied mathematics, spatial-temporal statistics, computational geometry and image processing. He is author and coauthor in over 80 papers and one patent. Dr Pokrajac has been a Reviewer for IEEE Transactions on Education.