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PAPERS

Nonlinear modelling and optimal control via
Takagi-Sugeno fuzzy techniques: A quadrotor stabilization

Miroslav Pokorný1 , Tomáš Dočekal1 , Danica Rosinová2∗

Using the principles of Takagi-Sugeno fuzzy modelling allows the integration of flexible fuzzy approaches and rigorous
mathematical tools of linear system theory into one common framework. The rule-based T-S fuzzy model splits a nonlinear
system into several linear subsystems. Parallel Distributed Compensation (PDC) controller synthesis uses these T-S fuzzy
model rules. The resulting fuzzy controller is nonlinear, based on fuzzy aggregation of state controllers of individual linear
subsystems. The system is optimized by the linear quadratic control (LQC) method, its stability is analysed using the
Lyapunov method. Stability conditions are guaranteed by a system of linear matrix inequalities (LMIs) formulated and solved
for the closed loop system with the proposed PDC controller. The additional GA optimization procedure is introduced, and
a new type of its fitness function is proposed to improve the closed-loop system performance.
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1 Introduction

Fuzzy logic is an effective tool for modern modelling
and controller synthesis since it integrates both numeri-
cal data and non-numerical language information [1]. An
important feature of fuzzy logic systems as universal ap-
proximators is their ability to effectively model multidi-
mensional nonlinear functions [2]. Practical applications
have confirmed the quality of standard fuzzy systems that
use triangular membership functions, product conjunc-
tion, product implication and centre of gravity defuzzifi-
cation functions [3].

Takagi and Sugeno proposed a fuzzy logic method of
modelling nonlinear systems by decomposing them into a
set of linear subsystems [4]. Such decomposition enables
to express local dynamics in different regions of state
space using linear models. The same fuzzy structure is
used for driving applications [5]. A widely used approach
of nonlinear systems control using Takagi-Sugeno (T-S)
fuzzy models is the Parallel Distributed Compensation
(PDC) method [6]. The principle of a PDC controller is to
derive a linear control law from the corresponding rules of
the T-S model to compensate it. The resulting nonlinear
state fuzzy controller is a fuzzy aggregation of local lin-
ear controllers of fuzzy subspaces. Stability of such fuzzy
systems can be analysed by Lyapunov method and Lin-
ear Matrix Inequalities (LMIs) which can be efficiently
solved using convex optimization techniques [7]. Tanaka
and Sugeno have shown that the stability of the T-S fuzzy
system can be proved by the existence of a positive defi-
nite matrix P common to all subsystems, satisfying a set
of Lyapunov inequalities. Thus, the quadratic stability

problem can be considered as a LMIs feasibility problem.
The Lyapunov stability method does not directly address
the closed-loop performance problem. The desired tran-
sient performance, ie rise time and settling time, can be
guaranteed by locating the system poles in a specified re-
gion. Therefore, the requirement of Lyapunov quadratic
stability can be additionally extended by the requirement
for the position of all closed-loop system poles in a pre-
scribed circle region. This requirement can be defined in
the term of LMIs and the problem of the required pole
position can be converted to the problem of LMIs fea-
sibility [8]. Nevertheless, such a circle region guarantees
only a lower bound of the decay rate and the damping
ratio.

In the case described above, the closed-loop perfor-
mance depends on the expert choice of the circle region
parameters. In addition, increasing the complexity of the
LMIs causes increased number of cases when the LMIs
solver does not find a common positive definite matrix P
(especially in the case of more complex fuzzy models with
a higher number of r rules). Therefore, the procedure
where the pole position definition is performed outside
the LMI solution is more advantageous one, where the
elements of the penalty matrices Q and R of the per-
formance function J of the corresponding LQC (linear
quadratic control) problem are optimized separately. One
possibility is to find optimal values of penalizing matrices
Q and R by a suitable optimization procedure minimiz-
ing the trace of matrix P . A genetic algorithm can be
used, whose chromosome is formed by elements of matri-
ces Q and R with fitness function F = trace(P ). The
effectiveness of such solution was proved also for fuzzy
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LQC of inverted pendulum with elevation [9]. In other

case, where a satisfactory result was not achieved, a new

shape of the fitness function has been designed that di-

rectly includes the response shape parameters. This fea-

ture has shown greater effectiveness and is presented and

analysed in this paper.

The paper is organized as follows. Section 2 recalls

principles of modelling and control of nonlinear systems

by Takagi-Sugeno method (Section 2.1). It introduces the

T-S fuzzy model as a universal approximator of real con-

tinuous functions. Parallel Distributed Controller (PDC)

method for synthesis of nonlinear T-S fuzzy controller

deriving control rules from corresponding rules of fuzzy

T-S model is presented. Section 2.2 deals with the Linear

Matrix Inequalities (LMIs) framework which is used to

solve optimization problems namely Lyapunov stability

problem, PDC design based on stability constraints trans-

formable into LMIs and Linear Quadratic Control (LQR)

procedure minimizing the quadratic error and control ac-

tion energy. Section 3 is devoted to quadratic stability

problem and stabilization of T-S systems using Lyapunov

method. The conditions of global asymptotic stability

proposed in [10] for continuous closed-loop T-S fuzzy sys-

tems which satisfy the Lyapunov inequalities are recalled.

