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Thermal vision significantly enhances visibility under various environmental conditions. So, this paper presents a compre-

hensive study on the importance of thermal vision in improving image fusion human visual perception through subjective 

evaluation. The study focuses on the fusion of three imaging sensors commonly used in computer vision applications: long-

wavelength infrared (LWIR), visible (VIS), and near-infrared (NIR). Four image fusion alternatives (LWIR+VIS, LWIR+NIR, 

NIR+VIS, and LWIR+NIR+VIS) are produced using a reliable deep learning approach and assessed using both subjective tests 

and objective metrics. The subjective evaluation is performed involving 15 military students and officers from the University 

of Defence in Belgrade, while objective assessment is elaborated using eight no-reference measures. Results indicate that fused 

images with thermal information show better visual performance than non-thermal based image fusion alternative (NIR+VIS). 

Moreover, LWIR+NIR+VIS and LWIR+NIR fused images provide similar visual appearance, demonstrating that the bimodal 

image fusion (LWIR+NIR) can be sufficient to produce a highly informative fused image. Additionally, the degree of 

agreement between subjective and objective scores is calculated. The simple edge intensity measure shows the highest degree 

of agreement, while the image entropy demonstrates the second-best score.  

Keywords: thermal sensor, LWIR, NIR, VIS, image fusion, subjective quality assessment, objective quality assessment 

 

1 Introduction 

Thermal imaging sensors are sophisticated devices 

capable of detecting infrared radiation emitted by all 

objects with temperature above absolute zero [1]. They 

offer a unique opportunity that transcends the limitations 

of human vision and visible light imaging sensors. As  

a result, thermal sensors are increasingly employed 

across a diverse range of computer vision applications, 

such as object detection [2], tracking and surveillance  

[3, 4]. 

Considering the unique and valuable information 

provided by thermal sensors, their integration with other 

imaging sensors, such as visible (VIS) and near-infrared 

(NIR), becomes highly advantageous, in order to 

strengthen the overall visual capabilities. Through 

advanced image fusion techniques, the complementary 

information from these sensors can be combined to 

create composite images that significantly enhance scene 

understanding. This fusion is particularly beneficial in 

environments where VIS and NIR sensors alone cannot 

capture significant scene details, such as in low-light, 

foggy, or smoky conditions. By leveraging the distinct 

advantages of thermal imaging, fused images can 

improve the visibility and detection of objects, enhance 

contrast, providing a more robust and reliable repre-

sentation for human vision [5, 6]. 

To generate as much as possible informative com-

posite (fused) image, several notable fusion algorithms 

have been developed. They can be broadly categorized 

into two classes, task-specific image fusion [7-9] and 

general image fusion algorithms [10-12]. The first class 

focus is on combining two specific image modalities, 

typically LWIR+VIS or NIR+VIS. The second class 

consists of general image fusion algorithms that employ 

a unified model capable of fusing in a wider range of 

applications. These algorithms can handle various 

combinations such as LWIR+VIS, NIR+VIS, multi-

exposure images, multi-focus images, and even medical 

image fusion, offering greater versatility across different 

applications. However, it is important to note that despite 

their ability to deal with various modalities, these 

algorithms typically fuse only two modalities at a time 

(bimodal fusion). 

The current researches face two significant limi-

tations. First, existing works primarily focus on fusing 

only two modalities for the same scene, (LWIR+VIS, or 

NIR+VIS), overlooking the potential to benefit of 

incorporating additional sensors that could provide 

complementary information. Second, there is a lack of 

subjective and objective assessments and comparison of 

fusion performance for different image combinations 

captured for the same scene (LWIR+VIS, LWIR+NIR, 

NIR+VIS, and LWIR+NIR+VIS). This gap in analysis 
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makes it challenging to determine the most effective 

sensor combination for image fusion task. 

To address the limitations discussed above, this paper 

presents both, subjective and objective studies on the 

performance of fused images using various modality 

combinations. The subjective study highlights the 

importance of incorporating thermal channel in the 

fusion process to produce a more comprehensive and 

informative composite image. 

This research makes the following key contributions: 

• Multisensor image fusion analysis 

Our work expands the scope to three-modality 

(trimodal) fusion. The performance analysis and 

comparison of different sensor combinations 

(LWIR+VIS, LWIR+NIR, NIR+VIS, and the 

trimodal LWIR+NIR+VIS fusion) is performed. 

