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PAPERS

Deep Q-Learning based resource allocation and load balancing in
a mobile edge system serving different types of user requests

Önem Yıldız∗ , Radosveta Ivanova Sokullu1

With the expansion of the communicative and perceptual capabilities of mobile devices in recent years, the number of
complex and high computational applications has also increased rendering traditional methods of traffic management and
resource allocation quite insufficient. Recently, mobile edge computing (MEC) has emerged as a new viable solution to these
problems. It can provide additional computing features at the edge of the network and allow alleviation of the resource
limit of mobile devices while increasing the performance for critical applications especially in terms of latency. In this work,
we addressed the issue of reducing the service delay by choosing the optimal path in the MEC network, which consists of
multiple MEC servers that has different capabilities, applying network load balancing where multiple requests need to be
handled simultaneously and routing selection based on a deep-Q network (DQN) algorithm. A novel traffic control and
resource allocation method is proposed based on deep Q -learning (DQL) which allows reducing the end-to-end delay in
cellular networks and in the mobile edge network. Real life traffic scenarios with various types of user requests are considered
and a novel DQL resource allocation scheme which adaptively assigns computing and network resources is proposed. The
algorithm optimizes traffic distribution between servers reducing the total service time and balancing the use of available
resources under varying environmental conditions.
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1 Introduction

With continuously evolving concept of smart city new
advanced services come into the picture of communication
networks especially mobile and cellular networks. Services
like following the activity crowds in smart cities, enabling
augmented reality (AR), virtual reality (VR) and real-
time internet of things (IoT) applications are associated
with increasingly more demanding and versatile traffic
requirements for the network to deal with. Moreover, ad-
vanced smart city services (eg, augmented reality and in-
teractive gaming) not only need intensive resources but
are also extremely sensitive to latency. Therefore, in or-
der to facilitate these services, especially in densely user
populated environments, a wide network coverage and a
large number of resources located near the end devices
are needed. Mobile edge computing (MEC) has emerged
as a promising solution in this line, which is able to pro-
vide services with significantly reduced latency for dense
user populations located in the access area. The symbio-
sis of MEC and cellular network technologies will have a
significant impact on service delivery and allow to meet
the needs of large numbers of densely located end user
devices.

With the proliferation of real-time and IoT-related ap-
plications connected to the edge network, the increased
variability of service requests will lead to extremely dy-
namic changes in traffic loads. Furthermore, the service

requests sent by various devices will have different ser-
vice requirements, and the changing heavy traffic load
will significantly affect the quality of experience (QoE) of
users waiting to be served. Thus, network traffic control

is becoming a decisive component in the edge network
in order to ensure the required user quality of service
(QoS). On the flip side however, it is getting increasingly
difficult to design routing strategies to meet such strin-
gent and ever-changing network requirements. Therefore,
novel, and intelligent routing mechanisms are needed to

cope with the large growth in traffic within an ever more
complex network environment.

2 Related work

Several network studies are addressing delay reduc-
tion, routing issues and resource allocation in mobile edge
networks. These problems have attracted the attention of
researchers from many different areas. A group of works
[1,2] focuses on limiting the end-to-end delay in the down-
link. Another group of studies [3-5] examines the uplink
case and the possibilities of different resource allocation

mechanisms incorporating offloading to improve the per-
formance of the network. In [5], DRL based resource allo-
cation scheme is proposed for allocating computing and
network resources adaptively with the goal to reduce the
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average service time and balance the use of resources un-
der a varying MEC environment.