The essence is in transforming stability conditions into

LMIs. Section 4 deals with the properties and behaviour

of quadratically stabilizing control designed for T-S sys-

tems. Besides the system stability, in practice the con-

troller must also meet other performance requirements.

Therefore, an optimal LQR controller is designed to min-

imize state transient behaviour and control action energy.

The paper main contribution is in further improvement

of the response, by optimization of Q and R matrices

performed using genetic algorithm and in defining a new

fitness function to further improve the closed-loop sys-

tem response according to prescribed requirements. To

define the desired dynamics of the response in terms of

the mechanics and kinematics of the considered controlled

system – quadrotor, a new shape of the fitness function

has been designed. The important contribution is in ap-

plication case study presented in Section 5. An exam-

ple of stabilization and control of quadrotor is shown via

transient responses of its rotation and translation control.

Quadrotor case-study explains the principles of optimiza-

tion of transient responses by searching for optimal values

of weighting matrices of LQR optimization procedure. We

present concrete simulation results of optimization of the

quadrotor rotation and translation system using genetic

algorithm by minimizing the trace of the common P ma-

trix. The properties of a new proposed fitness function are

discussed and documented by simulation results. Finally,

in Section 6, conclusion and outline of further research

are given.

2 Nonlinear system control

problem and preliminaries

Consider a general nonlinear continuous time dynam-
ical system, described by

ẋ = f(x,u), (1)

where x is n-dimensional state vector and u is m-
dimensional input vector. The control design aim is to
find the control law u(x) so that the corresponding
closed-loop system is stable with optimal performance
with respect to the defined performance criterion. In this
paper, quadratic criterion known from LQ approach is
considered as well as additional fitness function to tune
the system response.

To cope with system nonlinearity, we use Takagi-
Sugeno fuzzy model which enables to decompose a non-
linear system into a set of linear subsystems. More details
on T-S fuzzy modelling and control are recalled in Sec-
tion 2.1, the efficient computational approach based on
LMI formulation is summarized in Section 2.2

2.1 Fuzzy T-S modelling and control

This section presents a linguistic description of mul-
tivariate space of input variables using antecedents of
the set of IF-THEN rules and definition of a linear state
model in their consequences. It explains the principle of
modelling a nonlinear system by a set of linear submodels.
The method of back aggregation of partial linear submod-
els into the final global nonlinear model is introduced.

Many of complex nonlinear systems can be expressed
in some form of mathematical model locally or as an ag-
gregation of a set of linear mathematical models. Takagi
and Sugeno have proposed a fuzzy model to describe the
complex dynamic model representing a complex single-
input multi- output system, which includes both local
analytic linear models and fuzzy membership and fuzzy
logic functions [4]. Specifically, the continuous-time T-S
fuzzy dynamic model is described by fuzzy IF-THEN
rules, which locally represent linearized input-output re-
lations of non-linear systems. Fuzzy subspaces are defined
by conjunction of fuzzy-logic statements considering the
actual value of input language variables.

As outlined above, T-S model can be used for effec-
tive decomposition of n-dimensional non-linear system
into r -linear subsystems. To formalize linguistic values
of language variables, fuzzy sets are used and to derive
the output language variable value, fuzzy logic laws are
applied. Nonlinear system (1) can be effectively modelled
by fuzzy “blending of equivalent linear systems in differ-
ent operating regions using T-S fuzzy model. A T-S fuzzy
model is composed of r rules, where the i -th rule has the
following form

Ri : IF (x1 is Mi1) and . . . and (xn is Min)

THEN ẋ = Aix+Biu,

where Mij is j -th fuzzy term of the i -th rule,

i = 1, 2, . . . , r , j = 1, 2, . . . , n and x = [x1, x2, . . . , xn]
⊤.
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Let wi(x) =
∏n

j=1 µij(xj) where µij(xi) is a member-

ship function of actual value xj in a fuzzy term Mij .

The corresponding fuzzy model around this operating
point is constructed as the weighted average of the local
models and has the form

ẋ =

r
∑

i=1

w̄i(x) (Aix+Biu), (2)

where

w̄i(x) =
wi(x)

∑r
i=1 wi(x)

,

r
∑

i=1

w̄i(x) = 1 ,

is the normalized value of wi(x) which represents the
weighting coefficient of i -th local model in (2). Thus,
the T-S model representation of the nonlinear system is
informative in terms of local dynamics.