• Comprehensive subjective study 

A subjective study is performed to evaluate the 

importance of different channels (sensors) in enhan-

cing human visual perception. 

• Subjective vs. objective assessment 

A comparison between subjective evaluations and 

objective assessment measures for image fusion is 

conducted to measure the degree of agreement 

between objective and subjective evaluations. 

 

2 Database description 

The database used in this research is created by 

collecting images from two different databases: 

TRICLOBS [13] and MOFA [14], which are obtained 

using multisensor surveillance cameras. Three sensors, 

including the thermal (LWIR), NIR, and VIS, are used in 

each database and the general characteristics of those 

 sensors are presented in Tab. 1. The created dataset, 

along with VIS and NIR, contains LWIR images, which 

are assumed to provide enhanced information for 

improving human operator visual perception. In the aim 

of emphasizing different monitoring and surveillance 

scenarios under the outdoor conditions, the images have 

been chosen so that they include different objects. 

Therefore, the considered scenarios include: military and 

civilian individuals (stationary, walking, or running, 

carrying various objects, and groups of soldiers), as well 

as civilian and military vehicles. 

The database contains 192 image triplets, each of 

them describes same scene. To demonstrate the 

effectiveness of thermal information in image fusion, 

both trimodal and bimodal fused images are produced 

(LWIR+VIS, LWIR+NIR, NIR+VIS, and 

LWIR+NIR+VIS) for comparative analysis. The 

database is split, using 162 triplets for training while the 

remaining 30 are used for testing, employing both 

subjective and objective assessment methods. 

 

Table 1. General characteristics of the TRICLOBS and MOFA sensors 

Sensor Characteristics TRICLOBS MOFA 

LWIR 

Detector microbolometer Huajingkang Infrared K26E19 

Spectral range 8-14 m 8-14 m 

Resolution 480×640 440×600 

NIR 

Detector enhanced CMOS Daheng Imaging MER-502-79UCM 

Spectral range 0.7-1 μm 0.78-1 μm 

Resolution 480×640 440×600 

VIS 

Detector enhanced CMOS Daheng Imaging MER-502-79U3C 

Spectral range 400-700 nm 400-700 nm 

Resolution 480×640 440×600 

 

3 Multisensor image fusion architecture 

In recent years, a growing number of image fusion 

methods have been proposed, including: 1) traditional 

approaches, such as transform domain-based methods, 

saliency-based methods, sparse representation-based 

methods and hybrid methods [6], and 2) methods based 

on deep learning (DL), such as CNN-based methods, 

GAN-based methods, transformer-based methods and 

ConvNeXt-based methods [7, 9]. This article focuses on 

DL methods due to their superior performance and 

ability to automatically learn complex features from 

data, which makes them particularly well-suited for 

enhancing image fusion tasks [9]. 

While CNNs offer simplicity but lower accuracy, and 

transformers provide high accuracy at the cost of 

increased complexity, this study employs ConvNeXt,  

a novel architecture that combines the benefits of both 

approaches. ConvNeXt effectively combines the simpli-

city and efficiency of CNNs with the powerful feature 

learning capabilities of transformers, making it a pro-
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mising approach for achieving enhanced image fusion 

results. It is a neural network architecture with a large-

kernel size convolution, constructed entirely from the 

standard ResNet, which adopts several modern 

techniques inspired by transformer architecture, such as 

layer normalization, Gaussian error linear unit active-

tion, and depth-wise convolutions [15]. 

Figure 1 presents the overall diagram of the used 

multisensor image fusion architecture based on 

ConvNeXt layers. 

 

 

Fig. 1. The overall diagram of multisensor image fusion architecture 

 

The proposed architecture aims to generate the fused 

image IF via merging thermal (LWIR) and non-thermal 

images (NIR and VIS). As illustrated in Fig. 1 the 

architecture is structured into three main parts: 

multisensor image inputs, the fusion network, and the 

fused image output. 

The input images are fed into the fusion network. The 

fusion network uses several interconnected ConvNeXt 

layers to integrate complementary information from the 

input images. This architecture is designed to preserve 

both the thermal information captured by the thermal 

sensor and the detailed texture present in the non-thermal 

images, ensuring a comprehensive fusion of the 

multisensor inputs. Finally, the fused image is produced 

as the output. 

 

4 Experiments and analyses 

In this section, an experimental validation is con-

ducted to evaluate the effectiveness of the thermal 

radiation information in enhancing the human visual 

perception. At the beginning, the fusion of thermal image 

with NIR and VIS images is conducted to combine the 

thermal radiation information with rich scene details. 

