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Cross-layer DDoS attack detection in wireless mesh networks 
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Wireless mesh networks (WMNs), owing to its decentralized design and resource limitations, are susceptible to several security 

vulnerabilities, including distributed denial of service (DDoS) attacks. Traditional DDoS detection techniques are usually 

unable to effectively mitigate such attacks in WMNs due to their dynamic and complex nature. In this work, we show the 

capability of a Deep Convolutional Neural Network (DCNN) algorithm at the cross-layer of the network protocol stack to 

accurately and robustly detect Distributed Denial-of-Service (DDoS) attacks in WMNs. DDoS attack assessment and 

recognition use a practical dataset varying standard actions such as end-to-end delay, energy consumption, packet delivery 

ratio, mean packet latency, detection ratio, and packet loss rate when using the CICDDoS2019 dataset. The result shows the 

proposed method's strong performance compared to previous detection methods. The simulation results show DCNN-DDoS 

has a better detection ratio metric than D-ConCReCT, SVM-DoS, FSO-LSTM, HeltIoT-CNNIDS, and AIDS-HML, which 

grew by 78.12%, 38.54%, 22.8%, 16.33%, and 15.67% respectively. DCNN-DDoS has exhibited superior performance 

compared to other essential methods, which is evident from the empirical results, which have higher levels of accuracy. 

Keywords: convolutional neural networks, wireless mesh networks, DDoS attacks, deep learning, malicious nodes 

 

1 Introduction 

The ability of wireless mesh networks (WMNs) to 

provide wider coverage and flexible connections in 

various settings has contributed to their meteoric rise in 

popularity [1]. In WMNs, a self-organized network 

architecture is formed by many wireless nodes linked to 

one another. The network's dispersed structure provides 

many advantages, including enhanced resilience, higher 

capacity, and efficient routing [2-3]. Distributed denial 

of service (DDoS) assaults is major cause for worry 

regarding the security of WMNs, which are vulnerable 

to various threats due to their openness and dynamic 

topology. Consequently, to defend WMNs against 

vulnerabilities of this kind, it is necessary to have 

security procedures that are both resilient and efficient 

[4]. Traditional security methods developed for wired 

networks or wireless networks with a single hop are 

unsuitable for WMNs. Customized security solutions are 

required because of the distinctive qualities of WMNs, 

which include their dynamic topology and resource-

constrained nature. Learning discriminative character-

ristics and reliably identifying distributed denial of 

service attacks in real time was made possible by the 

model by using the geographical correlation of network 

traffic data [5]. 

The DDoS attack's characteristics include the 

overwhelming network resources, which renders the 

targeted services or systems unavailable to lawful users. 

These attacks can disrupt the normal operation of 

WMNs, degrade network performance, and compromise 

the availability of critical services [6]. Traditional DDoS 

detection methods designed for wired networks often 

need to address the unique challenges WMNs pose. 

Therefore, there is a need to develop advanced detection 

techniques specifically tailored for wireless mesh 

environments. Mesh nodes provide a significant 

challenge for researchers in managing data transmission 

through routing chains [7]. In addition, wireless mesh 

networks offer their functionalities within an un-

restricted framework, and malevolent nodes have the 

potential to act as mesh routers to forward data. In this 

scenario, there exists the potential for multiple forms of 

denial of service (DoS) attacks. Consequently, network 

communication may be disrupted and jeopardized [8-9]. 

This research is motivated by a pressing requirement 

to enhance the security of WMNs against the increasing 

risk of DDoS attacks. WMNs are crucial as essential 

communication infrastructures in various applications, 

such as wireless network deployments and disaster 

recovery situations. Nevertheless, the decentralized and 

ever-changing nature of these systems makes them 

susceptible to advanced cyber threats, such as DDoS 

assaults, that can potentially interrupt network services 

and undermine the integrity of data [10-11]. To render  

a target system's services unavailable, attackers employ 

a multitude of dump terminals, machines, and botnets to 

initiate DDoS attacks. This simultaneous onslaught 

effectively depletes the primary resources of the target 

system. A wide range of legitimate and potent tools exist 

that have the potential to be misused for launching DDoS 

attacks on both large and small targets. In a recent DDoS 
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attack, the perpetrators exploited the legitimate 

functionality of the Memcached tool, which is primarily 

designed to alleviate the burden on the underlying 

network resources [12-15]. 

This paper highlights a new DCNN-based framework 

(DCNN-DDoS) for efficiently detecting and defending 

against DDoS attacks targeting WMNs. The 

conventional approaches concentrate on interpreting 

values from just one domain to improve detection 

accuracy, while the proposed method analyses metrics 

like energy usage, packet delivery ratio, end-to-end 

delay, and mean packet latency representative of cross-

layer data for achieving secure networks. In the 

experiment, validated by the CICDDoS2019 dataset, 

DCNN-DDoS presents better performance than state-of-

the-art methods, i.e., D-ConCReCT, SVM-DoS, FSO-

LSTM, HeltIoT-CNNIDS, and AIDS-HML while 

achieving higher detection ratio, lower packet loss, and 

high routing efficiency. Finally, this research enables  

a scalable and effective solution for robust security 

against challenging cyber threats in next-generation 

WMNs. The DCNN-DDoS model proposed in this study 

can realize the practical implementation of real-time 

threat detection and adaptive threat mitigation for 

WMNs, strengthening the network resilience to dynamic 

and sophisticated cyberattacks. The growing use of IoT 

and 5G technologies makes extending the framework to 

accommodate high-density, low-latency networks im-

portant. The resulting research can develop into an 

optimization for detecting and preventing multi-vector 

DDoS attacks in such advanced network environments. 

The primary objective of this research paper is to 

propose and assess a DCNN model for the efficient 

detection of DDoS attacks in wireless mesh networks. 

