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Soft computing and eddy currents to estimate and classify delaminations  

in biomedical device CFRP plates 

 

Mario Versaci1, Filippo Laganà2, Laura Manin3, Giovanni Angiulli4 

 

This paper presents an approach based on eddy currents induced by suitable magnetic induction fields to test, estimate, and 

classify subsurface delaminations in Carbon Fibre Reinforced Polymer (CFRP) plates for biomedical devices. The  

two-dimensional maps obtained, characterised by high fuzziness, required the software development of a procedure based on 

a highly efficient fuzzy classifier that exploits fuzzy similarity computations with reduced computational load by collecting 

similar maps (deriving from equally similar defects) in specific defects. The hardware implementation of what is designed in 

software (plate-probe system) detects and evaluates the entity of the defects due to delaminations by a classification percentage 

comparable with the performances obtained from more sophisticated classifiers, providing a possible tool for evaluating the 

delaminations potentially useful to assess aircraft compliance with applicable safety standards. 

Keywords: CFRP plates for biomedical devices, sub-surface defects, delamination, eddy currents, fuzzy similarity 

computations 

 

1 Introduction 

Nowadays, the biomedical industry pays extreme 

attention to all design phases to ensure the safety of each 

device, combining increasingly lighter weights with 

high tolerances for potential damage [1, 2]. In this 

context, Carbon Fibre Reinforced Polymers (CFRP) are 

important in biomedical design. The biocompatibility 

and strength of carbon fibre have led to uses such as 

orthopaedic implants, limb prosthetics, and MRI 

machines [3]. Moreover, CFRP allows for producing 

precision parts such as bone plates. Since carbon fibre 

appears transparent in X-ray images, it is used in various 

X-ray and imaging devices [4, 5]. Finally, prosthetic 

limbs made of carbon fibre are durable, lightweight, and 

comfortable [6]. However, both during the production 

phase and in the operational phase, these materials suffer 

from defects that can be likened to delaminations (also 

caused by energy absorption due to impacts and possible 

load-unload cycles), resulting in a reduction in electrical 

conductivity that causes the material to heat up [7].  

Delaminations induce anisotropic electrical con-

ductivity in CFRP [8, 9]. Non-destructive testing (NDT) 

techniques, particularly induced currents (ECT), possess 

a versatile procedure to correlate very small variations 

[10]. In fact, the chemical and physical characteristics of 

conductors, during the process of measuring magnetic 

field strength, detect potential defects, producing 

unreliable results [11]. Given the functionality of 

biomedical devices, it is important to conduct evaluation 

tests before implanting a prosthesis or device within the 

human body [12]. The procedure, which is quite 

particular and delicate, therefore requires the mainte-

nance of non-implantable biomedical devices on humans 

and, at the same time, the training of personnel capable 

of using software tools that can meet these needs [13]. 

So, in this paper, preliminarily, we will characterise the 

defects. In this article, we will preliminarily characterise 

the defects detected by the Galerkin-FEM approach [14] 

in the anisotropic regime, evaluating their proximity to 

the characteristics extracted from direct measurements 

[15, 16].  

Furthermore, we will propose and test an innovative 

approach for the classification of delaminations by 

leveraging fuzzy similarity calculations, as similar 

defects (both in position and shape) produce equally 

similar 2D EC maps. (in a fuzzy sense). To this end,  

"ad-hoc" fuzzy similarity formulations with low compu-

tational load are used, which in a given functional space 

represent a fuzzy measure. The document is organised as 

follows. Section 2 characterises the anisotropic electrical 

conductivity, σ, of the material based on the fibre 

orientation according to the most recent experimental 

results, overcoming the recently highlighted restrictions. 

Furthermore, a model for high-frequency EC for the 

plate-probe system under investigation is presented, 

discussing its well-bridge. This model, implemented in 

COMSOL® Multiphysics, was solved using a FEM-

Galerkin approach, avoiding any ghost solution. 