Next, the thermal information effect on image fusion is 

studied via subjective assessment. Finally, the evaluation 

of the degree of agreement between the subjective and 

objective image fusion scores is performed. 

 

 

4.1 Trimodal image fusion 

In this section, the fusion of the three sensor images 

is conducted. Due to the lack of DL methods designed 

for handling all three channels simultaneously, our 

ConvNeXt-based approach will be compared against 

three traditional methods that do not rely on DL. These 

methods include Laplacian Pyramid (LP) [16], Latent 

Low-Rank Representation (LatLRR), and Guided 

Filtering (GFF) [17]. 

To objectively assess the performance of the three-

sensors image fusion, three metrics have been used, 

including average gradient (AG), entropy (EN) [18], and 

Naturalness Image Quality Evaluator (NIQE) [19]. 

Tab. 2. presents the objective results, where the best 

results are highlighted. 

 

Table 2. Objective comparison  

of trimodal image fusion 

Method LP GFF LatLRR Our 

AG 3.0559 3.9580 3.1904 4.5736 

EN 6.7962 7.0918 7.0002 7.4955 

NIQE 4.3335 4.9291 4.1738 3.3600 

 

From Tab. 2, it is observed that our ConvNeXt-based 

method outperforms the other three methods (LP, GFF, 

and LatLRR) across all three quantitative metrics. It 

shows significant improvements in gradient and entropy 

(higher is better), indicating better preservation of 

structural details and information content. The lower 

NIQE score also suggests improved perceptual quality. 
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Fig. 2. Visual comparison of trimodal image fusion 
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Figure 2 illustrates two challenging in image fusion 

scenarios: a scene under low light conditions and another 

obscured by smoke. As one can see, LP, LatLRR, and 

GFF methods struggle to adequately extract thermal 

radiation information from the thermal sensor in both 

scenarios, resulting in fused images with low contrast. 

Otherwise, our approach exhibits superior performance 

in extracting thermal radiation data, effectively inte-

grating visual information from other sensors, and 

preserving high contrast in the fused output. This 

enhanced capability allows for more effective visuali-

zation and interpretation of complex scenes under 

adverse conditions. Therefore, in the further part of the 

paper, ConvNeXt-based trained models are used for both 

trimodal and bimodal image fusion. 

 

4.2 Thermal information effect in image fusion 

In order to evaluate the visual effect of thermal 

information on the fusion performance, four fused image 

alternatives (LWIR+VIS, LWIR+NIR, NIR+VIS, and 

LWIR+NIR+VIS) are produced for testing. Both 

subjective and objective assessments are conducted to 

evaluate the fusion results. The subjective evaluation is 

performed by observers at the University of Defence in 

Belgrade to compare the quality of fused images. As 

observers, 15 military students and officers are randomly 

selected to ensure a different level of familiarization with 

image fusion. They were asked to compare the four fused 

images and rank them with a ranking score (RS) from 

“1” to “4”, where “1” corresponds to the image with the 

best fused results, and “4” to the image with the worst 

fused results. 

The objective evaluation is conducted using eight no-

reference metrics, including average gradient (AG), 

spatial frequency (SF), entropy (EN), variance (VAR), 

edge intensity (EI) [18], NIQE [19], Blind/Referenceless 

Image Spatial Quality Evaluator (BRISQUE) [20], and 

Perception based Image Quality Evaluator (PIQE) [21]. 

The results of the subjective and objective studies are 

discussed in the next subsections. 

 

4.2.1 Subjective image fusion quality assessment 

Figure 3 presents the gathered subjective results of 

the four image fusion alternatives LWIR+VIS, 

LWIR+NIR, NIR+VIS, and LWIR+NIR+VIS (ALL), 

utilizing mean ranking score (MRS), and standard 

deviation (MRS). 

 

 

Fig. 3. Image fusion subjective results through mean 

ranking scores (MRS) and their standard deviations 

(MRS) 

 

The mean ranking scores in Fig. 3 show the overall 

performance of the four image fusion alternatives. It is 

observed that NIR+VIS fusion that excludes thermal 

information, exhibits the highest MRS (the worst fusion 

results), as well as the highest standard deviation. In 

contrast, the alternatives incorporating thermal infor-

mation demonstrate superior performance, as indicated 

by lower MRS values, showing the best results for the 

combination of all sensors. This analysis supports the 

importance of including thermal (LWIR) information in 

image fusion for enhanced visual performance, with the 

best results achieved when combining all available 

sensors. Also, an excellent alternative to trimodal is 

bimodal LWIR+NIR image fusion. 