By leveraging the inherent spatial correlation of network 

traffic data, the proposed model aims to learn 

discriminative features and accurately identify DDoS 

attacks in real-time. The CICDDoS2019 dataset [16] is 

substantial in size. Sixty percent of the data used during 

training is chosen randomly, whereas all data is used 

during testing. The dataset known as CICDDoS2019 is 

exclusively composed of flow-based data and is 

considered to be at the forefront of current research and 

technological advancements. However, these datasets 

lack the critical flow-based characteristics and qualities 

WMNs require. Existing significant techniques are 

compared with the suggested methodology in the 

evaluation. The f1-score, recall, accuracy, and precision 

are defined metrics upon which this evaluation is based. 

The primary contributions of this paper are as 

follows:  

• Proposed DCNN-DDoS method aims to detect DDoS 

attacks through a cross-layer architecture spanning 

network layers in WMNs.  

• The DDoS attack evaluation and detection are 

measured based on various metrics, such as end-to-

end delay, energy consumption, packet delivery ratio, 

mean packet latency, detection ratio, packets lost 

rate, malicious nodes, and accuracy, using a real-

world dataset. 

• This paper presents the DDoS attack detection and 

evaluation methods, focusing on deep CNN 

approaches that use the CICDDoS2019 dataset. 

• The evaluation of the efficacy of the proposed 

method in comparison to state-of-the-art methods 

such as D-ConCReCT, SVM-DoS, FSO-LSTM, 

HeltIoT-CNNIDS, and AIDS-HML with a focus on 

achieving a high level of detection accuracy.  

• It secures communication for traffic monitoring, 

surveillance, and smart grids in the intelligent 

network and also improves the reliability of 

emergency communication networks during disaster 

response. 

The remaining parts of the paper are organized as 

shown in the following structure. Section 2 provides  

a comprehensive literature review. Section 3 presents the 

proposed methodology. In Section 4, performance result 

analysis is presented, and the conclusion and future 

research in Section 5. 

 

2 Literature review 

WMNs are susceptible to a range of security risks as 

a result of their distinctive attributes. The inherent 

dynamism of WMNs, characterized by the dynamic 

addition and removal of nodes, poses issues in ensuring 

secure communication and avoiding unwanted intrusion. 

In addition, using a shared wireless channel increases the 

vulnerability to eavesdropping, unauthorized node 

impersonation, and packet interception. WMNs' 

weaknesses provide them appealing targets for attackers, 

including DDoS assaults [17-18]. Table 1 shows the 

abbreviation description. 

Mahadik et al. [18] introduced an intelligent intrusion 

detection system (IDS) called HetIoT-CNN IDS. This 

IDS system employs a convolutional neural network 

(CNN) built around deep learning methodologies. The 

HetIoT-CNN IDS is tailored to function inside the 

HetIoT ecosystem. This technique primarily emphasizes 

the binary categorization of assaults, with a remarkable 

accuracy rate of 99.75%. A security solution based on 

Convolutional Neural Networks (CNN) has been created 

to combat DDoS threats in real time inside the IoT 

environment. The technique proposed achieves a binary 

classification accuracy rate of 99.9% in recognizing 

DDoS assaults.  
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Table 1. Abbreviations 

Abbreviation Description 

DCNN Deep Convolutional Neural 

Network 

DDoS Distributed Denial-of-Service 

D-ConCReCT Distributed congestion control 

by duty-cycle restriction 

SVM-DoS Support vector machine-based 

denial-of-Service 

FSO-LSTM Firefly-swarm-optimized long 

short-term memory 

AIDS-HML Advanced intrusion detection 

systems based on hybrid 

machine learning 

𝑇𝑘 The total number of 

convolutional layers is denoted 

by 𝑘 

𝐺𝑖   𝐿,𝑀
𝑗

 Fixed feature map from the 𝐺𝑡ℎ 

layer, cantered at coordinates 𝐿 

and 𝑀 

𝐺𝑖
𝑗
 𝑖𝑡ℎ non-linear layer with feature 

maps 

𝐻𝑛   
𝑗

 Expected output 

𝐸𝑖 ,𝑤
ℎ  The relationship between the 

𝑗𝑡ℎ component in layer 𝑖 and a 

unit in the 𝑤𝑡ℎ characteristic 

vector 

𝑊𝑘 Weight of the kernel size k 

𝑇𝑤 Defined as the input weights 

𝑏𝑘 Bias value of kernel k 

𝑦𝑡 The initial instant of the 

gradient 

 

Sharma et al. [19] developed a security technique for 

protecting the RPL model against black hole attacks. 

One encouraging step towards guaranteeing the security 

of these networks is the RPL mechanism's use of 

sophisticated capabilities like 6LoWPAN network 

discovery. Modern, cutting-edge solutions exist to 

counter these dangers, and they do not have to be 

cumbersome or disable certain nodes' ability to function. 

Because of the promiscuity of certain nodes, this issue 

has solutions that might compromise network security. 

Even though ID systems could need substantial 

processing and network overheads, there are ways to 

address these challenges. The proposed study employs a 

promising strategy for malicious node detection in the 

distributed timer-based technique. The simulation 

approach has been used to evaluate the work, and the 

results demonstrate that it can accurately locate black 

holes, leading to less packet loss [20]. 

 

Gandhimati et al. [21] created a model that examines 

threat detection using a cross-layered method and flow-

based intrusion detection system. To enhance the 

communication security of the crucial application, it 

should consider replacing its current cryptographic 

technology with flow-based anomaly detection. 

Moreover, transitioning from a single-layer detection 

strategy to a multi-layer detection approach might be 

advantageous in enhancing attack detection. The 

technology evaluated has a two-stage approach to 

detection. The authors used a flow-based approach to 

look for strange behavior in the network's traffic during 

the first stage. The second step involves analyzing cross-

layer properties to lessen the likelihood of assaults. 

Regarding detection precision, the suggested detection 

technique shows promising results in simulation. 

Compared to layer-based and packet-based methods, 

this will also result in lower energy usage and a lower 

false positive rate [22]. 