Section 3 is dedicated to the numerical/experimental 

reconstruction (in our laboratory, using a special probe) 
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of the 2D EC maps on CFRP plates. Considering that 

similar delaminations produce equally similar EC maps 

[17], classes of simulated maps have been created, each 

of which collects EC maps obtained with the same 

defect. Since the numerical and experimental EC maps 

are influenced by uncertainties and/or inaccuracies, 

Section 4 presents and discusses the proposed defect 

classification procedure based on fuzzy similarity 

calculations, constructing a representative EC map for 

each class, thereby confirming the reliability of the 

FEM-Galerkin approach. Once the one-to-one corre-

spondence between the representative ECs maps of each 

numerical and experimental class has been verified 

(Section 5), the ECs maps with unknown defects are 

compared (in a fuzzy sense through similarity 

calculations) with all the representative ECs maps of 

each class, showing performance comparable to that 

obtained from consolidated procedures but characterised 

by a higher computational load. Finally, some consi-

derations and future perspectives conclude this work. 

 

2 The ECS high frequency model 

2.1 Model implemented 

The geometry modelling of the plate-probe system 

used to evaluate the EC maps experimentally is reported 

in Fig. 1. From a mathematical point of view, it can be 

considered as a bounded domain that we denoted Ω as 

ℝ3. It can be divided into ΩC, which identifies the sample 

to be analysed, and ΩI, which represents the physical 

domain where σ = 0. In what follows, we consider both 

the permittivity, ε, and µ constant. 

 

 

Fig. 1. Geometry of the plate-probe system considered 

in this study 

 

 

 

The relevant equations for the problem at hand read 

as (the time-harmonic convention 𝑒𝑗⍵𝑡 is adopted and 

suppressed) 

 

{
∇ × 𝐻 = 𝜎(𝐸 + 𝑣 × 𝜇𝐻) + 𝐽𝑒 + 𝑗𝜔�̇�𝐸

∇ × 𝐸 = −𝐽𝜔𝜇𝐻
 𝑖𝑛 Ω (1) 

 

where σ is the conductivity, ⍵ is the angular pulsation, 

and v is the instantaneous velocity descending from the 

Lorentz force [16]. In the high frequency regime, using 

suitable vector and scalar potentials (𝐴′, 𝜙′), we have 

that the electric and the magnetic fields (E, H) in Ω can 

be written as 𝜇𝐻 = ∇ × 𝐴′ and 𝐸 = −𝑗𝜔𝐴′ − ∇𝜙′. 

Putting the above expressions into the first of the 

relations (1), the following equations can be written 

 

∇ × (𝜇−1∇ × 𝐴′) + (𝑗𝜔𝜎 − 𝜔2𝜀)𝐴′ + (𝜎 + 𝑗𝜔𝜀)∇𝜙′

− 𝜎𝑣 × (∇ × 𝐴′) = 𝐽𝑒 
(2) 

 

Supposing that ∇ ∙ 𝐽𝑒 = 0, from (2) descends 

 

∇ ∙ [∇ × (𝜇−1∇ × 𝐴′)] + (𝑗𝜔𝜎 − 𝜔2𝜀)𝐴′

+ (𝜎 + 𝑗𝜔𝜀)∇𝜙′ − 𝜎𝑣 × (∇ × 𝐴′)
= 0 

(3) 

 

If Ω is considered as a cavity realized with a perfect 

magnetic conductor (PMC), and n is the unit outward 

normal vector on its boundary, 𝜕𝛺, we have 

 
𝐴′ × 𝑛 = 0  and  𝜙′ = 0  on  𝜕𝛺 (4) 

 

Equations (2 and 3) with the boundary conditions 

given in Eqn. (4) define the numerical model adopted in 

this study. We highlight that Eqn. (3) [16], admits  

a unique solution allowing to obtain numerical solutions 

which, potentially, are not afflicted by the problem of the 

spurious solutions [16]. 