Some other works address the issues of quality insur-
ance and energy consumption in relation to delay. The
authors in [6] proposed deep learning-based offloading
technique to minimize the cost function which consid-
ers service delay, energy consumption, radio and comput-
ing resources of mobile devices and mobile edge servers.
In another work [7], the authors construct a MEC-based
computation offloading framework considering the delay
cost, energy computation cost and bandwidth cost for ve-
hicular networks. To minimize the defined cost, they pro-
pose a DRL-based computation migration and resource
allocation scheme that requires no prior knowledge. In
[8], an intelligent resource allocation framework is pro-
posed to solve the complex resource allocation problem
for the collaborative mobile edge computing network on
a multi-task DRL algorithm with self-play training. In
[9], an adaptive service offloading scheme for MEC is pro-
posed to minimize the service latency, including service
execution and offloading latencies, and offloading price.
In study [10], the problem of placement of VRCs to mini-
mize the average response time including overall network
delay and processing delay in the MEC architecture is
considered. In [11], the authors formulate a queue opti-
mization problem to minimize the total service time in a
multi-server system. Then, an intelligent task transition
strategy is developed using DRL and Q -learning tech-
niques called DQTM. The authors considered locally pro-
cessed or migrated packets to calculate the average service
time. In [12], a DRL-based scheme is proposed to solve
the problem of vehicular service placement and migra-
tion in a MEC-based vehicular network. The optimization
problem is formulated by using total delay including the
computation and communication delays, migration cost
in terms of bandwidth usage and energy consumption.
The simulation results showed that the proposed DQL
scheme achieve a near-optimal performance.

The above discussed body of research covers the issues
of resource allocation while minimizing delay and energy,
however the case of balancing the network load dynami-
cally while reducing the task service time under varying
environment and traffic conditions is not addressed. In
this study, we consider a dense population of users gener-
ating requests to the edge network and focus on optimal
load distribution in the MEC network under delay con-
straints. Tasks coming to the MEC network can be served
by specific applications on specific servers. Not all servers
have equal computational capabilities and/or host all pos-
sible applications. In light of this the main contributions
of our work are:

• Definition of an optimization function which takes into
consideration both uplink delay and traffic load in the
MEC network.

• User packets coming from the cellular network and
used as network inputs to our hybrid algorithm are
interacted with signal to interference & noise ratio

(SINR), which is also an important performance crite-
rion in the cellular network, and an inter-layer inter-
action is revealed between cellular network and MEC
network.

• The proposed algorithm considers real-time and non-
real time types of services which have varying service
requirements and constraints.

• The proposed algorithm ensures that the edge net-
work load is optimally balanced over a set of servers
with different application/computational capabilities
and different connection capacities by ensuring that
MEC servers are used as possible and will provide ser-
vice with the least delay for balancing in case of mul-
tiple instances.

• The variation of packet sizes belonging to different
applications and service time experienced by users at
different SINR values were examined and simulation
results were presented.

3 System model

The study considers a scenario where a large number
of mobile device users generate real-time and non-real-
time traffic demands on an ultra-dense cellular network
equipped with access points (APs).

As shown in Fig. 1, there are a set of N access points
(APs), and a set of K users (U). Since it is important that
the service takes place with minimal delay, the scenario
incorporates a set of MECm m = 1, 2 . . . ,M, servers
with different computational and application capabilities.
The set of the application request is Xi, {i = 1, 2 . . . , I}.
In the MEC network, high-speed (backhaul) links have
different capacities, and the set of backhaul connections
between MEC servers is expressed by Be, with {e =
1, 2 . . . , E}.

As the tasks are generated, the time they were is-
sued is recorded too. Each task contains the components
ϕk = {dk, xk} , where, dk is the data size of the packet
from the k -th user, and xk is the type of application
required by that user. The task generated at any time
instant can be a real-time (RT) or non-real-time (NRT)
application request type. According to the type of the in-
coming task ϕk, if the server has a serving application
that can respond to this task, it processes it itself, and if
not, it redirects it to the server that is closest and most
suitable for responding to that task.

In the proposed intelligent routing architecture, a DRL
module is built into the SDN controller, which has gen-
eral knowledge of the network state and can control the
routing of requests generated by the end devices. The
proposed SDN-enabled MEC architecture is presented in
Fig. 1. Packet forwarding takes place depending on sev-
eral parameters. These are: the servers data processing
capacity, the type of application the server can process
and the connection load between the servers.

Since the speeds {ve
)

: e = 1, 2, . . . , E of the connec-
tions between the servers are different and the data ca-
pacity that each server can handle is different, the routing
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Fig. 1. SDN featured MEC architecture - general system architecture

of incoming requests should keep in balance both the load
distribution between the servers for the current instance
and the available capacity on the connections.