Once a nonlinear system is described by a T-S fuzzy
model, the following procedure can be applied to design a
stable optimal PDC closed-loop control system. The main
idea of PDC controller design is to derive control rules
from corresponding rules of fuzzy T-S model. A partial
linear controller is defined for each rule. The resulting
fuzzy controller, which is generally nonlinear, is a fuzzy
aggregation of the individual linear controllers. The PDC
fuzzy controller for the fuzzy system (1) can be derived
as follows [6]

Ri : IF (x1 is Mi1) and . . . and (xn is Min)

THEN u(t) = −Kix , i = 1, . . . , r ,

which has a linear state controller in its sequence. The
overall PDC nonlinear state controller is then in the form

u = −

r
∑

i=1

w̄i(x)Kix , i = 1, . . . , r .

The PDC scheme stabilizing the T-S fuzzy model is a de-
sign framework comprising a control algorithm conform-
ing to a stability condition. The goal is to find appropriate
Ki gains that ensure stability of the corresponding closed
loop system

ẋ =

r
∑

i=1

w̄i(x) [Ai − BiKi]x . (3)

The proposed design procedure uses stability conditions
based on Lyapunov function, formulated through linear
matrix inequalities (LMI).

2.2 Linear matrix inequalities (LMI) technique

Linear Matrix Inequalities belong to the semi-definite
programming (SDP) that are convex problems. The ad-
vantage of SDP is the polynomial time of global minimum
computation [2]. Linear matrix inequality is in the form

F (x) = F0 +
m
∑

i=1

xiFi > 0, (4)

where x(t) = [x1(t), . . . , xm(t)]⊤ is the search variable

vector and Fi = F⊤
i ∈ Rn×n , i = 0, . . . ,m are known

matrices. Inequality means that F (x) must be positive

definite, ie all its eigenvalues are positive. The basic LMI
solution problem is to find xfeas so that (4) holds or to

determine that a solution to LMIs is not feasible. It is a

convex feasibility problem that can be efficiently solved

by convex optimization algorithms such as interior point

methods [7], in polynomial time.

The LMI approach is widely used to solve many con-

vex optimization problems. In control, Lyapunov stability

problem (P problem) for multimodel, or robust control

can be formulated by LMIs and effectively solved by con-

vex optimization techniques. Linear matrix inequalities

are also an important tool for fuzzy control of nonlin-

ear systems. Widely used PDC design employs stability

conditions transformable into LMIs to obtain the con-

troller gains. Eventually, one of the standard and effective

application of LMIs technique is formalization of Linear

Quadratic Control (LQR) optimization procedure.

3 Stability of T-S systems

Stability of T-S fuzzy model described in Section 2.1

can be analysed using the Lyapunov direct method based

on Lyapunov function, which can be interpreted as a mea-

sure of system energy. If the total energy of the system

decreases continuously with time, then the system tends

to steady state and is stable in the Lyapunov sense [4, 5].

The classical quadratic Lyapunov function can be used to

analyse the stability of nonlinear MIMO systems, specif-

ically fuzzy T-S systems.

A system is quadratically stable if there exists a
quadratic Lyapunov function V

(

x(t)
)

= x⊤(t)Px(t) such
that the following conditions hold on a system solution

V
(

x(t)
)

> 0 , ∀x(t) 6= 0 ⇐⇒ P > 0 ,

V̇
(

x(t)
)

< 0 , ∀x(t) 6= 0 ,

where x = (x1, . . . , xn)
⊤ is a vector of state variables and

P is a symmetric square matrix of order n .

Sufficient condition of global asymptotic stability of

open-loop T-S fuzzy system

ẋ(t) =

r
∑

i=1

w̄i(x)Aix(t) , (5)

according to Lyapunov stability condition, is the exis-

tence of a positive definite matrix P which satisfies in-

equality

A⊤

i P + PAi < 0 , i = 1, . . . , r ,
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where the matrix P is common for all submodels of the
T-S model [2, 4, 5].

The closed-loop T-S fuzzy system (3) is globally
asymptotically stable if there exists a common positive
definite matrix P which satisfies the following Lyapunov
inequalities

(Ai −BiKi)
⊤P + P (Ai −BiKi) < 0 ,

G⊤

ijP + PGij < 0 , i < j ≤ r ,
(6)

where Gij is defined as Gij = Ai − BiKj + Aj − BjKi .

Using the change of variables Y = P−1, Xi = KiY
inequalities (6) can be rewritten as LMIs

Y A⊤

i +AiY −BiXi −X⊤

i B
⊤

i < 0 , i = 1, . . . , r ,

Y (Ai +Aj)
⊤ + (Ai +Aj)Y − (BiXj −BjXi)−

(BiXj −BjXi)
⊤ < 0 , i < j ≤ r .

(7)

If the inequalities (7) are feasible with a positive definite
solution, the stability of the closed loop system (3) is
guaranteed. However, in practice the controller must also
meet other performance requirements.

4 Optimal performance of T-S system

In this section, the LQR optimal control design for
T-S system (5) is briefly recalled and further improved
by: i) optimization of cost function parameters (matrices
Q and R); ii) introducing a new fitness function to shape
the closed-loop system response according to the required
maximal overshoot and rise time.

