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COMMUNICATIONS

FREQUENCY WEIGHTED DISCRETE–TIME CONTROLLER
ORDER REDUCTION USING BILINEAR TRANSFORMATION

Paknosh Karimaghaee — Navid Noroozi
∗

This paper addresses a new method for order reduction of linear time invariant discrete-time controller. This method leads
to a new algorithm for controller reduction when a discrete time controller is used to control a continuous time plant. In this

algorithm, at first, a full order controller is designed in s -plane. Then, bilinear transformation is applied to map the closed
loop system to z -plane. Next, new closed loop controllability and observability grammians are calculated in z -plane. Finally,
balanced truncation idea is used to reduce the order of controller. The stability property of the reduced order controller is
discussed. To verify the effectiveness of our method, a reduced controller is designed for four discs system.
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1 INTRODUCTION

In many industrial control systems, simple controllers
are preferable. But in some type of modern control strat-
egy such as the linear quadratic Gaussian (LQG) and
H∞ , design procedure leads to high order controllers.
Therefore, controller order reduction is one of the main
research topics. Controller reduction methods can be di-
vided in two classes: direct [1, 2] and indirect [3–6]. The
common philosophy in direct method is to seek to mini-
mize a quadratic performance index subject to the con-
straint that the controller has fixed degree. Controller re-
duction with the former method mostly yields a closed
loop system with poor robustness [4]. The main idea in
latter way is first to design a high order performance
controller and subsequently to reduce its order. This ap-
proach can take closed-loop performance and stability
into account in the reduction process of the controllers.
Such approach considers in this paper.

Most commonly model reduction techniques are also
used for controller reduction but with loop consideration.
So for introducing the controller reduction methods it
is useful to review model reduction techniques. The bal-
anced realization [7] has been a significant contribution to
system theory. Especially, its application to model reduc-
tion known as balanced truncation which can preserve
stability and gives an explicit bound on frequency re-
sponse error [3]. Ideally, it is important that the error
between the original and reduced-order model is small
for all frequencies. However, the operational frequency
bandwidth of a system is a critical factor which should
be addressed as an integrated part of any reliable model
reduction scheme [8].

One of the common methods in model or controller
reduction is the frequency weighted balanced truncation.
Enns [3] extended the results in [7] to frequency weights
of a full order model. The method may use input weight-
ing, output weighting, or both. With only one weighting

present, stability of the reduced order model is guaran-
teed [3]. However, with both weightings, the method may
yield unstable models. In order to overcome this prob-
lem, several methods such as [6, 8–10] were introduced.
Karimaghaee et al [8] developed a method for model re-
duction based on definition of controllability and observ-
ability grammians in the frequency domain. Their tech-
nique is based on a conceptual viewpoint regarding the
balancing of the controllability and observability gram-
mians of a multivariable system in a given range of fre-
quency. Based on the latest idea, Sadeghian et al [6] pro-
posed new approach for controller reduction. This method
is based on newly defined controllability and observabil-
ity grammians which are calculated from input to state
and state to output characteristics of the controller in a
certain frequency domain.

Sampled-data feedback control has received much at-
tention in the area of control system design. Moreover,
bilinear transformation finds application in the areas of
digital control and signals processing, and is used to de-
termine a discrete equivalent of an analog transfer func-
tion for digital computer implementation of the analog
control systems. The objective of this paper is to de-
velop new method to reduce the dimension of discrete
time controller, when it is used for the control of con-
tinues time plant. The controllability and observability
grammians of discrete-time controller in a closed loop
manner is used instead of continuous time grammians.
Hence, we utilize these new forms of grammians in order
to have a reduce order controller in a similar way as the
conventional balanced truncation methods. By usage of
frequency weighted grammians it is possible to obtain a
reduced order controller in the desired frequency band.

The structure of the paper is as follows; we review
some useful conceptions and definitions in Section 2. Two
new grammians for discrete-time closed loop system will
be defined in Section 3. Similar to balanced truncation

∗ School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran; kaghaee@shirazu.ac.ir

DOI: 10.2478/v10187-011-0007-1, ISSN 1335-3632 c⃝ 2011 FEI STU



Journal of ELECTRICAL ENGINEERING 62, NO. 1, 2011 45

idea in [7, 11], Section 4 is allocated to controller reduc-
tion based on balancing new grammians introduced in the
last section and then eliminating states corresponding to
small Hankel singular values. Stability problem of closed
loop system with reduced order controller is discussed in
Section 5. Simulation results are included in Section 6.
Finally in Section 7, concluding remarks and future ex-
tensions are addressed.