 

2.2 Meshing criteria for the FEM approach and 

COMSOL® Multiphysics implementation 

The geometry of the plate-probe system can be 

considered as sufficiently regular so that meshes of 

tetrahedral elements allow to obtain flow lines parallel 

to the edges [18]. The space occupied by the system, 

𝑉 ⊂ ℝ3, can be covered by a number of mesh elements, 

𝑇𝑘, such that 𝑉 =∪𝑘=1
𝑁𝑇 𝑇𝑘 with 𝑁𝑇 =  |ℸ| and ℸ = {𝑇𝑘}. 
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Fig. 2. The probe 

 

 

Fig. 3. The probe section. Coil: external diameter 

7 mm, internal diameter 5 mm, height 3 mm, number 

of turns 22. E-shaped core: C=5 mm, E=9 mm, 

A=12 mm, B=6 mm, D=3.8 mm, D’=1.7 mm, 

H=3 mm. 

 

Furthermore, 𝑇𝑘 ∩ 𝑇𝑘′ = 0, with 𝑘 ≠ 𝑘′, where the 

size of ℸ, h, is given by 𝑚𝑎𝑥𝑇𝑘∈ℸ {𝑠𝑢𝑝𝑥,𝑦∈𝑇𝑘
‖𝑥 − 𝑦‖}. 

The feasibleness of ℸ is based on the fact that 𝑇𝑘 ∪ 𝑇𝑘′ 

is either empty or represents a node or an edge. Some 

specific indexes can be considered to evaluate the 

quality of the mesh [19]. In this work, we have 

considered the skewness index, which evaluates the 

distance of a cell from an equilateral/equiangular one, 

checking that all cells are reasonably close to cells of 

ideal shape. Based on the above criteria, the high-

frequency ECs model described in subsection 2.1 has 

been implemented in COMSOL® Multiphysics, together 

with the model of the coaxial probe employed to carry 

out the measurement campaign, see Figs. 2 and 3.  

To simulate the CFRP plates, they have been 

modelled as made up of three congruent and overlapping 

parallelepipeds, but with an orientation such to 

guarantee maximum mechanical resistance, ensuring 

good simulation of the manufacturing techniques of 

CFRP elements employed in the biomedical devices 

industry [20-23]. Cylindrical sub-surface defects caused 

by delamination (typical defects that can occur in CFRP 

biomedical elements) have also been simulated with a 

radius starting from 0.1 mm. The choice to also simulate 

sub-surface defects is also dictated by the diversification 

of the research approach with respect to other scientific 

works. Some studies, in fact, have delved into the subject 

of CFRP composites, emphasising FEM modelling 

techniques to simulate defects such as delaminations and 

to analyse their effects on mechanical and thermal 

properties. These studies [24, 25] explore generic FEM 

techniques for a wide range of applications, while the 

proposed paper focuses on the simulation of 

electromagnetic properties and the use of fuzzy models 

for classification. Other studies [26-28] use the 

application of the finite volume method for thermo-

mechanical analysis of porous systems, highlighting 

structural defects in composite materials. The proposed 

study goes beyond this approach, implementing 

simulation techniques specific to the electromagnetic 

properties of CFRPs and integrating fuzzy classification 

for more accurate identification. Finally, the approach is 

distinguished by three-dimensional defect modelling 

and optimisation of the mechanical orientation of 

parallelepipeds for realistic simulation. 

 

 

Fig. 4. |𝐵| map obtained by COMSOL® Multiphysics 

from a CFRP plate with defect radius R = 0.5 mm. 

 

3 The ECS maps 

In the simulation phase, each plate characterized by  

a circular defect in the subsurface, as described above, 

was studied using a FEM-Galerkin approach with 

a mesh [29-31], whose quality was verified by 

quantifying the skewness index, made up of 19034 

volume elements with 14215 surface elements for a total 

of 16985 nodes. At the excitation frequency fexc = 1 MHz 

with excitation current Iexc = 100 mA, an adequate num-

ber of ECs maps were obtained (in particular of |B|), 

grouped in a single class identifying the given defect. 
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In addition, a complementary class of maps obtained 

from defect-free plates (labelled as ND) was created. 