LQR optimal control

Below, the problem of designing a stable closed-loop
system containing a state feedback fuzzy controller is
studied. Firstly, the optimal LQR controller is designed
to minimize quadratic error (nonzero state variables) and
control action energy. Recall that in this case, for sys-
tem (5) we minimize the following quadratic cost func-
tion, [9, 10]

J =
1

2

∫ ∞

0

(

x⊤(t)Qx(t) + u⊤Ru(t)
)

dt , (8)

where symmetric matrices Q = Q⊤ > 0, R = R⊤ > 0 are
the penalty matrices defining the weights of the quadratic
error and the control action respectively. Next, these ma-
trices represent the design parameters to optimize the
state feedback controller.

The control design aim is to find the control law
u = f(x), which ensures the minimization of the function
J → min (ie placing the closed-loop poles in the optimal
position as a result of minimizing J ). The control law
can be written as

u(t) = −R−1B⊤Px(t) = −Kx(t) , (9)

thus, the control gain matrix is given as

K = R−1B⊤P . (10)

Control law (9) and (10), guarantees to keep the output
as close as possible to the desired value with minimum
control energy simultaneously.

Matrix P can be calculated off-line. The symmetric
matrix P is the unique solution of the algebraic Riccati
equation [11]

PA+A⊤P +Q− PBR−1B⊤P = 0 .

Regarding u(t) from (9), we have a closed-loop system
state transition equation

ẋ(t) = Ax(t) +Bu(t) = (A−BK)x(t) ,

with closed-loop system transient matrix

Ā = ABK ,

in which the eigenvalues of Ā are the closed-loop poles.
Regarding the closed-loop system we can write the cost
function J (8) as

J =
1

2

∫

∞

0

x⊤(t)Qx(t) + x⊤K⊤RKx(t)dt .

Considering

Q̄ = Q +K⊤RK ,

we obtain the well-known Lyapunov equation

A⊤P + PĀ = −Q̄ . (11)

The existence of a positive definite solution P to (11)
ensures that the closed system is asymptotically stable
and quadratically optimal at the same time.

The optimality condition is

(A−BK)⊤P + P (A−BK) +Q+K⊤RK = 0 , (12)

where Q ≥ 0, R > 0.

Analogically to stability conditions (6), we now can
rewrite (12) for T-S closed loop system as a set of
LMIs (13). According to LQ theory, the solution of these
inequalities will be an upper bound on the performance
measure J and we can reach min{J} by minimizing that
upper bound [12]

(Ai −BiKi)
⊤P + P (Ai −BiKi) +Q+

r
∑

i=1

K⊤

i RKi < 0 ,

G⊤

ijP + PGij +Q+
r

∑

i=1

K⊤

i RKi < 0 ,

(13)
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where j = 1, . . . , r , i < j < r . Substituting Y = P−1

and using denotation

Ni = (Y A⊤

i +AiY )−BiXi −X⊤

i B
⊤

i

Tij = Y (Ai +Aj)
⊤ + (Ai +Aj)Y

− (BiXj +BjXi)− (BiXj +BjX)⊤ ,

we can write

Ni + Y QY +

r
∑

i=1

X⊤

i RXi < 0 ,

Tij + Y QY +

r
∑

i=1

X⊤

i RXi < 0

, (14)

where i = 1, . . . , r , i < j ≤ r .

Denoting Sij = (BiXj +BjXi), we obtain

Tij = Y (Ai +Aj)
⊤ + (Ai +Aj)Y − Sij − S⊤

j .

All corresponding LMIs can be summarized as [7]

















Ni Q1/2Y XT
1 R

1/2 . . . XT
r R

1/2

Q1/2Y −Im 0 . . . 0

R1/2X1 0 −Im . . . 0
. . . . . . .
. . . . . . .

R1/2Xr 0 0 . . . −Im

















< 0 ,

















Tij Q1/2Y XT
1 R

1/2 . . . XT
r R

1/2

Q1/2Y −Im 0 . . . 0

R1/2X1 0 −Im . . . 0
. . . . . . .
. . . . . . .

R1/2Xr 0 0 . . . −Im

















< 0

, (15)

where i = 1, . . . , r i < j ≤ r . If LMIs (15) are feasible,
we can calculate the controller gains as

Ki = XiY
−1 ,

and the corresponding control law is

u =

r
∑

i=1

w̄i(x)Kix , i = 1, . . . , r .

As mentioned above, the LQR closed-loop system is
asymptotically stable in the Lyapunov sense.

Transient performance modification

In many practical cases, it is necessary to determine
the transient response of a control system by rise time
and appropriate settling time. For example, such prob-
lems may arise in solving the cooperation of movement of
individual agents in the collaborative systems.