Ramesh et al. [23] presented a DoS attack on Wire-

less Multimedia Sensor Networks (WMSN) utilizing an 

improved DNN system. The selection of parameters is 

performed utilizing the adaptive PSO method. The 

method's efficacy is evaluated by assessing various 

factors, including energy consumption, throughput, 

packet delivery ratio, latency, and network longevity. 

The obstacles sensor nodes rise to many attacks on 

Wireless Multimedia Sensor Networks (WMSN), 

notably DoS attacks. The crux of this assault is to hinder 

the adequate operation of the system. The primary 

concern is launching attacks and restricting the access of 

authorized nodes to network resources. The distributed 

attack refers to a scenario where multiple assailants 

attack a network. The present form of assault engenders 

more functional complications within the network than 

attacks directed toward a solitary node. Introducing an 

advanced machine learning algorithm is imperative to 

mitigate the risks of DoS attacks on the network. 

Liu et al. [24] introduced an intelligent IDS method 

for Wireless Sensor Networks (WSNs). Their approach 

uses machine learning's k-NN algorithm and 

evolutionary computation's AOA [26]. This integration 

creates a WSN DoS detection edge intelligence 

architecture. To increase model accuracy, use a parallel 

technique for inter-population communication and the 

Lévy flight strategy for optimization modifications. In 

the benchmark function test, the PL-AOA algorithm 

improves the kNN classifier. Borgiani et al. [25] 

introduced the DConCReCT, a distributed variant of the 

ConCReCT mechanism. The goal was to exhibit the 

practicality of implementing the DConCReCT in time-

constrained critical situations and extensive IoT-driven 

WSNs. Empirical investigations demonstrate that 
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utilizing a decentralized approach leads to a re-duction 

in detection and mitigation time when compared to the 

centralized approach. 

Additionally, the proposed mechanism demonstrates 

the capability to function effectively in networks of up 

to 500 nodes, even when resources are limited. In 

addition, deploying D-ConCReCT allows for identifying 

and reducing multi-target assaults by allocating these 

tasks to various nodes. Using the ConCreCT in large-

scale WSNs with limited resources like memory, 

computing power, and battery life is not entirely shown 

by the aforementioned research, which is especially 

problematic in time-sensitive and essential scenarios 

[27]. Table 2 shows the reference study of various 

methods advantages and research gaps. 

 

Table 2. Reference study of various methods advantages and research gaps 

References Methods Attacks type Advantages Research gap 

Gowdhaman et al. 

[36] 

Deep recurrent 

neural network 

and SVM 

Probing attack and 

DoS attack 

Data transmission 

with low latency. 

Low accuracy and 

used one dataset. 

Almomani et al. 

[37] 

SHO with LSTM 

model 

Various attacks 

such as malicious 

node 

Integration of 

metaheuristic 

algorithm. 

Lack of specific 

measurable 

results. 

Naser et al. [38] 
Classification 

methods using ML 

Cyber attacks Scalability of the 

network improved. 

Impact of network 

topology is not 

analysed. 

Maheswari et al. 

[39] 

Hybrid deep 

learning model 

Jamming and DoS 

attacks 

Reduce the 

jamming flooding 

Overhead the 

information and 

low accuracy. 

Gankotiya et al. 

[40] 

Hybrid DAD DoS attack and 

malicious node 

Detection of 

duplicate address. 

Overhead the wait 

time. 

Premkumar et al. 

[41] 

Deep radial basis 

network 

DoS attack and 

probing  

Work better with 

changing 

topologies. 

Increased lag time 

for first 

connections 

3 Materials and methods 

This section develops a deep learning-based DDoS 

attack detection system for Wireless Mesh Networks. To 

train and evaluate the proposed model, the dataset 

contains typical traffic patterns and numerous simulated 

DDoS assaults. It details the DCNN-DDoS architecture 

and algorithm through data collection and 

preprocessing, feature selecting, data cleaning, memory 

optimization, and feature grading. 

 

3.1 Data collection and preprocessing 

The CICDDoS2019 dataset is used in research on 

deep CNN based identification and alleviation of DDoS 

assaults. The dataset consists of regular and malicious 

traffic examples, covering ten different categories of 

assaults. Each dataset contains the precise name of the 

assault, the number of samples that indicate the attack's 

magnitude, and the corresponding characteristics. The 

efficacy of a learning mechanism relies on the pre-

processing of data conducted [29]. The study used the 

following dataset preparation procedures to develop 

a DCNN-DDoS model.  

Feature selection is discovering a given dataset's 

most relevant and informative characteristics. The 

method aims to enhance performance, and selecting 

features is a critical data preprocessing technique that 

plays a vital role in lowering the number of features and 

improving performance [30]. The investigation included 

all aspects except Flow Id, Timestamp, Similar HTTP, 

Destination IP, and Source IP. The decision to introduce 

exclusions was driven by either inherent shortcomings 

in the informative content of the features or the 

deliberate creation of these attributes within a simulated 

environment [31]. During program execution, memory 

optimization is used to deallocate or free up memory. 

When working with massive datasets, it is not 

uncommon to get an out-of-memory issue when 

developing a model. To make sure the model can 

manage the dataset effectively with the resources it has, 

memory optimization is an essential technique. Data 

cleaning is a crucial operation in data processing, aiming 
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to eliminate occurrences of infinity, NAN, and null 

values from the dataset. The values are substituted with 

constant numerical values. Data preparation involves a 

critical step called feature scaling. The Standard Scaler 

is generally acknowledged as the predominant method 

for feature scaling. The DCNN-DDoS model 

incorporates the use of the Standard Scaler. 