Figure 4 shows a map of |B| obtained on a plate with  

a defect radius of 0.5 mm, which highlights the content 

in fuzziness so that each map can be considered as  

a particular fuzzy set that becomes a point in an 

appropriate functional space: the distance between two 

fuzzy sets quantifies the distance between points. 

Observing that the same defect produces, in a fuzzy 

sense, maps that are similar to each other, we converge 

these maps to a single map representing the class to 

which they belong: then, a map with an unknown defect 

(which is a point in a functional space) is associated, by 

calculating FSs, to a particular class of defects (or to the 

class of maps in the absence of defects) through 

distances between points. In this work, 11 map classes 

were constructed, 10 of which with defects (starting 

from R=0.1 mm up to R=1 mm with equally spaced 

pitch) and one without defects for a total of 200 maps for 

each class. Finally, a test database of 200 maps with 

unknown defects has been created. Biomedical 

companies can use the entire database in place of 

experimental databases once the similarity with the maps 

obtained from the measurement campaign has been 

verified [32, 33]. Similar studies on the use of experi-

mental databases have addressed the development of a 

network of chemical sensors for gas detection  

[34-36]. Other studies have dealt with gut-brain axis 

signalling to maintain the health and homeostasis of the 

central nervous system (CNS) and gut environment [37]. 

Studies conducted within the industrial sector [38], 

and particularly in the medical field [39], have con-

centrated on the development of essential parameter 

alarm systems designed to assist medical personnel, as 

exemplified by their application in non-invasive 

ventilators (NIVs) [40, 41]. 

Subsequently, a probe was developed in our labora-

tory and integrated into a handling system designed for 

scanning plates. This setup facilitated the creation of an 

experimental measurement database that mirrors the 

structure of the numerically obtained dataset. 

 

4 Classifying delaminations by using fuzzy 

similarity  

4.1 Adaptive approach to fuzzification of ECs maps  

Once the fuzziness of each map has been quantified 

using specific indexes [16], we can proceed with the 

image fuzzification. With EC, we indicate the generic 

𝑀 × 𝑁 ECs map: each pixel (i, j) EC has a blue level aij. 

Let 𝑚𝐸𝐶(𝑎𝑖𝑗): 𝐄𝐂 → [0,1] be the fuzzy membership 

function (FMF) that formalizes how fuzzy aij is in EC: 

if 𝑚EC(𝑎𝑖𝑗) = 1, totally 𝑎𝑖𝑗 ∈ 𝐄𝐂; if 𝑚𝐄𝐂 (𝑎𝑖𝑗) = 0, 

 

 

then aij does not belong to EC, finally, if 𝑚𝐄𝐂 (𝑎𝑖𝑗) ∈

(0,1), then 𝑎𝑖𝑗 ∈ 𝐄𝐂 partially. Then, denoted by F(EC), 

the fuzzy version of EC, if �̅�𝑖𝑗 is the blue level of EC, 

the adaptive FMF we use to obtain F(EC) is [16]: 

 

𝑚EC
′ (�̅�𝑖𝑗) = √(1 + 2(𝑚𝑎𝑥(�̅�𝑖𝑗) − �̅�𝑖𝑗)) (5) 

 

Such that 𝑚EC
′ (�̅�𝑖𝑗) → 1 as �̅�𝑖𝑗 → max(�̅�𝑖𝑗) 

(maximum brightness guaranteed). Furthermore, after 

some calculations, 𝑚EC
′ (�̅�𝑖𝑗) is obtainable; in fact, if 0 ≤

𝑚EC
′ (�̅�𝑖𝑗) ≤ 0.5, we obtain 

 

𝑚𝐄𝐂(�̅�𝑖𝑗) = 2 (𝑚EC
′ (�̅�𝑖𝑗))

2

 (6) 

 

otherwise, if 0.5 ≤ 𝑚EC
′ (�̅�𝑖𝑗) ≤ 1,we have 

 