The LQR optimization method aims at minimizing the
quadratic performance index for given values of Q and

R . Obviously, the parameters of transient responses can
be influenced by the values of the weighting matrices Q
and R and corresponding eigenvalues of the matrix P .
Therefore, matrices Q and R are often tuned manually:
expertly by trial-and-error method. However, the optimal
values of the weighting matrices can be systematically
found by a suitable optimization procedure, as genetic
algorithm (GA) [13]. Then, the chromosome is defined as

[q11, q22, . . . , qnn, r11, r22, . . . , rmm] ,

where

Q = diag [q11, q22, . . . , qnn]

R = diag [r11, r22, . . . , rmm] ,

and the fitness function has the shape [13]

F orig = trace(P ) → min . (16)

The results presented in Section 5 suggest effectiveness of
an additional optimization of the weighting matrices Q
and R .

Fitness function modification

The fitness function (16) is only suitable to ensure, for
example, an aperiodic response. Therefore, a new shape
of the fitness function is designed here, which directly re-
flects the response parameters. The relevant values are
the maximum overshoot and the rise time which is deter-
mined as the time between 10 and 90% of the desired
output value. The fitness function is modified to consider
both maximum overshoot and the rise time and/or set-
tling time eventually

Fmodif = wt

(

tr − tdesr

)2
+wzz

2
over → min , (17)

where tr (s) is a rise time, tdesr (s) is the required rise
time, zover (m) is overshoot, wt is rise time weighting co-
efficient and wz is overshoot weighting coefficient. The
square of difference between desired and actual rise time
ensures fitness function differentiability. To ensure consis-
tent influence of the monitored parameters, we also con-
sider squared overshoot. In each iteration step of the ge-
netic algorithm procedure the values of matrices Q and
R are entered, the value of appropriate rise time and over-
shoot is obtained by simulation and the fitness function
convergence to zero is required.

The optimization of the Q and R matrix elements
takes place in off-line mode. Therefore, the time-consum-
ing genetic algorithm procedure does not limit the con-
troller implementation.

The effectiveness of the proposed fitness function is
shown in the next section via optimization of quadrotor
rotation and translation system responses.
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x y

z

W1 W2

W4 W3

Roll ( )j

Pitch ( )q

Yaw ( )y

Fig. 1. Quadrotor concept (source: [14])

5 Quadrotor control design:

simulation results and discussion

This section presents a case study: a quadrotor non-
linear system control, stabilization and optimization to
illustrate the results of the proposed fuzzy controller de-
sign method. A quadrotor consists of four motors and four
propellers, each located in position as shown in Fig. 1.
Propellers 1 and 3 rotate in the same direction while pro-
pellers 2 and 4 rotate in an opposite direction [14].

The quadrotor is a 6 DOF device, thus 6 variables are
used to express its position in space (x, y, z, ϕ, θ and ψ).
Variables x, y and z represent the distances of the
quadrotor center of gravity along the X,Y and Z axis
respectively from an Earth fixed inertial frame. The roll
angle is represented by ϕ which is the angle about the
X -axis, θ is the pitch angle about the Y -axis, while ψ
is the yaw angle about the Z -axis (Fig. 1). Rotor speeds
Ωi of each motor are indicated as well.

To handle the quadrotor, the rotation and translation
control systems are used as in [14]. The rotational system
provides the control of the angles ϕ, θ and ψ ; to control
the Z position of the quadrotor (height), a translation
system is designed. Thus, fuzzy controller proposed in
previous sections is designed to control rotation as well
as translation along z (height) movements. On the other
hand, to control the position in X and Y axes, a man-
ually operated joystick is used in our example to fully
determine the position of the quadrotor. System states

Φ, Φ̇, Θ, Θ̇ , Ψ, Ψ̇ , Z , Ż are represented by symbols
x1, x2, x3, x4, x5, x6, x7, x8 . Control inputs correspond to
four motor outputs (torques).

We propose the overall control system consisting of two
modules: rotational control subsystem and translational
control subsystem (to control the height).

Rotational subsystem

Defining the six rotational states xa = [x1, x2, x3, x4,

x5, x6]
⊤ and three control inputs Ua = [U2, U3, U4]

⊤ , the
rotational subsystem is expressed by the following matrix

state equation corresponding to a linearized quadrotor
model

ẋa =















0 1 0 0 0 0
0 −e1 0 a1z2 − a2z3 0 0
0 0 0 1 0 0
0 a3z2 − a4z3 0 −e2 0 0
0 0 0 0 0 1
0 a5z1 0 0 0 −e3















xa

+















0 0 0
b1 0 0
0 0 0
0 b2 0
0 0 0
0 0 b3















Ua , (18)

where a1 = Iyy − Izz/Ixx , a2 = Jr/Ixx , a3 = Izz −
Ixx/Iyy , a4 = Jr/Iyy , a5 = Ixx − Iyy/Izz , b1 = L/Ixx ,
b2 = L/Iyy , b3 = L/Izz , e1 = Kax/Ixx , e2 = Kay/Iyy ,
e3 = Kaz/Izz .