3.1 Problem Definition

The designed network is based on a hierarchical net-
work architecture in which the upper layer control is pro-
vided by SDN administering distributed task processing
for MEC servers and radio access is based on a cellular
network. In addition, considering that each MEC server
has limited resources, only a limited number of services
can be processed simultaneously on a given server.

Although MEC servers have much better computing
and storage capabilities than mobile end devices or IoT
devices, to provide optimal overall service, their resources
need to be carefully managed. Considering very high den-
sity of incoming requests, high traffic variability and re-
source demanding requests with different and strict la-
tency constraints, the process of routing the requests to
the relevant MEC server or servers has to be very effi-
ciently optimized. This requires that the optimization is
done both in terms of service time and load distribution
between the MEC servers. So, the goal of this study is:

• To define the optimization function that will meet
both traffic load and delay constraints

• To develop an ML based (DQN based) algorithm that
will provide a solution.

• To evaluate the performance of the algorithm.

• To investigate the effects of the SINR parameter and
optimize service time experienced by user with differ-
ent type of requests.

4 Problem solution

4.1 Definition of the optimization function

To achieve the goals of this work, first the delay param-
eters that make up the service time are determined and
the mathematical background for minimizing the service
access delay for variable service requests generated by a
large number of user devices while optimizing and bal-
ancing the load distribution on the MEC network which
consists of multiple servers where multiple instances of
requests occurs simultaneously. The total service delay is
considered to have three major components: access delay,
transfer delay, and processing delay.

Access delay refers to the time it takes for the request
to be transmitted from the mobile device (end device)
and reach the MEC server. Although this period refers to
the time elapsed between the user (U) and an access point
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(AP), the delay between AP and MEC servers is assumed
to be negligible. For this reason, in the continuation of the
study, access delay will be referred to as the delay between
the U and the MEC server for ease of expression. Access
delay

Tk,m =
dk

Rk

, (1)

where dk is the packet size sent from Uk (bit) and Rk

is the data rate of Uk (bit/s). The dk packet sizes for
each user are obtained based on the 3GPP R1-070674
document, [13]. According to the information contained
in this document, package sizes differ depending on the
type of traffic. In the study, ftp and gaming traffics are
based on the types of traffic that 3GPP also specifies
under the main heading of non-real-time and real-time
traffic. The data rates Rk can be determined according
to the respective cellular network standard as in [14].
After obtaining the access delay values experienced by
each user, the highest value was chosen and used in the
analysis as the access delay value.

We proposed an equation that allows to determine
the user packet sizes transmitted depending on the SINR
value of each user

γkS =
PS

PS + PN + PI
, (2)

where PS ,PN , and PI are power of signal, noise and
interference, respectively.

It is well known that the greater the strength (power)
of the desired signal, the lower the bit error rate (BER)
value will be, and the packets will reach the MEC net-
work with less errors ie, the “goodput” is higher. Thus,
the packet size to be processed in the MEC network is
calculated as

du = γkSdk, (3)

where du -is called “usable packet size”

Requests are generated by mobile devices accessing
the network at the nearest MEC server and they are
routed to MEC servers hosting the applications which
correspond to the specific request. The total usavle data
size of the combined requests for an application on the

MEC server is expressed as D
(i)
w,m, i ∈ I, where MECw is

a server where the requests are collected, the upper index
represents the i -th application needed, and MECm is the
server that will meet the request.

The transfer delay which is the time it takes for the
request to be transferred from the initially accessed server
MECw to the server that will meet the request MECm,

is expressed as follows

T (i)
w,m =

I
∑

e=1

D
(e)
w,m

vi
P (e)
w,m,

w,m ∈M, P (i)
w,m ∈ {0, 1},

(4)

here, the term P
(e)
w,m indicates probability of whether the

connection e ∈ E is on the routing route of the re-
quests collected on the MECw server and forwarded to

the MECm server, and ve refers to the edge network
routing capacity (bit/s).

