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COMMUNICATIONS

Spiral arrangement: From nanostructures to packaging
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Although the orthogonal systems are predominantly employed within modern technologies, some general systems can be
found principally in nature. Progress in the field of nanotechnologies based on a condensed matter will reach its limit at a
certain moment, which may be caused by material limits or limits of manufacturing technologies. This limitation will affect
both approaches, the top-down as well as the bottom-up. Another way to obtain a nanostructure will be based purely on
nature and its ability to grow, which requires a deep understanding of the world of biology. This natural approach is closely
connected with a precise mathematical description which is necessary for employment of both the analytical and synthetic
tools which are presently available within the frame of current technological methods. In this paper, we present an analysis
of a model based on a spiral arrangement on a series of elements.
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1 Introduction

The arrangement comes originally from biology where
the placement of seeds in the pseudanthium is studied
within the field called Phyllotaxy. As a result, the phyl-
lotactic model describes the positions of seeds in a flower
head, which are, in our case, the positions of optical el-
ements created by the e-beam lithography on the sub-
strate. The seed positions in polar coordinates can be
described by an equation presented by Vogel [1]

{rk;ϕk} = {ck0.5; kϕ0} (1)

where k is the rank of a seed in the sequence, c is the
scale factor and ϕ0 is the angular factor.

Among other noticeable features, there are two sets of
secondary spirals, also known as parastichies, one turning
clockwise, the other counterclock-wise, which are com-
posed of the nearest neighboring seeds. Although there

are still many aspects that should be further justified, Vo-

gels equation correctly describes the arrangement of seeds

visible in an actual flower head, Fig. 1(a). For this rea-

son, this model attracts attention not only to biologists

and mathematicians but also has been used for various

purposes in the past decade, eg for the mirror distribu-

tion pattern for Gemasolar solar plant located in Spain

or for benchmarking pattern for e-beam lithography [2-4].

When the structure is created within the nanometer scale,

the situation becomes even more interesting as there are

many diffraction-related effects [5] taking place and the

structure shows an interesting behavior from the point of

view of reflection, refraction, and absorption, Fig. 1(b),

[6]. The topic has already been solved from the point of

view of photonics, discussing mainly the scattering prop-

erties of the three main types of deterministic aperiodic

spiral arrays of Au nanoparticles and also studying the
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Fig. 1. (a) – Vogels model, and (b) – diffractive pattern of the planar optical phyllotactic arrangement showing higher-order diffraction,
a picture of the real sample
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Fig. 2. (left)– illustration of the secondary spiral for Fn = 3, (right) – illustration of the secondary spiral for Fn = 8

Table 1. Numerical results achieved by equations 7-12

Fn aFn
1/aF2

Even Odd Even Odd Even Odd

3 - 2.8025 - 0.1273 -

- 5 - 4.6022 - -0.0472

8 - 7.4049 - 0.0182 -

- 13 - 12.0072 - -0,0069

21 - 19.4121 - 0.0027 -

- 34 - 34.4193 - -0.0010

circular symmetry in continuous Fourier space of Vogel’s
spirals [7].

1 Secondary spirals

Considering a trajectory of the primary spiral de-
scribed by (1), where

ϕ = t (2)

r = a
√
t (3)

Consequently, a sampling of the spiral t0 is taken into
account and expressed as

t0 =
2π

Φ2
, Φ =

1 +
√
5

2
(4)

and where the samples coordinates are expressed by

ϕk = kt0 (5)

rk = a
√

kt0 (6)

We are looking for a function whose trajectory goes
through a selected subset of the samples. Let us consider

each Fn -th point, where Fn can get a value of an even
term of a progression {1, 1, 2, 3, 5, 8, 13, 21, 34, . . .} start-
ing with the 4-th term, thus Fn is {3, 8, 21, 55, 144, . . .}
. The desired function can be viewed from two perspec-
tives: either the trajectory unwinds more slowly in angu-
lar terms, where

ϕFn
=

1

a2Fn

t (7)

rFn
= a

√
t (8)

or the radius grows faster, where

ϕFn
= t (9)

rFn
= aFn

a
√
t (10)

Let us consider the first mentioned expression (7) and
(8). Considering a sample Fn which is located at the angle
ϕk=Fn

= Fnt0 of the primary spiral. For the secondary
spiral, this angle is decreased by a whole-number multiple
of 2π . It can be demonstrated that this integer multiple
of Fn−2 equals to: ϕFn