The values of quadrotor parameters are the following:
quadrotor mass mq = 0.486 kg, L = 0.255 m, gravita-

tional acceleration gr = 9.81m/s2 , inertia Jr = 3.35 ×

10−5kgm2 , moments of inertia Ixx = 3.82× 10−5kgm2 ,
Iyy = 3.82× 10−5kgm2 , Izz = 7.65× 10−5kgm2 , Kax =

5.567× 10−4 , Kay = 5.567× 10−4 , Kaz = 6.354× 10−4 ,
Krz = 0.048.

The variables in (18) are defined as z1 = x4 , z2 = x6
and z3 = Ωr . Here, Ωr = −Ω1 + Ω2 − Ω3 + Ω4 due
to a torque compensation. These variables are used as
inputs in the fuzzy T-S model (19) assuming the ranges
x4 ∈ [−0.5, 0.5]rad/s, x6 ∈ [−0.5, 0.5]rad/s and Ωr ∈
[−4, 4]rad/s.

To design a T-S fuzzy model, we define two language
values represented by membership functions named “Pos-
itive”, “Negative” for both input variables z1 , z2 and
“Above” and “Below” for variable z3. The appropriate
membership functions are of triangular shape with brak-
ing points defined as follows: NE[−0.5 − 0.5 0.5],
PO[−0.5 0.5 0.5], BE[−4.0 − 4.0 4.0] and
AB[−4.0 4.0 4.0] respectively.

To divide the space of the input variables, defining the
linearized model, into eight appropriated subspaces we
propose rotational T-S fuzzy model consisting of eight
IF-THEN rules

IF Then
R1 : (z1 is PO)and (z2 isNE) and (z3 isAB) ẋa=Aa1x+ BaUa

R2 : (z1 is PO)and (z2 is PO)and (z3 is AB) ẋa=Aa2x+ BaUa

R3 : (z1 isNE) and (z2 is PO) and (v3 is AB) ẋa=Aa3x+ BaUa

R4 : (z1 isNE) and (z2 isNE) and (z3 isAB) ẋa=Aa4x+ BaUa

R5 : (z1 is PO)and (z2 is PO)and (z3 is BE) ẋa=Aa5x+ BaUa

R6 : (z1 is PO)and (z2 isNE) and (z3 isBE) ẋa=Aa6x+ BaUa

R7 : (z1 isNE) and (z2 is PO) and (z3 isBE) ẋa=Aa7x+ BaUa

R8 : (z1 isNE) and (z2 isNE) and (z3 isBE) ẋa=Aa8x+ BaUa

(19)

State-space matrices of rotational fuzzy model (19) are
in the form



Journal of ELECTRICAL ENGINEERING 71 (2020), NO1 7

Aa1=[0 1 0 0 0 0 ; 0-0.1457 0 -0.5358 0 0 ; 0 0 0 1 0 0 ;
0 0.4662 0 -0.1457 0 0 ; 0 0 0 0 0 1 ; 0 0 0 0 0 -0.0830]
Aa2=[0 1 0 0 0 0 ; 0 -0.1457 0 -0.4662 0 0 ; 0 0 0 1 0 0 ;
0 0.5358 0 -0.1457 0 0 ; 0 0 0 0 0 1 ; 0 0 0 0 0 -0.0830]
Aa3=[0 1 0 0 0 0 ; 0 -0.1457 0 -0.5358 0 0 ; 0 0 0 1 0 0 ;
0 0.4662 0 -0.1457 0 0 ; 0 0 0 0 0 1 ; 0 0 0 0 0 -0.0830]
Aa4=[0 1 0 0 0 0 ; 0 -0.1457 0 -0.4662 0 0 ; 0 0 0 1 0 0 ;
0 0.5358 0 -0.1457 0 0 ; 0 0 0 0 0 1 ; 0 0 0 0 0 -0.0830]
Aa5=[0 1 0 0 0 0 ; 0 -0.1457 0 -0.4662 0 0 ; 0 0 0 1 0 0 ;
0 0.5358 0 -0.1457 0 0 ; 0 0 0 0 0 1 ; 0 0 0 0 0 -0.0830]
Aa5=[0 1 0 0 0 0 ; 0 -0.1457 0 -0.5358 0 0 ; 0 0 0 1 0 0 ;
0 0.4662 0 -0.1457 0 0 ; 0 0 0 0 0 1 ; 0 0 0 0 0 -0.0830]
Aa7=[0 1 0 0 0 0 ; 0 -0.1457 0 -0.4662 0 0 ; 0 0 0 1 0 0 ;
0 0.5358 0 -0.1457 0 0 ; 0 0 0 0 0 1 ; 0 0 0 0 0 -0.0830]
Aa8=[0 1 0 0 0 0 ; 0 -0.1457 0 -0.5358 0 0 ; 0 0 0 1 0 0 ;
0 0.4662 0 -0.1457 0 0 ; 0 0 0 0 0 1 ; 0 0 0 0 0 -0.0830]
Ba=[0 0 0 ; 66.3 0 0 ; 0 0 0 ; 0 66.3 0 ; 0 0 0 ; 0 0 33.15]

Translational subsystem

Defining variables xb = [x7, x8]
⊤ and e6 = Krz/mq

we have translational subsystem model in the form

ẋb =

[

0 1
0 e6

]

xb +

[

0
− z4

mq

]

U1 +

[

0
gr

]

. (20)

The variable z4 is a non-linear term defined by z4 =
cosx1 cosx3 . The ranges are assumed x1 ∈ [−π/3, π/3],
x3∈ [−π/3, π/3] rad. This variable is used as input in the
fuzzy T-S model (21).