After a request arrives at the MECm server, the delay

caused by the processing of the data on this server is T
(i)
m ,

while F
(i)
w,m defines the size of the combined requests that

can be processed on MECm server at that instance. The
time required for the processing is

T (i)
m =

F
(i)
w,m

νm
, (5)

νm refers to the processing speed of the MECm server.

Finally, the goal of minimizing the total service delay
T can be formulated as

min
e(ve,cm

)

T = T (i)
w,m + Tk,m + T (i)

m

st P (e)
w.m ∈ {0, 1}, e ∈ E

Tk,m = max
(T )

{

T1,m, T2,m, . . . , TK,m

}

,

k ∈ U, m ∈M

0 ≤ F (i)
w,m ≤

M
∑

m=1

cm, w,m ∈M, i ∈ I

(6)

The parameter “e” in the optimization equation is re-
lated to the application type, the current MEC capacity,
and the current inter-MEC connection speed. Since we
are focusing on optimizing the edge network portion of
the delay, this parameter will also be a key component
in defining the rewards for the proposed DQN algorithm.
The proposed optimization function allows us to optimize
not only the load distribution on the MEC servers, but
also the distribution of the loads on the connections be-
tween the MEC servers, making the network accessible
for more new requests. Thus, we maximize the number
of available MEC servers by minimizing the number of
MEC servers used in the network. Furthermore, instead
of distributing the packets of a single request to more than
one MEC server, the workload on specific MEC servers
is maximized, and the load on the network as a whole is
reduced because there are less data transfers within the
network.

4.2 The DQN based algorithm

Q -learning is a model-free learning method and one
of the classical RL algorithms. At the beginning of each
chapter in Q -learning, the environmental situation is dis-
cussed. For each step in the section, the action at should
be chosen based on the current situation st and policy.
Then the corresponding reward rt and the next state st+1

can be obtained. Next, the action value Q(t) = Q(st, at)
should be updated using the Bellman equation

Q(t)← Q(t) + β
(

rt + γmax,t+1Q(t+ 1)−Q(t)
)

. (7)
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Due to the large complexity of the environment con-
sidered in our case such a Q -table will be of unacceptable
size. So, a Q -learning algorithm based on neural networks
(NN) is used instead. In DQL, the learning process uses
two neural networks: the trained network and the target
network. These networks have the same architecture but
different weights. The parameters of the target DQN are
updated according to the evaluation of trained DQN at a
certain rate where the parameters of the trained DQN are
backpropagation using Adam [15] optimizer algorithm.
It is important to emphasize that the parameters of the
target network are not trained but synchronized periodi-
cally with the parameters of the main Q -network. Using
the Q -values of the target network to train the main Q -
network increases the stability of the training.

For a state value given as input to the NN, Q -values
corresponding to more than one action will be obtained
as output. From these outputs, the action maximizing the
Q -value is selected and the target action specified as

γi = ri + γmax,t+1Q(t+ 1), (8)

L =
1

N

N−1
∑

i=0

(

Qi − yi

)2

. (9)

All other possible outcomes are then used to approxi-
mate this target action by checking the difference between
the Q -values and the target values. By calculating the er-
ror between the Q -values and the target values the loss
function calculation is also performed

The three main components of the proposed DQN are
defined as follows:

• State: The state vector s ∈ S contains information
about the data packet size (Mbit) that the MEC server
will process at the time when the requests generated
for the x ∈ X service are collected.

• Action: The action vector consists of the elements
|X |�|S|. Any element in this vector represents an ac-
tion that can be taken by the MEC server. are the
generated service requests for the service X and they
can be forwarded to a MEC server that has an service.
The action here is defined as the MEC server’s respond
to the user generated requests. The MEC server can
either process the request if it has the processing and
application capabilities to do so or it can initiate its
routing to the nearest available MEC server that can
respond to this request.