2 PRELIMINARIES

Some useful preliminaries conceptions will be reviewed
in this section. They are necessary to introduce our
method. Consider an nth-order LTI asymptotically sta-
ble continuous system with minimal realization (A,B,C)
with system equations as

ẋ = Ax(t) +Bu(t) ,

y(t) = Cx(t)
(2.1)

where u ∈ Rp , y ∈ Rq , x ∈ Rn are the input, output,
and state, respectively. Also, A ∈ Rn×n , B ∈ Rn×p ,
C ∈ Rq×n are real valued matrices.

The controllability and observability grammians of
system (2.1) can be defined respectively as

P =

∫ ∞

0

eAtBBT⊤eA
⊤tdt ,

Q =

∫ ∞

0

eA
⊤tC⊤CeAtdt .

(2.2)

For an asymptotically stable system, the following Lya-
punov equations are satisfied by the grammian matrices
of (2.2).

AP + PA⊤ = −BB⊤,

A⊤Q+QA = −C⊤C .
(2.3)

It has been shown [7] that similarity transformation can
be found such that the system is internally balanced, that
is, the matrices P , Q are equal and diagonal

P = Q = Σ = diag{ σ1, σ2, . . . , σn} (2.4)

where σi ≥ σi+1 , i = 1, 2, . . . , n − 1 are the grammians
singular values and are invariant under similarity trans-
formation. Based on the order of magnitude of singular
values, this balanced system and its corresponding gram-
mians can be partitioned as below

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
,

C = [C1 C2 ] , Σ =

[
Σ1 0
0 Σ2

]
.

(2.5)

It has been shown that if σi ≫ σi+1 , the subsystem
(A11, B1, C1) is a good reduced order approximation of

the main full order system (A,B,C). This technique is
called Balance Truncation (BT).

Now let us consider a closed loop system with linear
time invariant asymptotically stable continuous-time sys-
tems K(s), G(s) in forward path as shown in Fig. 1
where G(s) is the transfer function of the plant. K(s) is
a high order controllable and observable controller with
state space realization as

ẋk = Akxk +Bkuk ,

yk = Ckxk
(2.6)

where xk ∈ Rnc is a state vector, uk ∈ Rq represents the
input vector of the controller, and yk ∈ Rp is the output
of the controller with matrices Ak , Bk , and Ck in the
appropriate dimensions and r ∈ Rq is the reference input
of the closed loop system. The plant and controller order
are n and nc , respectively.

Sadeghian et al [6] defined the following grammians

Pkc =
1

2π

∫ ∞

−∞
(jwI −Ak)

−1Bk(I +GK)−1(I +GK)−1∗

B∗
k(jwI −Ak)

−1∗dw , (2.7)

Qkc =
1

2π

∫ ∞

−∞
(jwI −Ak)

−1∗C∗
k(I +KG)−1∗G∗G

(I +KG)−1Ck(jwI −Ak)
−1dw . (2.8)

These matrices were called frequency-domain closed loop
controllability and observability grammians of controller,
and will be used for controller order reduction.

In [6], it was shown that, frequency-domain closed loop
controllability grammian of controller, Pkc indicates the
distribution of energy at the state variables due to white
noise command signal r and observability grammian dis-
plays the distribution of energy from state variables of
controller to output of closed loop system. Therefore, they
could eliminate those parts of these state variables which
are less affected by input command r and in turn have
less influence on output y .

3 CLOSED LOOP CONTROLLABILITY
AND OBSERVABILITY

GRAMMIANS OF CONTROLLER

In this section, new forms of controllability and observ-
ability grammians are introduced. In this way we consider
the effect of controller disceretization on grammians (2-7)
and (2-8). At first consider the s-plane to z -plane map-
ping with bilinear transformation

s = β
z − α

z + α
⇐⇒ z = α

β + s

β − s
(3.1)

and define

Kd(z) = K
(
β
z − α

z + α

)
= J +H(zI − Φ)−1Γ .
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Fig. 1. Closed Loop System with Full Order Controller

Take Γ and H as follows [12]

Φ = α(βI +A)−1(βI −A) ,

Γ =
√
2αβ(βI −A)−1B ,

H =
√
2αβC(βI −A)−1,

J = D + C(βI −A)−1B

(3.2)

which imply

A = β(αI +Φ)−1(Φ− αI) ,

B =
√
2αβ(αI +Φ)−1Γ ,

C =
√
2αβHαI +Φ)−1 ,

D = J −H(αI +Φ)−1Γ .

(3.3)

Now map the closed loop system in Fig. 1 to z domain
using bilinear transformation. Without loss of generality,
we choose α = 1 and β = 2. With substituting z = ejω
in (3.1), we have

w = 2 tan
ω

2
.