Figure 4 presents the MRS evaluation for each 

observer. It is noticed that the individual preferences of 

each observer tend to choose the LWIR+NIR+VIS, and 

LWIR+NIR with less degree, as the best image fusion 

results. Furthermore, the NIR+VIS fusion is chosen as 

the worst alternative by almost all subjects except for, 

observers 4, 8, 9, 12 and 15. That emphasize the impor-

tance of thermal information captured by LWIR sensors 

in individual human visibility perception. 

Figure 5 shows MRS results by scene for all 

observers, and two observations can be noted. Firstly, 

NIR+VIS image fusion shows the worst subjective 

results across almost all scenes. Moreover, it is selected 

as the worst method for scenes 9, 14, 17, 22, 24, 29 and 

30 by all candidates. Secondly, LWIR+NIR fusion 

shows a very competitive MRS performance with 

LWIR+NIR+VIS fusion. Furthermore, it is observed that 

LWIR+VIS fusion is chosen by all subjects as the best 

results for scene 10. Again, this highlights the 

importance of incorporating thermal (LWIR) sensors in 

the fusion process to enhance the visual quality across 

different scenes. 
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Fig. 4. MRS with standard deviations for each observer 

 

 

 

Fig. 5. MRS with standard deviations for each scene 

 

 
4.2.2 Examples of bimodal and trimodal image fusion 

Figure 6 presents two LWIR, NIR and VIS test image 

triplets (scenes 5 and 27) and the corresponding bimodal 

and trimodal fused images. All image fusion alternatives 

can relatively exhibit a good visual performance. 

However, there is some drawbacks noted by a visual 

comparison. NIR+VIS fused images cannot capture the 

scene details in case of dim and shows poor contrast, 

resulting in obscured objects. The incorporation of 

thermal sensor in image fusion process significantly 

improves the quality of fused images by enhancing the 

contrast, resulting in emphasizing objects (see soldiers, 

people and cars). LWIR+VIS fused images show a good 

contrast but loses some details of the scene (see the 

texture in the building, street, and clouds in the sky). 

LWIR+NIR fused images show better contrast and 

capability in describing the scene details, but loses some 

texture (see the walking street). Finally, 

LWIR+NIR+VIS fused images maintain the thermal 

radiation resulting in good contrast, and also captures the 

scene details from NIR and VIS images. 

Created dataset, the results of subjective tests, 

ConvNeXt-based implementation code and pre-trained 

weights are available on Mendeley Data link [22]. 
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Fig. 6. Bimodal and trimodal image fusion examples: (a) scene 5, and (b) scene 27 
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5 Objective vs subjective quality assessment 

In this section, the obtained results between the 

objective and subjective quality assessment for the four 

image fusion alternatives are discussed. Therefore, the 

objective assessment between bimodal and trimodal 

image fusion alternatives is presented in Tab. 3, while 

Fig. 7 depicts the scatter plots of subjective MRS against 

the eight no-reference objective metrics mean scores. 

 

 

Table 3. Bimodal and trimodal image fusion performance comparison 

Fused sensors AG SF EN VAR EI NIQE BRISQUE PIQE 

LWIR+VIS 4.0043 12.3713 7.4085 54.9334 41.8896 3.1337 25.7947 32.8673 

LWIR+NIR 4.5307 13.6844 7.4708 55.8054 46.4951 3.0935 24.9049 31.3570 

NIR+VIS 3.8143 11.0811 7.1197 43.6548 36.7359 5.0090 23.1004 22.0794 

ALL 4.5736 13.4720 7.4955 55.1148 46.9963 3.3600 23.2153 29.3230 

 

 