• Rewards: The rewards and the Q -values are deter-
mined by the DQN algorithm. Since the reward de-
pends on the connection speed and MEC server data
capacity, the most suitable servers and backhaul con-
nections at that time are evaluated to ensure optimal
data transfer. The path selection for the data transfer
from server to server depends on the type of packet
that the server can process (ie , the type of applica-
tion that it can serve), the current load of connections
between servers and the data processing speed (ie ,

amount of data the server can process). The reward
equation is

RQ =

{

vecmξ if mi is feasible for xi

−100 if mi is not feasible for xi

, (10)

were, the parameter ξ is a weighting coefficient and
was set to 0.001.

A novel hybrid algorithm (Algorithm 1) is designed
combining Q -learning and DQL. Path planning is real-

ized using Q -learning in the initial part of the algorithm
and the Q -values obtained are used as initial Q -values
for the DQN. These values are reinforced with the DQL

algorithm. Then the obtained reward values in the DQN
are used for Q -learning stage in the next iteration.

A novel hybrid algorithm (Algorithm 1) is designed

combining Q -learning and DQL. Path planning is real-
ized using Q -learning in the initial part of the algorithm
and the Q -values obtained are used as initial Q -values

for the DQN. These values are reinforced with the DQL
algorithm. Then the obtained reward values in the DQN
are used for Q -learning stage in the next iteration.

5 Simulation settings

A simulator in Python is developed and proposed DQN
algorithm is trained on a computer with AMD Ryzen 9
3950X 16-Core CPU, 3.49 GHz frequency, 64 GB RAM

and GIGABYTE GeForce RTX 2080 Ti graphic card.
For simulations, UEs are distributed randomly and uni-
formly throughout the cellular network. Thanks to the

wrap-around technique, an infinite-sized network is ap-
proached with 1000 antennas/km2 and 250 UEs/km2 us-

ing the 4 km2 square area. The edge network comprises
10 MEC servers, each one with predefined capabilities:
some servers are designed to respond only to NRT appli-

cations (blue color code), some only to RT applications
(red color code), and some can serve both types of ap-
plications as shown in edge network in Fig. 1. As it can

be understood, there are many MEC servers with dif-
ferent data processing capacities in our system and the
application that each of these servers can serve is dif-

ferent. The backhaul connection speeds between servers
has been taken into account, and in addition the packets
that come to any server has been processed instantly if

the packets arrive at the appropriate server. To process
the remaining data as soon as possible if the packet size
is larger than the server capacity, the remaining packets

will be redirected to the MEC server, which can process
the data in the fastest way. If the packets did not arrive at
a suitable server in the first place, they are redirected to

another server that can handle the request, taking into
account the server capacities and backhaul connection
speeds. The complexity of this MEC network design used

in our scenario increases its relevance to real life.
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Algorithm 1: Proposed Hybrid DQN Algorithm

Initialize Preprocess (MEC data capacity, speed, pack
size, UE data rate, application type)

Initialize Routing Algorithm

While there are packages to process:

If MECi can run application type and packet are

not processed:

Realize Action (Process packet)

Update reward RQ (MEC data capacity,

connection speed)

Transfer remaining packets to next available MEC

Update path

Else:

Transfer packets to next available MEC

Return RQ

Initialize the Main network, the Target network, the
Experience Replay Mechanism D , the agent to interact
with the environment. Initial r = RQ

If convergence criteria is not met:

Run Agent

Update ε using ε – decay.

For state s , choose an action a using ε – greedy.

Agent a realizes the action, observes the reward r

and new state s′ .

Stores the transition sequence (s, a, r, s′ , done) into

experience replay memory D .

If D has enough experience:

A minibatch sized of N is chosen randomly

from D

Foreach (s, a, r, s′ , done) sequence in

Minibatch:

If donei is True;

yi = ri

Else

yi = ri + γmaxa′∈A Q′(s′i, a
′)

Loss function L = 1
N

N−1
∑

i=1

(

Q(si, ai)− yi
)2

Using Adam, minimize the loss L and update

the Q -value

Foreach C step:

Duplicate the weights of Q network into Q′

network.