The CICDDoS2019 dataset is significant for training 

purposes; 60% of the data from the training dataset is 

randomly selected. Conversely, the entire testing dataset 

is utilized without any reduction. The datasets above are 

utilized for classification. This research collects a 

representative dataset of network traffic in wireless mesh 

networks. The dataset should include normal network 

traffic and instances of DDoS attacks. The data 

collection can be performed in a controlled testbed or by 

capturing real-world network traffic data, i.e., 

represented in Table 3. Ensuring the dataset covers 

various network conditions and attack scenarios is 

essential. 

 

Table 3. The CICDDoS2019 dataset details 

Sl. 

No. 

Sample 

size 

Name of the various 

attacks file 

Features 

1 987,128 DrDoS_NTP 64 

2 2,524,422 DrDoS_MSSQL 64 

3 4,062,418 DrDoS_DNS 64 

4 16,107,739 TFTP 64 

5 2,636,051 DrDoS_UDP 64 

6 270,602 UDP-Lag 64 

7 1,011,573 DrDoS_LDAP 64 

8 1,377,682 Syn 64 

9 3,124,986 DrDoS_NetBIOS 64 

10 4,761,372 DrDoS_SNMP 64 

 

Once the dataset is collected, preprocessing steps are 

applied to prepare the data for training the deep CNN 

model. It involves cleaning the data, removing irrelevant 

features, and normalizing the input to a suitable range. 

 

3.2 The proposed DCNN method 

The Deep Convolutional Neural Network (DCNN) 

method used convolutional layers skill to detect 

potential features in data which makes it best suitable for 

difficult tasks as DDoS detection. In the literature, 

DCNN is designed to process network traffic data from 

various OSI model layers in the context of Wireless 

Mesh Networks (WMNs) learning intricate correlations 

among diverse behaviors to identify possible DDoS 

attack patterns. The CNN architecture, exploiting its 

deep structure, learns a hierarchal set of features, from 

the core statistical properties related to network traffic 

toward more abstract and high-level ones that can 

represent attack aspects. This staged learning approach 

allows the model to highly effectively separate legit 

traffic from attack traffic. 

The input layer of the DCNN architecture: This is the 

initial step in the entire structure which receives raw 

network traffic data as input. The data from the various 

layers of WMN like, MAC layer, are preprocessed in to 

an appropriate format usually as a multi-dimensional 

matrix. Each input vector may correspond to various 

traffic characteristics such as the packet duration, arrival 

time, and some protocol-specific features. The cross-

layer one enhances the input data, which offers a variety 

of information to reveal patterns in CNN through the 

optimized process to detect DDoS attacks. Such multi-

layered input is crucial in order to allow CNN be able to 

learn relationships of higher layers throughout the 

network. 

DCNNs are built upon a network where the heart of 

it lies within its convolutional layers, that is, each layer 

learns to detect local patterns in the input data. A stack 

of convolutional layers each process the image with a set 

of filters that slide across traffic volumes, disrupted 

packet rates or high latency suggesting an intrusion. At 

the beginning layers, these filters capture low-level 

patterns like packet anomalies, while in deeper layers 

learn abstract features such as complex attack behaviors 

that spread between different network layers. Upon 

performing convolution to an input, the output is passed 

through an exponential linear activation function which 

introduces non-linearity and aids the model in sifting 

negative from attack traffic. An input to the 

convolutional layer is signified as 𝑄 and can be 

represented by 

 

𝑇 = {𝑇1, 𝑇2, . . . 𝑇𝑏 , . . . , 𝑇𝑘}         (1) 

The total number of convolutional layers is denoted 

by 𝑘 in this case. Equ. (2) shows that the convolutional 

layers take an input into account before producing an 

output, and that unit (𝐿, 𝑀)  also generates an output.  

𝐺𝑖   𝐿,𝑀
𝑗

= 𝑈𝑖   𝐿,𝑀
𝑗

+

∑  
𝐾1

𝑤−1

𝑤=1 ∑  
𝐿1

ℎ

𝑞=−𝐾1
ℎ ∑  𝐸𝑖 ,𝑤

ℎ ∗  𝐺𝑤   𝐿+𝑞,𝑀+𝑡
ℎ−1

𝐾2
ℎ

𝑡=−𝐾2
ℎ

           (2) 

 

Here, * represents the convolutional operator. 𝐺𝑖   𝐿,𝑀
𝑗

 

refers to the fixed feature map from the 𝐺𝑡ℎ layer, 

centered at coordinates 𝐿 and 𝑀. Consider that the CNN 

optimizes the weights of convolutional layers 𝐸𝑖 ,𝑤
ℎ  and 
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bias 𝑈𝑖   𝐿,𝑀
𝑗

. DCNNs are built upon a network where the 

heart of it lies within its convolutional layers, that is, 

each layer learns to detect local patterns in the input data. 

A stack of convolutional layers each process the image 

with a set of filters that slide across traffic volumes, 

disrupted packet rates or high latency suggesting an 

intrusion. At the beginning layers, these filters capture 

low-level patterns like packet anomalies, while in deeper 

layers learn abstract features such as complex attack 

behaviors that spread between different network layers. 

Upon performing convolution to an input, the output is 

passed through a exponential linear activation function 

which introduces non-linearity and aids the model in 

sifting negative from attack traffic. The expression for 

the 𝑖𝑡ℎ non-linear layer with feature maps is 

 

𝐺𝑖
𝑗

= 𝑓𝑢𝑛(𝐺𝑤
𝑗−1

)           (3) 

 

Then, to decrease the number of parameters for 

computation and make the model invariant to small 

changes in input data, The pooling layers are added 

following convolutional layers. Pooling: Pooling is a 

down-sampling operation that reduces the size of the 

feature map while retaining its important features; by 

taking in our input image, applying filters to get feature 

maps and then applying pooling on those feature maps 

we extract useful information from these images called 

Max-pooling. commonly used techniques such as max-

pooling which simply extracts only dominant features 

i.e. it takes the maximum value that covers some patch 

of your picture therefore reduces spatial resolution. The 

pooling layers do help summarize the important 

characteristics of our network which allows us to store it 

memory wise and thus improve generalization with 

unseen traffic data, as opposed to benchmark data. The 

output of a wholly linked layer is expressed as 

 

𝐻𝑛   
𝑗

= 𝐽(𝐺𝑖 
𝑗
) +  𝐺𝑖   𝐿,𝑀

𝑗
       (4) 

 

In this case, 𝐻𝑛   
𝑗

 is the expected result, and 𝐸𝑖 ,𝑤
ℎ  is the 

relationship between the 𝑗𝑡ℎ component in layer 𝑖 and a 

unit in the 𝑤𝑡ℎ characteristic vector of layer (𝑖 − 1). 