Now, we define two language values for both input
variables represented by membership functions named
“Maximum”, “Minimum”. The appropriate membership
functions are of triangular shape with breaking points
MN [-0.5 -0.5 0.5] and MX [-0.5 0.5 0.5] respectively.

To divide the space of the input variables into two ap-
propriated subspaces we propose translational T-S fuzzy
model (21) consisting of two IF-THEN rules

R1: IF (z4isMX) THEN ẋb = Abxb +Bb1 +G ,

R2: IF (z4isMN) THEN ẋb = Abxb +Bb2 +G .
(21)

State-space matrices of translational fuzzy model (21) are
in the form

Ab=[0 1; 0 0.0987];
Bb1=[0; 1]
Bb2=[0; 0.25]

LMIs feasibility and gain matrix calculation

Quadrotor rotational and translational subsystem fuzzy
controllers were designed by solving LMIs (15) introduced
in Section 4. LMI solution was performed by LMI tool-
box in Matlab and, alternatively, using SeDuMi solver via
YALMIP toolbox, [16, 17]. Result of LMI Toolbox [15]
– calculation of LMIs feasibility for the rotational sys-
tem and Q = diag(5) and R = diag(2) was: “Could not

establish feasibility nor infeasibility. Marginal infeasibil-

ity: these LMI constraints may be feasible but are not

strictly feasible”. In fact, the matrix P was found only

as semi-definite and some gain values of Ki were zero. In

YALMIP Toolbox and SeDuMi, a feasible solution was

found: positive definite matrix P and gain matrices Ki

P = 2.4889 8.0092 -0,3149 -0.9332 -0,3906 -0,8497
8.0092 2.7356 0.1013 0.2523 -0,1189 -0,2715
-0.3149 0,1013 1.7091 1.0048 -0,0737 -0.0584
-0.9332 0.2523 1.0048 3.4230 -0,1139 -0,1837
-0.3906 -0,1189 -0,0737 -0,1139 1,5992 0,7964
-0.8497 -0.2715 -0.0584 -0,1837 0.7964 2,3072

K1 = 0.1827 0.1315 -0.0527 -0.0442 -0.0764 -0.0509
-0.1923 -0.1355 0.3293 0.2434 -0.0830 -0.0563
-0.3433 -0.2467 -0.3672 -0.2666 0.8583 0.6106

K1 = 0.2951 0.2179 -0.1053 0.0808 -0.1249 -0.0839
-0.1580 -0.1099 0.2644 0.1928 -0.0627 -0.0433
-0.2725 -0.1971 -0.2750 -0.2000 0.6731 0.4699

K3 = 0.1978 0.1430 -0.0525 -0.0433 -0.0887 -0.0594
-0.1981 -0.1402 0.3275 0.2421 -0.0766 -0.0519
-0.2174 -0.1572 -0.2352 -0.1727 0.5647 0.3909

K4 = 0.2232 0.1621 -0.0633 -0.0505 -0.1031 -0.0697
-0.1770 -0.1242 0.2643 0.1931 -0.0418 -0.0276
0.1527 -0.1095 -0.2321 -0.1709 0.4868 0.3329

K5 = 0.2112 0.1532 -0.0600 -0.0477 -0.0941 -0.0631
-0.1668 -0.1169 0.2754 0.2012 -0.0654 -0.0454
-0.1862 -0.1349 -0.1683 -0.1216 0.4580 0.3124

K6 = 0.2480 0.1810 -0.0983 -0.0780 -0.0904 -0.0597
-0.1672 -0.1164 0.2864 0.2106 -0.0647 -0.0426
-0.1734 -0.1269 -0.2151 -0.1596 0.4827 0.3294

K7 = 0.2264 0.1640 -0.0920 -0.0733 -0.0826 -0.0556
-0.1442 -0.0985 0.2523 0.1842 -0.0599 -0.0402
0.1374 -0.0986 -0.1953 -0.1435 0.4301 0.2924

K8 = 0.2552 0.1875 -0.0984 -0.0774 -0.0928 -0.0603
-0.1915 -0.1359 0.2932 0.2154 -0.0530 -0.0351
-0.1940 -0.1430 -0.1777 -0.1310 0.4626 0.3139

The results of YALMIP Toolbox calculation of LMIs for

the translational system and Q = diag(5); R = diag(2) –

a feasible solution was found, matrix P and gain matrices

are:

P =[9.8395 11.5129 ; 11.5129 35.5523]

K1 = 0.8020 2.2308

K2 = 1.8472 4.9833

Elements of cost function matrices Q and R were fur-

ther optimized using genetic algorithm and the fitness

function (16) and finally, the novel proposed fitness func-

tion (17). The GA parameters were as follows.