6 Evaluation of the proposed algorithm

In this section the relation between the delays for RT
and NRT services that the users experience and the SINR
is examined. The values for the SINR are in the range
from 9 dB to 60 dB. Taking into consideration the rela-
tionship between PER (packet error rate) and BER (bit
error rate) as considered in [16] the packet sizes for the
different SINR case are calculated. SINR-adaptive term
is used for the cases where the channel conditions for

each user are taken into consideration, while SINR-non-
adaptive is used for the ideal case.

In the literature, acceptable BER rates are in the range
of 0.1% to 10%. BER below 0.1% are considered highly
successful, while BER above 10% are not acceptable. In
the light of this for an SINR of 9 dB the observed 11.26%
BER is not acceptable; while 6.19% BER for SINR 13.43
dB, and 0.28% BER 35 dB and 0.09% BER for 60 dB,
data transfer is achieved with high success.

Another performance output examined at different
SINR values is the access delay. Figure 2(a) shows the
access delay values for the SINR adaptive and SINR non-
adaptive scenarios. As the SINR value increases, there
are significant improvements in access delay due to the
fact that the access delay is related to the packet size and
uplink data rate, and the uplink data rate is also related
to the SINR. Access delay changes only slightly when the
SINR value drops from 60 dB to 35 dB, because the chan-
nel conditions are good at both SINR values. When the
SINR value decreases from 35 dB to 13.43 dB, it is seen
that the change in the 35 dB to 13.43 dB range is slightly
faster than the change in the 13 dB to 9 dB range.

Figure 2(b) shows the transfer delay values for the
SINR adaptive and SINR non-adaptive scenarios. With
the increase in SINR values, the size of the usable packet
in the MEC network is increased, and therefore the size
of the data to be transferred within the MEC network
is increased. As a result, the transfer delay for the SINR
adaptive scenario increases while the delay for the SINR
non-adaptive case is a constant at 0.27 ms.

Table 1. Simulation parameters

Parameter Value

Bandwidth 20 MHz

Number of Users 1000

Number of APs 1000

Number of Antennas per AP 4

Cellular Network Area 4 km2

Number of MEC Servers 10

MEC Server Data Capacity (3,6) Gbit

MEC Server Processing Capacity 50 GHz

Backhaul Connection Speed (100,300) Mbit/s

Episode 1000

Learning Rate (β) 0.99

Discount Factor (γ) 0.99

Memory Size 1000

Minibatch Size 256

Epsilon Decay 0.99975

In the second part of the simulations, we discuss the
scenario where the requests from the users belong to the
real time application (RT service). The real-time packets
are generated according to the gaming traffic packet size
equation given in [13]. The total packet size that will be
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Fig. 2. (a) – Access delay, (b) – transfer delay, (c) – process delay, and (d) – total service time without training for non-real-time request

Fig. 3. (a) – Access delay, (b) – transfer delay, (c) – process delay, and (d) – total service time without training for real-time request
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Table 2. Comparative average service time in ms; results for different processing capacity of MEC servers

GHz → 1 1.5 2 2.5 3 3.5 4

DRLRA (5) 330 220 160 140 130 115 90

Hybrid DQN 0.064 0.059 0.058 0.056 0.055 0.055 0.054

Table 3. Comparative average service time in ms; results for dif-
ferent data routing capacity

Data routing capacity in Mbps

250 500 750 1000

DRLRA (5) 128 103 95 72

Hybrid DQN 0.056 0.030 0.022 0.018

Table 4. Comparative total service time in ms; results for different
number of users

Number of users 200 160 120 80 40

ADORE (9) 30 17 10 7 3

Hybrid DQN 23.9 16.69 11.02 6.39 3.6

processed in the MEC network related to the RT traf-
fic is adjusted for different channel conditions using (2)
and (3). As theoretically expected, as the SINR value
increases, the total packet size that can be processed in-
creases.

In Fig. 3(a), the access delay for RT traffic from the
cellular network to the MEC network is presented. Since
the uplink data rate changes depending on the SINR
value, there is a significant decrease in the access delay as
the SINR value increases. When the results for the two
scenarios are examined together, especially for low and
medium SINR values, it is observed that the access delay
is reduced by adapting the SINR related equations to the
model. At high SINR values such as 35 dB and 60 dB,
the access delay is equal due to the equal packet sizes.