Figure1 illustrates the structure of Deep Convolutional 

Neural Networks. 

 

Fig. 1. Architecture of deep CNN 

3.3 Training and evaluation 

This training of DCNN involves tweaking the 

parameters of that model such as to minimise the error 

while predicting DDoS attacks. The model is trained on 

labeled network traffic data, including normal and attack 

samples. This loss is regularized using a specific loss 

function to establish the dissimilarity between the 

predicted output or target output and then may specify 

an optimization methodology like, Adam. For this to 

happen during training, we use techniques like dropout 

and batch normalization to prevent overfitting as 

showing below so the model generalizes well on unseen 

data. The stability of the model processing in real-time 

traffic in a wireless mesh network can be maintained 

using these techniques. 

The resulting feature map, denoted as 𝑓𝑐𝑜𝑛𝑣1, 

comprises thirty-two filters. This 𝑓𝑐𝑜𝑛𝑣1 feature map is 

then used as the new input shape, specifically (𝑓𝑐𝑜𝑛𝑣1, 

32), for the initial max-pooling layer. The max-pooling 

layer performs downsampling using a kernel =2 and 

stride = 2, resulting in 32 feature maps 𝑓𝑚𝑎𝑥1 of size. 

This calculation is carried out as follows: 

𝑓𝑚𝑎𝑥1 =
(𝑓𝑐𝑜𝑛𝑣1 − 𝐾𝑠𝑖𝑧𝑒 + 2 ∗ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔)

𝑠𝑡𝑟𝑖𝑑𝑒
⁄ + 𝑏0      (5) 

The second convolution layer applies convolution to 

the input feature map 𝑓𝑚𝑎𝑥1, using sixty-four filters of 

kernel size 5. The resulting output is a feature map of 

size 𝑓𝑐𝑜𝑛𝑣2, consisting of sixty-four features. The 

subsequent max-pooling layer iteratively applies the 

method with a tweaked input shape (𝑓𝑐𝑜𝑛𝑣2, 64). This 

results in producing sixty-four feature maps, each with  

a size of 𝑓𝑚𝑎𝑥2. The input, with a shape of (𝑓𝑚𝑎𝑥2, 64), 

is subjected to two convolutional layers, followed by two 

max-pooling layers. The resultant output is further 

compressed and used as the input for the ultimate layer. 

The ultimate layer in the network architecture is 

a densely linked layer that efficiently categorizes 

various forms of DDoS assaults using the SoftMax 

process. The SoftMax process is expressed mathe-

matically as follows: 
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𝛿(𝑥) = 𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝐾
𝑛=1

⁄                                     (6) 

A sigmoid activation function, defined as in [32], is 

applied to the output of each convolution layer as 

follows 

𝛿(𝑥) = 1
1 + 𝑒−𝑥⁄                                        (7) 

where 𝑥 is the output that is generated as a consequence 

of each layer of convolution, i.e. 

𝑥 = ∑ 𝑇𝑤 ∗ 𝑊𝑘 + 𝑏𝑘                                   (8) 

where 𝑇𝑤 is defined as the input weights, 𝑏𝑘 is the bias 

value of kernel 𝑘, and 𝑊𝑘 is the weight of the kernel 

size k. 

Finally, the Adam optimizer is employed for adaptive 

moment estimation. Because of its improved 

performance and widespread use, we included the Adam 

optimizer [33-34] in the model to optimize. The Adam 

optimizer maintains a weighted average of past 

gradients, 𝑔𝑑𝑡 [35], whose value decays exponentially 

over time. 

𝑦𝑡 = 𝛼1𝑦𝑡−1 + (1 − 𝛼1) ∗ 𝑔𝑑𝑡                     (9) 

𝑚𝑡 = 𝛼2𝑦𝑡−1 + (1 − 𝛼2) ∗ 𝑔𝑑𝑡
2                 (10) 

The initial instant of the gradient is denoted by 𝑦𝑡 and 

the second instant by 𝑚𝑡, and the decay rates are denoted 

by 𝛼1 and 𝛼2. 

 

 

Fig. 2. Proposed method architecture  

of DCNN-DDoS 

 

After each convolution layer, the inputs to the next 

layer are weighted using a non-linear activation function 

called the sigmoid. To further categorize the different 

DDoS assaults, SoftMax is employed as an alternative 

activation function. Figure 2 depicts the suggested archi-

tecture for the DCNN-DDoS. 

The proposed model is a DCNN that utilizes the 

sigmoid activation function for each unit. The section 

additionally presented the pseudocode employed for the 

suggested DCNN-DDoS method. DDoS assaults are 

detected and classified using Algorithm 1. 

 

Algorithm - 1. DCNN-DDoS Algorithm. 

Input: Encoded data 𝑇 = {𝑇1, 𝑇2, . . . 𝑇𝑏 , . . . , 𝑇𝑘}  

Output: DDoS detection and classification 

1. Begin 

2.    While round <= Imax do    

3.    Creation of trained data set. 

4.     A deep convolutional NN is created. 

5.     Weight initialization Wi.               

6.        For i belongs to mi do      

7.             Calculate the 𝐻𝑛   
𝑗

 by equ. (4) 

8.      Update the hidden layer values. 

9.      DoS attack is identified. 

10.    End While 

11.     Initialize sequential model 

12.     For i belong to 𝐼𝑚𝑎𝑥 do      

13.           Calculate convolution with filters f and kernel 

size k using equation 2. 