From (3.3) and changing variable w in integrals (2.7) and
(2.8) results in

Pkc =
1

2π

∫ π

−π

(
J +H(ejωI − Φ)−1Γ

)
(I +GdKd)

−1

(I+GdKd)
−1∗(J +H(ejωI − Φ)−1Γ

)∗ dω

1+tan2 ω
2

, (3.4)

Qkc =
1

2π

∫ π

−π

(
J +H(ejωI − Φ)−1Γ

)∗
(I +KdGd)

−1∗

(I +KdGd)
−1

(
J +H(ejωI − Φ)−1Γ

) dω

1 + tan2 ω
2

(3.5)

where H = Γ = 2(2I − Ak)
−1 , Γ = 2(2I − Ak)

−1Bk ,

J = (2I − Ak)
−1Bk , H = 2Ck(2I − Ak)

−1 , J =

Ck(2I −Ak)
−1 , Phi = (2I +Ak)

−1(2I −Ak) and Gd =

G(s)
∣∣
s=2 z−1

z+1

.

In general, command signal is limited in a certain fre-
quency domain, it is desirable to be able to tight the
frequency domain and this can be easily done by limiting
the frequency range of reference input signal. In this case,
consider the input signal r(ejω) which its energy density

spectrum is mainly confined in frequency range [ω0, ω1]
and nearly zero elsewhere; that is

|r(jω)|
{ ∼= 1 , ω0 < |ω| ≤ ω1 ,

≤ ε ≪ 1 , otherwise.

So the new controllability and observability grammians of
controller in the specified frequency range can be defined
as

Pkc
∼=

1

π

∫ ω1

ω0

(J +H(ejωI − Φ)−1Γ)(I +GdKd)
−1

(I+GdKd)
−1∗(J +H(ejωI − Φ)−1Γ)∗

dω

1+tan2 ω
2

, (3.6)

Qkc
∼=

1

π

∫ ω1

ω0

(J +H(ejωI − Φ)−1Γ)∗(I +KdGd)
−1∗G∗

d

Gd(I+Gd)K
−1
d (J +H(ejωI − Φ)−1Γ)

dω

1+tan2 ω
2

. (3.7)

Grammians Pkc and Qkc can also be defined as fre-
quency-domain closed loop controllability and observabil-
ity grammians of controller in frequency range [ω0, ω1] ,
respectively. It should be noted that the matrix J is not
zero. Therefore one advantage of this method is that it is
not necessary to assume that K(z) is strictly proper.

4 PROPOSED APPROACH

In [6], it is shown that there exists a similarity trans-
formation in which the closed loop controllability and
observability grammians of controller can be diagono-

lized and equal, that is, P̂cc = Q̂co = T−1PkcT
−1∗ =

T ∗QkcT = Σf , where Σf = diag{σ1, σ2, . . . , σnc} , σi ≥
σi+1 , i = 1, 2, . . . , nc − 1. Then each element of matrix
Σf shows the proportions of any of the state variables
of controller being influenced by command input while
simultaneously affect them on the output in frequency
range [ω0, ω1] . This interpretation will be used in reduc-
ing the order of controller. Suppose[

x̂1k(k+1)
x̂2k(k+1)

]
=

[
Φ̂11 Φ̂12

Φ̂21 Φ̂22

] [
x̂1k(k)
x̂2k(k)

]
+

[
Γ̂1

Γ̂2

]
uk ,

yk =
[
Ĥ1 Ĥ2

]
x̂k + [ J1 J2 ]uk .

(4.1)

is a balanced realization of K(z) in a closed loop manner
when

P̂kc = Q̂kc = diag(Σ1,Σ2) (4.2)

where matrices Φ̂i , Γ̂i , Ĥi , and Ji are partitioned ac-
cording to the order of Σi . If the Hankel singular values
Σ1 and Σ2 are disjoint, then the reduced state equation

x̂1k(k + 1) = Φ̂11x̂1k(k) + Γ̂1uk(k) ,

yk = Ĥ1x̂1k(k) + J1uk(k) .
(4.3)
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is balanced. If the singular values of Σ2 are much smaller
than those of Σ1 , then the transfer function of the closed
loop system with the controller of (4.3) is a good approx-
imation for the transfer function of full order closed loop
system. Therefore the new controller reduction algorithm
can be described in the following steps

Step I. Map full order continuous controller to z -plane
using bilinear transformation.

Step II. Calculate the closed loop controllability and ob-
servability grammians Pkc and Qkc in the desired fre-
quency range, from equations (3.6), (3.7).

Step III. Find a similarity transformation T that makes
the closed loop controller grammians balanced, that is,

P̂kc = Q̂kc = Σf .