Figure 3(b) shows the transfer delay values for the
SINR adaptive and SINR non-adaptive scenarios. For low
SINR values (9 dB and 13 dB) and SINR of 35 dB, the
transfer delay is lower for the SINR adaptive scenario. For
very high SINR values, the size of the usable packet in
the MEC network increased, which result in the fact that
the transfer delays almost converged for both scenarios.

In Fig. 3(c), the values for the process delay in the
MEC network are given. Similar to the NRT traffic case,
the processing delay for the SINR adaptive scenario in-
creases with the SINR value. It is important to note that
the transfer time does not depend only on the packet size
but also on finding the most suitable server in the network
and realizing the routing over the backhaul link with the
highest capacity. This decision, which the proposed al-
gorithm makes, is based on evaluating the suitability of

the servers, their capacity and type of application, and
the speeds of the backhaul links and is another impor-
tant factor affecting the transfer delay. The results show
that considering the more realistic case which is SINR
adaptive has lower processing delay values.

The total service time without training is shown in
Fig. 3(d). It can be seen that as the SINR value improves,
there are improvements in the total service time for both
scenarios, but SINR adaptive scenario performance out-
put is better than SINR non-adaptive results.

Some analyzes were carried out to be able to exam-
ine them comparatively with some of the studies in the
literature [5, 9]. In [5], an intelligent resource allocation
algorithm (DRLRA) is introduced that can allocate com-
puting and network resources that can adapt to chang-
ing MEC conditions using DRL. In the system model de-
signed, it is stated that there are multiple MEC servers
and there is a link between each server pair. On the other
hand, in this study, servers that can run different types of
applications are introduced and the average service time
(including only transfer delay and processing delay) in
the MEC network is examined taking into consideration
several parameters: data routing capacity, processing ca-
pacity and etc. The performance results obtained when
the experimental settings given in [5] were applied to the
scenario in our study are given in Tab 2 and Tab. 3, com-
paratively. Table 2 shows the average service time values
for different MEC processing capacities. Table 3 shows
the average service time values experienced by users for
different backhaul connection speeds. Both tables show
that the Hybrid DQN algorithm presented in our study
provides service to users with much less delay in both
parameter value changes.

Compared to other studies in literature [9-12] our pro-
posed model allows for a more detailed and comprehen-
sive examination of the network performance especially in
terms of service time and delays. While previous works
have considered a single type of user requests, in this
work we examine the delays for two different types of
traffic: real-time traffic and non-real time traffic. Second,
the various components contributing to the total service
time delay that the user experiences, are defined and ex-
amined for different channel conditions: access delay, pro-
cessing delay, transfer delay and the total service time
without the training of the model. It is important to note
that these different components, behave differently un-
der different SINR values. It has been observed that for
worse channel conditions the idealized delay values are
higher than the more realistic channel aware case which
our model allows to investigate. On the other hand, the
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idealistic results ie SINR non-adaptive case are closer or
lower for those with very good channel conditions.
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7 Conclusions

The hybrid DQN based algorithm proposed in this
work allows us to examine in detail the service delays and
proposes a way to ensure that users are provided with the
most efficient service both in respect to the service time
and the optimal utilization of MEC network resources.
The proposed algorithm establishes the optimal load bal-
ancing for the MEC application servers where multiple
instances of requests occurs simultaneously which in turn
allows us to serve more users in a shorter time. It is based
on a correlation between the DQN reward values and the
MEC server capabilities including the backhaul link ca-
pacities, forcing the agent to find the optimal path for
routing the user traffic through the MEC network. Fur-
thermore, the system considers the heterogeneity of user
requests (real-time or non-real-time file type and size).
The designed system allows for detailed examination of
the effects of various delay components like access delay,
process delay and transfer delay. Furthermore, it has been
shown that when a more realistic, channel aware scenario
is considered the proposed algorithm and optimal load
balancing in the MEC network can lead to reducing the
total service time experienced by the users.
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