14.           Maximal pooling layer activation function 

extraction using equation 6. 

15.           Update the resultant output 

16.           Categorize DDoS attacks using a fully 

connected Dense layer and activation = 'SoftMax' 

17.           Create the model with optimizer = ‘adam’ 

18.           Optimize the model on the training data. 

19.     End for 

20.            Predictive model evaluation and testing 

21.            Classify the output 

22. End 

 

By following the DCNN-DDoS method, the 

objective is to develop a deep CNN model that 

effectively detects DDoS attacks in wireless mesh 

networks. The subsequent sections of the research paper 

will provide details on the experimental setup, results, 

and analysis, further validating the proposed approach. 
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3.4 Computational complexity 

The computational complexity of the suggested 

DCNN-DDoS model is 𝑂(𝑛 ∗ 𝑚 ∗ 𝑘) where 𝑛 repre-

sents network layers, 𝑚 refers to feature maps size and 

𝑘 indicates filters number which proves that its 

scalability for big datasets such as CICDDoS2019. In 

comparison, the older techniques (e.g. SVM-DoS) are 

affected with a quadratic complexity 𝑂(𝑁2) for larger 

datasets resulting longer training time. The perfor-

mances of advanced models e.g., FSO-LSTM and 

AIDS-HML are similar to DCNN-DDoS, although these 

models are more complex with a lack of cross-layer 

feature integration. Thus, the performance drops in mesh 

networks with time-varying scenarios (in dynamic 

network environments).   

 

4 Experiment setup and result analysis 

The simulations for the proposed work were con-

ducted using MATLAB, and the results were obtained 

for multiple performance metrics. The simulation 

analysis incorporates a comprehensive set of parameters, 

as outlined in Table 4. The simulation we performed had 

1000 mesh nodes spread throughout 200 m × 200 m. 

Table 2 summarizes the consistency of mesh nodes and 

DCNN-DDoS parameters and offers accurate normative 

values for the sample size. The efficacy of the DCNN-

DDoS technique has been validated through its 

application in a security model designed for detecting 

intrusions and providing solutions for secure routing in 

the context of DoS attacks. The present study examines 

the outcomes of the suggested approach compared to the 

pre-existing solutions, considering different quantities of 

malevolent nodes and mesh clients. The configuration 

for the velocity of mesh clients falls somewhere in the 

range of 2 to 5 meters per second. The parameters are as 

follows: a learning rate of 0.001, a batch size of 64, the 

activation function, an Adam optimizer and a dropout 

value of 0.3 to avoid overfitting in the proposed DCNN-

DDoS model. The architecture includes a series of 

convolutional and pooling layers designed to extract 

features from the network traffic data, with fully 

connected layers for classification at the top level. It is 

usual practice to classify mesh routers as gateway 

devices because of their ability to ease the routing of 

data. Ten nodes exhibit malicious behavior. The 

assessment of the proposed scheme is conducted about 

end-to-end delay, energy consumption, packet delivery 

ratio, mean packet latency, detection ratio, packet loss 

rate, malicious nodes, and accuracy. 

 

 

 

 

Table 4. Simulation setting for DCNN-DDoS 

Parameters Values 

Area covered 200 m ×200 m 

Mesh nodes 1000 

Malicious nodes 10 

Initial energy E0 0.5 

Essential transceiver 

energy Eel 
50 nJ/bit 

Threshold-distance d0 86 m 

Packets size 4000 bits 

Filter 256 Cov1/2 

Kernel Size 3 

Learning rate 0.001 

Optimizer Adam 

Max pooling 2 

Activation function Sigmoid 

Simulation runs 30 

 

The first stage of parameter selection in which is to 

determine those parameters that are very important by 

affecting algorithm performance. In DCNN-DDoS 

model, the parameters like the learning rate, which 

determines the step is updates weights by measuring loss 

function and a batch size, the number of samples 

processed before updating. The number of layers and 

filters (depth & complexity), type of activation functions 

in hidden layers and dropout rate are also one other vital 

parameter. The Adam optimizers optimize the 

regularization parameter. 

It is therefore essential to know that the parameters 

chosen are optimal. K-fold cross-validation and other 

similar methods allow evaluating the performance of  

a model on different partitions of data. Further, the 

different evaluation metrics of accuracy, precision, 

recall and F1-score, detection ratio gives a clear view of 

performance. The regularization terms, in turn 

equilibrate the complexity of the models with their 

generalization. Last but not the least, validating the 

model on a separate test set ensures that selected 

parameters generalize better than training data. To on the 

best model, a fine-tuning is performed to reach near-

optimal parameters. It consists of reducing the search 

space for certain parameters and tuning them to improve 

performance over multiple iterations. 
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4.1 Performance evaluation 

The proposed DCNN-DDoS is validated using 

industry-standard performance measures. Five criteria 

are used to determine secure routing: end-to-end delay, 

energy consumption, packet delivery ratio, mean packet 

latency, detection ratio, packets lost rate, malicious 

nodes, and accuracy. To measure the DCNN-DDoS 

against D-ConCReCT, SVM-DoS, FSO-LSTM, 

HeltIoT-CNNIDS, and AIDS-HML methods. 

 

4.1.1 Energy consumption 

It has been shown that the DCNN-DDoS method 

expects a decrease in network energy use due to data 

transmission. As predicted, networks' energy 

consumption performance improved with the increase of 

iterations. As shown in Fig. 3, DCNN-DDoS 

outperforms protocols like D-ConCReCT, SVM-DoS, 

FSO-LSTM, HeltIoT-CNNIDS, and AIDS-HML 

because it uses more iterations and improves data 

transmission. Furthermore, DCNN-DDoS uses less 

energy each round than competing protocols in dual-hop 

communication.  