Step IV. Partition the transformed controller as equation
(4.3) based on the magnitude of Hankel singular values.

The subsystem (Φ̂11, Γ̂1, Ĥ1, J1) is the reduced order
controller.

5 STABILITY

In this section, stability of the reduced order controller
is investigated. Assume that the full order controller is
asymptotically stable. So the following Lyapunov equa-
tions can be written [6]

AkPkc + PkcA
⊤
k = −LL∗ , (5.1)

A⊤
k Qkc +QkcAk = −NN∗ (5.2)

where L and N are the specific matrix which were de-
fined in [6]. Now we establish Pkc and Qkc such that the
corresponding discrete-time Lyapunov equations are sat-
isfied. By substituting Φ = (2I+Ak)

−1(2I−Ak) in (5.1)
and (5.2) results in

ΦPkcΦ
⊤+ Pkc = −(I +Φ)L[(I +Φ)L]∗

4
, (5.3)

ΦQkcΦ
⊤+Qkc = −(I +Φ)N [(I +Φ)N ]∗

4
. (5.4)

The right side of the Lyapunov equations (5.3) and (5.4) is
negative semi definite. Since Pkc and Qkc satisfy the Lya-
punov equations, the stability of the reduced order con-
troller is automatically guaranteed [13]. From the above
results, Theorem 5.1 is immediate.

Theorem 5.1. For an asymptotically stable, control-
lable and observable controller with stable input and out-
put weights, the reduced order controller with grammians
(3.6) and (3.7) is asymptotically stable.

6 SIMULATION RESULTS

In this section, a reduced order controller is designed
for four discs system [14] in order to evaluate the new

proposed approach. The transfer function of plant are

given

G(s) =
(
0.0506s7 + 0.01196s6 + 0.3139s5

+ 0.04411s4 + 0.5877s3 + 1.028s2 + 0.3108s+ 1
)
s−2(

s6+0.1661s5+6s4+0.5934s3+10s2+0.41s+3.987
)−1

.

Sampling time is considered 0.1 sec (ie β = 20). Full or-

der controller K(s) is discretized using bilinear transfor-

mation technique. The transfer function of the controller

is

K(z) =
(
0.00343z8 − 0.0203z7 + 0.0469z6 − 0.0464z5

− 0.0004z4 + 0.0467z3 − 0.0466z2 + 0.02z − 0.003362
)(

z8 − 7.78z7 + 26.54z6 − 51.84z5 + 63.43z4 − 49.77z3

+ 24.46z2 − 6.886z + 0.8498
)−1

.

Grammians (3.6) and (3.7) are calculated in frequency

range [0.01 , 15] rad/sec. In this case we have

Σf = diag{0.258, 0.1911, 0.0749, 0, 0563,
0.0184, 0.0135, 0.0071, 0.0064} .

The controller is reduced based on the above grammian.

Let Kr(s) = Kr(z)
∣∣
z= 20+s

20−s

, V (s) =
(
1 + G(s)K(s)

)−1

and W (s) =
(
1+G(s)K(s)

)−1
G(s). Although our method

is proposed for discrete-time systems, Tab. 1 compares

the approximation errors ∥W (s)(K(s) − Kr(s))V (s)∥∞
obtained using Enns [3] method, Wang et als [10] method,

Varga and Andersons [5] method and our new method,

both in s-plane and z -plane. For a practical closed loop

control system, it is necessary to discretize the controller

part in order to implement it in a digital hardware. There-

fore we must take into account an additional error budget

for these methods in comparison with this new method.

Table 1. The comparison between three methods for the models

Method
Order Enns Wang Varga and Our in Our in

et al ’s Anderson’s s-plane z -plane
one 1.4344 4.6632 4.0164 1.1907 1.1913
two 0.4797 0.7657 0.4946 0.3678 0.3674
three 0.4868 5.1912 1.1901 0.3663 0.3661
four 0.1219 0.1177 0.1192 0.0776 0.0774
five 0.1229 1.1751 0.4068 0.0952 0.0956
six 0.0282 0.0281 0.0281 0.0244 0.0242
seven 0.282 0.3237 0.1586 0.0245 0.0243
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7 CONCLUSIONS

In this paper we have proposed a new approach for
discrete-time controller order reduction based on the fre-
quency weighted closed loop controllability and observ-
ability grammians of controller. For asymptotically sta-
ble high order controller, it has been shown that the re-
duced form controller is also asymptotically stable. The
results of simulation show the effectiveness of new fre-
quency weighted method. Synthesis of controller reduc-
tion for linear time varying and nonlinear plants could be
as appropriate future works.
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