GA optimization – chromosome for rotational subsys-

tem: n = 6, m = 3

[q11, q22, q33, q44, q55, q66, r11, r22, r33]

GA optimization – chromosome for translational sub-

system: n = 2, m = 1

[q11, q22, r11]

The above calculated gain values and Q and R ele-

ments values were used to verify the performance of the
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proposed method of T-S modelling, control and optimiza-
tion in Matlab and Matlab-Simulink. Figure 2 shows a
quadrotor control scheme implementation in Simulink.

Simulation results for quadrotor rotational and trans-
lational control received applying only LQR optimization
procedure are given in the next figures. The blue lines
correspond to the system responses obtained from sim-
ulation without additional GA optimization and the red
lines show the results obtained with GA optimization us-
ing fitness function F orig (16).

Simulation results corresponding to the PSI angle con-
trol are shown in Fig. 3. The control objective is to keep
the angle 0.4 radians. Figure 3 shows that the model
reaches the desired angle in 7 seconds approximately, with
overshoots, on the other hand, the GA optimization elim-
inates overshoots.

Simulation results corresponding to the angle control
are shown in Fig. 4. The control objective is to keep the
angle 0.7 radian. Figure 4 shows that the model reaches
the desired angle in 7 seconds approximately with an
overshoot, the GA optimization provides the overshoot
elimination again.

Simulation results corresponding to the PHI angle con-
trol are Shown in Fig. 5. The control objective is to keep
the angle 1 radian. Figure 5 shows that the model reaches
the desired angle in 7 seconds approximately with a small
overshoot, however, the GA optimization again eliminates
the overshoot.

In conclusion, GA optimization of the rotational mo-
tion control with application of fitness function shows
fully satisfactory results. On the contrary, if the optimiza-
tion of the vertical (translational) motion control of the
quadrotor is performed in the same manner, the result is
fully insufficient - response is oscillating with large over-
shoots (see Fig. 6).

However, very good result is obtained for the be-
haviour of translational system which the GA procedure
applying the new fitness function Fmodif (17). Now, the
required height is met without overshoots and a desired
rise time tuning is available in addition. The relevant re-
sults of translation response parameters tuning are pre-
sented in Tab. 1.

An example of the genetic algorithm procedure calcu-
lation is given in Fig. 7.

The corresponding influence of the parameter tuning
on the response performance is shown in Fig. 8. Here, the
green line corresponds to the desired rise time 0.5 s, the

blue line corresponds to desired value 4 s. The simulations

are performed for weighting coefficients wt and wz set

to 1.

With our proposed fitness function (17), it is now pos-

sible to prescribe the dynamics of the aperiodic response

in terms of the mechanics and kinematics of a quadrotor

by setting a desired rise time or taking into account the

settling time eventually.

6 Conclusion and future work

The purpose of this paper is to present an advanced

design of Takagi-Sugeno fuzzy controllers for nonlinear

systems. We presented a fuzzy PDC controller stable

in Lyapunov sense and minimizing the upper bound of

a linear quadratic performance measure LQR using the

guaranteed cost approach simultaneously. Stability condi-

tions and quadratic performance are guaranteed by solv-

ing a corresponding system of linear matrix inequalities

LMIs. An additional GA procedure is used to optimize

the penalty matrices of LQR scheme. To achieve a rel-

evant performance of transient response, a new form of

GA fitness function taking into account the mechanics

and kinematics of the real controlled system is proposed.

The effectiveness of presented methods is illustrated on

quadrotor control system design and investigation. Future

research regarding the problems in the consensus control

of multiple quadrotor performing the transportation by

horizontal displacement is planned. Quadrotor controllers

must be designed in order to assure the system stability

and quick convergence for the robust achievement to the

current task. The off-line and on-line control strategies

will be proposed and investigated to ensure their ability

to cope with variable dynamic conditions of the system

including external disturbances.
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Table 1. Translation response adjusting

Rise time Rise time Overshoot Penalty matrix Translational gains Translational gains

desired (s) (s) (%) q11, q22, r11 Kt1 Kt2

0.5 0.51 (0.12; 0.63) 3 1.18 × 102 13.24733 1.32× 10−4 25.77637 9.85818 75.89151 25.88134

1 1 (0.21; 1.21) 1 35.22713 8.45415 0.03638 10.34992 6.94417 27.03726 17.75195

2 2 (0.34; 2.34) 0 20.15454 14.83257 0.16626 4.50495 5.46728 12.12924 14.67895

3 3 (0.59; 3.59) 0 11.17617 15.47621 0.69519 1.50959 2.88451 4.45590 8.51796

4 4 (0.82; 4.82) 0 9.17662 23.58854 1.47512 0.79143 2.02832 2.59828 6.68103
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