 

 

Fig. 3. Energy consumption comparison  

of DCNN-DDoS with existing methods 

 

4.1.2 Detection ratio  

The detection ratio accurately predicts the proportion 

of DoS attacks detected and assesses the resulting 

permanent environmental damage. The DCNN-DDoS 

method relies heavily on utilizing the DoS attack 

detection ratio to safeguard the environment's security 

effectively. The evaluation of the Denial of Service 

(DoS) attack is illustrated in Fig. 4. The comparison 

demonstrates the DCNN-DDoS method exhibits  

 

a higher detection ratio compared to the existing 

approaches, namely, D-ConCReCT, SVM-DoS,  

FSO-LSTM, HeltIoT-CNNIDS, and AIDS-HML. The 

comparison analysis reveals that the Deep Neural 

Network (DNN) model proposed in this study achieves 

a detection ratio that is 15.67% higher than that of AIDS-

HML, 22.8% higher than that of FSO-LSTM, 38.54% 

higher than that of SVM-DoS, and 78.12% higher than 

that of D-ConCReCT. 

 

 

Fig. 4. Detection ratio comparison of DCNN-DDoS 

with existing method 

 

4.1.3 Mean packet latency   

The lower forms of the mean latency packet are used 

to calculate the average number of hops for the shortest 

path. The efficacy of the suggested technique is 

enhanced by incorporating countermeasures designed to 

mitigate the impact of malicious assaults. Fig. 5 presents 

a visual depiction of the mean packet delay. The current 

system uses the D-ConCReCT method rather than the 

DCNN-DDoS technique, demonstrating a reduced 

packet delay. The proposed deep convolutional neural 

network (DCNN) system would use a hop-to-hop 

methodology for data transmission, with a special focus 

on identifying high-count distance pathways that are 

hypothesized to be possible attack routes. The 

comparison demonstrates that the proposed DCNN-

DDoS exhibits a lower mean packet latency value than 

D-ConCReCT, SVM-DoS, FSO-LSTM, HeltIoT-

CNNIDS, and AIDS-HML. Specifically, the DCNN-

DDoS reduces 52.72% compared to D-ConCReCT, 

42.61% compared to SVM-DoS, and 28.34% compared 

to FSO-LSTM. 
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Fig. 5. Mean packet latency of DCNN-DDoS  

versus existing methods 

 

4.1.4 End-to-end delay 

A delay in processing, queuing, and propagation 

delay has been encountered by the data packet 

transmission time from the sink's source. This delay has 

been passed on to end-to-end locations. The deployment 

of mesh nodes in military settings has been broken down 

via graphical representations of end-to-end latency to 

provide clarity. There will be a delay towards the end of 

the route where communication occurs if the distance 

between hops is significant. If the DCNN-DDoS system 

source were to be targeted for it, the short end-to-end 

latency is shown in Fig. 6 by counting the number of 

hops between each node in the data transmission chain. 

Long hop-to-hop route distances are disqualified as data 

transmission in the context of the DCNN-DDoS system. 

 

 

Fig. 6. End-to-end delay of DCNN-DDoS 

versus existing methods 

 

4.1.5 Packet delivery ratio 

By comparing the total number of data packets sent 

with the total number of data packets received, the 

destination of the data is identified. D-ConCReCT, 

SVM-DoS, FSO-LSTM, HeltIoT-CNNIDS, and AIDS-

HML have all been tested and compared to the proposed 

DCNN-DDoS regarding round count and Packet 

Delivery Ratio. This evaluation is illustrated in Fig. 7. 

The proposed DCNN-DDos has successfully achieved  

a higher packet delivery ratio (PDR) by efficiently 

receiving packets at the destination without 

encountering any failures. After conducting a thorough 

analysis of both methods, it has been determined that the 

proposed DCNN-DDoS exhibits a higher delivery 

packet rate than D-ConCReCT, SVM-DoS, FSO-LSTM, 

HeltIoT-CNNIDS, and AIDS-HML. Specifically, the 

DCNN method demonstrates a 32.56% increase in 

delivery packets compared to ConCReCT, a 19.54% 

increase compared to SVM-DoS, 11.34% increase 

compared to FSO-LSTM, and 10.75% increase 

compared to AIDS-HML. 

 

 

Fig. 7. Packet delivery ratio of DCNN-DDoS  

versus existing methods 

 

4.1.6 Malicious nodes versus packet received 

Figure 8 illustrates the received packet in the 

presence of a variable number of malevolent nodes. The 

results of the DCNN-DDoS investigation demonstrate 

that the network throughput performance has been 

enhanced by 15% in comparison to other established 

techniques such as D-ConCReCT, SVM-DoS, FSO-

LSTM, HeltIoT-CNNIDS, and AIDS-HML. The 

observed enhancement can be attributed to using an 

authentic Deep Maxout Network classifier and Deep 

Auto Encoder. The proposed scheme employs the Deep 
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Maxout Network classifier and Deep Auto Encoder to 

attain resilient authentication and safeguard data 

confidentiality. In this scenario, the possibility of  

a malevolent node successfully intercepting, discarding, 

or modifying the information contained within data 

packets is mitigated. While link estimation between a 

mesh's clients and its router is critical for assuring the 

security and dependability of data transmission, a large 

fraction of the currently available approaches ignore it. 

Both network throughput and routing efficiency will 

suffer as a result of this shortcoming. 

 

 

Fig. 8. Comparison of the packet received  

versus malicious nodes. 

 

4.1.7 Packet loss rate 

Figure 9 depicts the comparative evaluation perfor-

mance of the DCNN-DDoS and existing methods such 

as D-ConCReCT, SVM-DoS, FSO-LSTM, HeltIoT-

CNNIDS, and AIDS-HML concerning varying numbers 

of nodes. The experiment's findings indicate that the 

suggested approach has reduced the rate of lost packets 

by an average of 40% when compared to alternative 

solutions. Selecting trustworthy and secure mesh clients 

for data routing improves packet delivery ratios. In 

contrast, unreliable and insecure data networks may 

lower delivery ratios in other systems. Due to the 

optimization model, the suggested technique reduces 

congestion and distributes mesh client load better in 

situations with bigger nodes. The suggested technique 

determines the lost packet rate factor to assess source-

destination connectivity. This method improves message 

delivery without control messages to rebuild routes. 