𝑚𝐄𝐂(�̅�𝑖𝑗) = 1 − 2 (1 − 𝑚EC
′ (�̅�𝑖𝑗))

2

 (7) 

and 𝑎𝑖𝑗 is computable is: 

𝑎𝑖𝑗 = 𝑚𝑎𝑥(𝑎𝑖𝑗) − 2 {(𝑚𝐄𝐂(𝑎𝑖𝑗))
2

− 1} (8) 

Then, if F(EC), F(ECx) and F(ECy) are two maps, 

where 𝑚𝐄𝐂𝑥
(𝑎𝑖𝑗)and 𝑚𝐄𝐂𝑦

(𝑏𝑖𝑗)indicate the respective 

pixels, F(ECx) and F(ECy) are two fuzzy sets. The fuzzy 

similarity, 𝐹𝑆(∙), is defined as: 𝐹𝑆: 𝐹(𝐄𝐂𝑥) ×

𝐹(𝐄𝐂𝑦) → [0,1] which is reflexive, symmetric and 

transitive. Reflexivity is guaranteed if ∀𝐹(𝐄𝐂𝑥) ∈ 𝑈: 

 

𝐹𝑆(𝐹(𝐸𝐶𝑥), 𝐹(𝐸𝐶𝑥)) = 𝑠𝑢𝑝𝐹𝑆 (𝐹(𝐸𝐶𝑦), 𝐹(𝐸𝐶𝑦))

= 1 
(9) 

 

with 𝐹𝑆(𝐹(𝐸𝐶𝑥), 𝐹(𝐸𝐶𝑥)) ∈ 𝑈. Concerning both 

symmetry and transitivity, it need that 

 

𝐹𝑆 (𝐹(𝐄𝐂𝑥), 𝐹(𝐄𝐂𝑦)) = 𝐹𝑆 (𝐹(𝐄𝐂𝑦), 𝐹(𝐄𝐂𝑥)) (10) 

 

and 

 

𝑚𝐄𝐂𝑥
(𝑎𝑖𝑗) ≤ 𝑚𝐄𝐂𝑦

(𝑏𝑖𝑗) ≤ 𝑚𝐄𝐂𝑧
(𝑐𝑖𝑗) (11) 

 

where 𝑎𝑖𝑗, 𝑏𝑖𝑗, and 𝑐𝑖𝑗 are the blue levels for 𝐸𝐶𝑥, 𝐸𝐶𝑦, 

and 𝐸𝐶𝑧, respectively. Thus, it follows that 

 

𝐹𝑆 (𝐹(𝐄𝐂𝑥), 𝐹(𝐄𝐂𝑦)) ≥ 𝐹𝑆(𝐹(𝐄𝐂𝑥), 𝐹(𝐄𝐂𝑧)) (12) 

 

and 

 

𝐹𝑆 (𝐹(𝐄𝐂𝑦), 𝐹(𝐄𝐂𝑧)) ≥ 𝐹𝑆(𝐹(𝐄𝐂𝑥), 𝐹(𝐄𝐂𝑧)) (13) 
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In this work, the formulations used as fuzzy 

similarities, in compliance with the required properties, 

are 

 

𝐹𝑆1 =
1

𝑛
∑ ∑

𝑚𝑖𝑛 (𝑚𝐄𝐂𝑥
(𝑎𝑖𝑗) − 𝑚𝐄𝐂𝑦

(𝑎𝑖𝑗))

𝑚𝑎𝑥 (𝑚𝐄𝐂𝑥
(𝑎𝑖𝑗) − 𝑚𝐄𝐂𝑦

(𝑎𝑖𝑗))

𝑛

𝑗=1

𝑛

𝑖=1

 ; (14) 

 

𝐹𝑆2 =
1 − ∑ ∑ ‖𝑚𝐄𝐂𝑥

(𝑎𝑖𝑗) − 𝑚𝐄𝐂𝑦
(𝑎𝑖𝑗)‖𝑛

𝑗=1
𝑛
𝑖=1

𝑛
 ; (15) 