From Tab. 3, it can be concluded that the three simple 

no-reference measures AG, EN, and EI selected trimodal 

image fusion as the best solution, while according to 

them a good alternative is bimodal LWIR+NIR image 

fusion, and this fully agrees with the subjective test 

results (see Fig. 3). According to SF and VAR objective 

measures, these two image fusion alternatives are also 

the best, but in reverse order. The reliability of AG, EN, 

and EI objective measures is further confirmed in Fig. 7, 

where, in addition to the ranking that is fully consistent 

with the results of the subjective tests, it can be 

concluded that the mutual distances of the mean 

objective scores also agree with the subjective MRS 

distances (the mean LWIR+VIS+NIR and NIR+VIS 

scores are closer than the other scores). Reliable 

perceptual objective image quality assessment measures 

NIQE, BRISQUE, and PIQE do not match well with 

MRS. This misalignment can be explained by the fact 

that these metrics are primarily designed for visible light 

(VIS) images, thus lacking effectiveness when applied to 

multimodal image fusion quality assessment. Additio-

nally, predefined models used in NIQE and BRISQUE 

measures are obtained using images of natural (non-

thermal) scenes. Also, the BRISQUE and PIQE 

measures select bimodal NIR+VIS as the best image 

fusion approach, i.e. a method that does not use fusion of 

thermal information. 

 

 

 

Fig. 7. Scatter plots of the MRS against the objective image fusion metrics 
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Furthermore, to measure the degree of agreement 

between the subjective and objective evaluations, the 

results of the eight no-reference metrics are used to rank 

the four fused image alternatives for each scene, from 

“1” to “4”, where “1” corresponds to the image with the 

best fusion results, and “4” to the image with the worst 

fusion results. After those two standard measures are 

used to calculate the error (distance) between the 

objective and the subjective ranking scores, Mean 

Absolute Error (MAE), and Root Mean Square Error 

(RMSE). The obtained results are presented in Tab. 4. 

 

 

Table 4. Comparison between the subjective and objective ranking scores 

Metric AG SF EN VAR EI NIQE BRISQUE PIQE 

MAE 0.9000 1.0667 0.7833 0.9333 0.7500 0.9000 1.1500 1.2667 

RMSE 1.1123 1.3151 0.9922 1.1516 0.9258 1.1147 1.3964 1.5623 

 

 

Based on the obtained results, EI exhibits the best 

agreement with the subjective results in term of both 

MAE and RMSE. Moreover, it is noticed that EN 

demonstrate the second-best agreement with subjective 

results, while AG and NIQE show the third best 

agreement. Given that EI performs best, it might be 

worth considering edge intensity as a primary no-

reference metric for assessing the performance of 

multimodal image fusion (LWIR, NIR and VIS). 

However, it is important to emphasize that although 

EI provides the best results among the tested metrics, 

both at the level of the complete database (Fig. 7), and 

through the comparison of ranks at the level of individual 

scenes (Tab. 4), the relatively high value of the rank 

differences, MAE, indicates that there is a need for 

further improvements in the area of multimodal image 

fusion quality assessment. A special challenge here is the 

quality assessment when the fused image is obtained 

with a different number of source images or based on 

images of different modalities. 

 

6 Conclusion 

This paper presents a subjective and objective studies 

on the performance of four image fusion alternatives, 

bimodal (LWIR+VIS, LWIR+NIR, NIR+VIS) and 

trimodal (LWIR+NIR+VIS). A reliable deep learning 

ConvNeXt-based trained network is used for image 

fusion alternatives. The study emphasizes the signi-

ficance of the thermal information in enhancing human 

visibility through fusion process. 

The subjective assessment was conducted by 15 

military students and officers at the University of 

Defence in Belgrade. Three analyses were performed to 

discuss and evaluate the obtained ranking scores: mean 

ranking scores by image fusion alternatives, mean 

ranking scores by observers, and mean ranking scores 

 

by scenes. Based on subjective quality assessments, it 

was concluded that fused images with thermal 

information show better performance than the bimodal 

approach that does not consider the thermal channel. 

Moreover, on the created dataset, LWIR+NIR and 

LWIR+NIR+VIS image fusion alternatives show a close 

performance, indicating that the bimodal image fusion 

(LWIR+NIR) can be sufficient to produce a highly 

visually informative fused image. 

The objective assessment was elaborated using eight 

no-reference metrics. In addition, the error between the 

objective and the subjective rankings was calculated, to 

measure the degree of their agreement. Results indicate 

that edge intensity shows the best agreement, while 

entropy provides the second-best score. This dual 

approach provides a more understanding of image fusion 

performance assessment, bridging the gap between 

computational measures and human perception by 

analyzing the agreement between subjective and 

objective assessments. Thus, we decided to make the 

created image database, along with the results of 

subjective tests, publicly available to the research 

community. 

Considering the agreement between subjective and 

objective results, it is necessary to develop new or 

improved well-performing objective metrics that might 

provide a more robust and comprehensive image fusion 

quality assessment across various number of sensors, 

various modalities and fusion techniques, which will be 

the subject of our future work. 
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