= ϕk=Fn
− 2πFn−2 . The ratio

of these two angles determines the velocity of rotation
expressed by a coefficient in (7)

ϕk=Fn

ϕFn

=
Fnt0

Fnt0 − 2πFn−2

=

=
1

1− 2πFn−2

Fnt0

=
1

1− 2πFn−2

Fn

2π

Φ2

=

=
1

1− Fn−2

Fn

Φ2

= a2Fn

(11)

A ratio of the velocity increase (described by a coefficient
in (10) is expressed by

aFn
=

1
√

1− Fn−2

Fn

Φ2

(12)
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Fig. 3. Distance of adjacent seeds and inclination of the secondary spiral, n = 13, Fn = 233

For the even terms of Fibonacci progression (starting
with the 3rd term) {2, 5, 13, 34, 89, . . . , } , the rotation di-

rection is opposite: ϕFn
= − 1

a2

Fn

t according to (7) or

more precisely ϕFn
= −t according to (9). Correspond-

ingly, the absolute value should be considered for the (7),
yielding

aFn
=

1
√

|1− Fn−2

Fn

Φ2|
.

The numerical results are illustrated in the following
Tab. 1 and in Fig. 2 for Fn = 3 and Fn = 8.

3 Analysis of the interelement positions

Discrete calculation based on a x, y coordinates of the
primary spiral elements which are located between k -th
element and an adjacent (k + Fn)-th element along the
secondary spiral (sampled Fn )

Ddis =
√

(xk+Fn
− xk)2 + (yk+Fn

− yk)2 (13)

An approximated continuous function Dapp = c2ξ
2 +

c1 , with a substitution of ξ = log(k/kcharFn
)2 , where

k stands for an element number within the sampled pri-
mary spiral, kcharFn

is a characteristic element of the sec-
ondary spiral (the minimal distance between neighboring
elements along the secondary spiral and also a slope of
the secondary spiral towards the position vector, approx-
imately 45 degrees)

kcharFn
= F 2

n

fm
2π

and with coefficients

c1 =

√

π

fm
, fm =

Φ+Φ−1

2

Φ = 1 +

√
5

2
, c2 =

Φ

π

3.1 Slope of the secondary spiral towards the position

vector

Discrete slope of the connecting line between the k -th
element and the (k + Fn)-th element (thus towards the
position vector of the spiral in a particular element (thus
towards the angular coordinate of the k -th element)

Adis = arctan
yk+Fn

− yk
xk+Fn

− xk

− ϕk (14)

Fig. 4. A simplified analysis of the heat distribution within: (a) – the common orthogonally ordered package,(b) – hexagonally ordered
package, and (c) – non-orthogonal arrangement based on the phyllotactic model
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Approximation continuous function

Aapp = c3 arctan ξ + c4

with coefficients: c3 =
1

Φ
, c4 =

π

4

the substitution remains the same for (13). Numerically,
the coefficients equal: c3 = 0.6180, c4 = 0.7854. Situation
is illustrated in Fig. 3.

4 Phyllotaxy pin distribution of packages

A possibility of pin distribution of packages that are
intended for integrated circuits within the microelectron-
ics field and contain an extensive number of pins, based
on the phyllotactic model is presented in Fig. 4. Based
on the simplified analysis, the phyllotactic arrangement
of pins, Fig. 4(b), may provide lower stress induced due to
thermal expansions in comparison to a common orthog-
onal system of pin placement, Fig. 4(a). The presented
mathematical description of the secondary spirals allows
to compare the numerical model and the exact analytical
description of the thermal flow in package.

4 Conclusion

The paper deals with the mathematical description of
some aspects of the phyllotaxy arrangement of elements
based on the Vogels model of phyllotactic structures. The
secondary spirals were described, the interelement posi-
tions along the spirals and slope of the secondary spirals
were analyzed. The rigorous mathematical analysis and
description of the phyllotaxy allows for a future use of
this natural model in a wide spectra of devices from the
macro world to nanotechnologies.
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Petr Meluźın was born in 1988 in Boskovice, Czech Re-
public. He studied and finished his masters degree at Mendel
university in Brno. Currently, he works as a programmer at
the Institute of Scientific Instruments of the Czech Academy
of Sciences where he deals mainly with the data preparation
and software programming for electron-beam lithography.