Deep CNNs secure network data in the proposed 

approach. This approach may detect abnormal 

authentication activity even with malicious nodes. A 

hostile activity detection system reduces packet loss and 

improves network performance. 

 

Fig. 9. Comparison of the packet received  

versus malicious nodes 

 

We analyse the DCNN-DDoS model using 

evaluation metrics such as F1-score, recall, accuracy, 

and precision. According to the results of the expe-

riments, a two-level binary classification system is 

adequate for classifying intrusions. Once this is done, the 

training process is ended and the model is tested against 

the experimental dataset using specified metrics for 

classification. 

True Positives (𝑻𝑷𝒐𝒔): The number of DDoS assaults 

that have been correctly detected. True Negative 

(𝑻𝑵𝒆𝒈): this statistic pertains to quantifying precisely 

diagnosed negative DDoS attacks that are displayed as 

DDoS attacks. 

False Positives (𝑭𝑷𝒐𝒔):  the term "false positive DDoS 

attack" refers to the number of negative DDoS attacks 

mistakenly classified as positive. False Negative (𝑭𝑵𝒆𝒈) 

refers to positive DDoS attacks that are incorrectly 

classified as negative DDoS attacks. 

Precision (P): Precision measures classifier accuracy. 

The accuracy rate is the number of positive findings 

divided by the total of positive and negative results. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃𝑜𝑠

𝑇𝑃𝑜𝑠+ 𝐹𝑃𝑜𝑠
     (11) 

Recall (R): DDoS attack classifier comprehensiveness 

is assessed using the recall measure. The recall 

calculation involves dividing true positives by the sum 

of true positives and false negatives. 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃𝑜𝑠

𝑇𝑃𝑜𝑠+ 𝐹𝑁𝑒𝑔
     (12) 
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F1-Score: To find statistical significance, the F1-score 

takes a harmonic mean of recall and accuracy. Accuracy 

and memory are averaged out to get the F1 score. The 

range of the variable is 0-1. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃×𝑅

𝑃+𝑅
)     (13) 

Accuracy: Using the difference between the actual 

labels and the projected DDoS assaults is the accuracy 

measure for assessment. The score may go as high as 1 

and as low as 0. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑜𝑠+𝐹𝑁𝑒𝑔

𝑇𝑃𝑜𝑠+𝐹𝑃𝑜𝑠+𝑇𝑁𝑒𝑔+𝐹𝑁𝑒𝑔
    (14) 

Table 5 shows that the proposed model outperformed 

other models in detecting DDoS assaults in terms of 

accuracy, recall, f1-score, and precision compared to  

D-ConCReCT, SVM-DoS, FSO-LSTM, HeltIoT-

CNNIDS, and AIDS-HML. 

 

Table 5. DDoS attacks detection accuracy of proposed method and existing methods 

Techniques Precision Recall F1-Score Accuracy 

ConCReCT 0.9432 0.9615 0.9522 92.71% 

SVM-DoS 0.9721 0.9789 0.9754 96.11% 

FSO-LSTM 0.9795 0.9813 0.9803 96.93% 

HeltIoT-CNNIDS 0.9811 0.9875 0.9842 97.2% 

AIDS-HML 0.9823 0.9879 0.9856 97.34% 

DCNN-DDoS 0.9881 0.9914 0.9892 98.98% 

5 Conclusion 

This study proposed a deep Convolutional Neural 

Network (CNN) model for efficient detection of DDoS 

attacks in wireless mesh networks. The model leveraged 

the spatial correlation of network traffic data to learn 

discriminative features and accurately identify DDoS 

attacks in real-time. The DCNN-DDoS optimization 

method is utilized to train the deep model. The 

developed approach exhibited superior performance 

compared to several pre-existing methods. The proposed 

scheme involves the utilization of mesh nodes to 

enhance network coverage. As a result, the proposed 

DCNN-DDoS model achieves enhanced throughput. 

Upon assessing the security parameters, the optimal 

pathways are selected based on their ability to yield 

superior energy efficiency, extended network longevity, 

reduced packet loss, extended throughput, and reduced 

DoS attacks. The assessment criteria utilized to analyse 

the system's effectiveness encompass the energy 

consumption, end-to-end delay, packet delivery ratio, 

mean packet latency, detection ratio, packets lost rate, 

malicious nodes, and accuracy. According to the 

simulation results, the DCNN-DDoS method demon-

strates a superior detection ratio metric compared to  

D-ConCReCT, SVM-DoS, FSO-LSTM, HeltIoT-

CNNIDS, and AIDS-HML, with improvements of 

78.12%, 38.54%, 22.8%, 16.33%, and 15.67%, respec-

tively. It has been determined that the proposed  

DCNN-DDoS exhibits a higher delivery packet rate than 

D-ConCReCT, SVM-DoS, FSO-LSTM, HeltIoT-

CNNIDS, and AIDS-HML. Specifically, the DCNN 

method demonstrates a 32.56% increase in delivery 

packets compared to ConCReCT, a 19.54% increase 

compared to SVM-DoS, an 11.34% increase compared 

to FSO-LSTM, and a 10.75% increase compared to 

AIDS-HML. The empirical findings have validated that 

the DCNN-DDoS method exhibited superior perfor-

mance compared to existing deep learning models, as 

evidenced by higher precision, f1-score, and recall 

levels. Moreover, it achieved the highest accuracy rate 

of 98.98%. In the future, machine learning-driven 

optimization methods will be incorporated to imbue the 

mesh nodes with intelligence while keeping the node 

level and processing overhead nominal. 
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