 

𝐹𝑆3 = 1 − ∑ ∑
‖𝑚𝐄𝐂𝑥

(𝑎𝑖𝑗) − 𝑚𝐄𝐂𝑦
(𝑎𝑖𝑗)‖

𝑚𝐄𝐂𝑥
(𝑎𝑖𝑗) − 𝑚𝐄𝐂𝑦

(𝑎𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 ; (16) 

 

𝐹𝑆4 =
1

1 + ∑ ∑ ‖𝑚𝐄𝐂𝑥
(𝑎𝑖𝑗) − 𝑚𝐄𝐂𝑦

(𝑎𝑖𝑗)‖𝑛
𝑗=1

𝑛
𝑖=1

 ; (17) 

 

where n is the number of pixels in each map. 

 

4.2 Extent of delamination and classes of ECs maps 

To each of the �̃� defects, we associate the map F(Ik) 

of the 𝜁𝑡ℎ class, where ζ = 1, … . , A. With F (Iunknown) and 

F (IWithout Load) we indicate the maps relative to an 

unknown defect or no defect, respectively. Then, 

∀𝜁 = 1, … , �̃�, the following four scalar quantities are 

computed (j=1, …, 4): 

 

𝑄𝑗 = {𝐹𝑆𝑗(𝐹(𝐈𝑢𝑛𝑘𝑛𝑜𝑤𝑛), 𝐹(𝐈1)), … ,  

𝐹𝑆𝑗(𝐹(𝐈𝑢𝑛𝑘𝑛𝑜𝑤𝑛), 𝐹(𝐈𝑛)), 𝐹𝑆𝑗(𝐹(𝐈𝑢𝑛𝑘𝑛𝑜𝑤𝑛), 𝐹𝐈𝐴) 

𝐹𝑆𝑗(𝐹(𝐈𝑢𝑛𝑘𝑛𝑜𝑤𝑛), 𝐹(𝐈𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝐿𝑜𝑎𝑑))}. (18) 

 

The calculation of scalar quantities for each defect 

class serves as a basis for quantifying the similarities and 

deviations between known and unknown defect patterns. 

Finally, we compute 

 

𝑚𝑎𝑥{𝑚𝑎𝑥{𝑄1}, 𝑚𝑎𝑥{𝑄2}, 𝑚𝑎𝑥{𝑄3}, 𝑚𝑎𝑥{𝑄4} }, (19) 

 

which specifies the association of an unknown defect to 

a specific class. A given F(Ik) is obtained by a suitable 

fuzzy imaging fusion procedure starting from maps 

belonging to the generic class 𝛇. If 𝐹(𝐈𝑘
𝑧1) and 𝐹(𝐈𝑘

𝑧1) are 

two such maps, they are divided into H non-overlapping 

sub-images, 𝐹(𝐈𝑘
𝑧1) ℎ1

and 𝐹(𝐈𝑘
𝑧2) ℎ2

, such that h1, 

h2ℎ1, ℎ2 ∈ 𝑇 = {1, … , 𝐻} to compute 

 

𝐹𝑆𝑠 (𝐹(𝐈𝑘
𝑧1)

1
, 𝐹(𝐈𝑘

𝑧2)
1

) to obtain 𝐹(𝐼𝑘
𝑧1̅̅ ̅

) and 𝐹(𝐼𝑡𝑒𝑥𝑡𝑘
𝑧2̅̅ ̅

)
1
 

so that 

 

𝑚𝑎𝑥 {𝐹𝑆𝑠(𝐹𝐈𝑘
𝑧1̅̅ ̅

)
1

, 𝐹(𝐹𝐼𝑘
𝑧2̅̅ ̅

) 1}, (20) 

 

 

Also, considering that 𝐹(𝐈𝑘)1 is shared in 𝐹(𝐈𝑘)) in 

all sub images 𝐹(𝐼𝑘
𝑧1) 1 and 𝐹(𝐼𝑘

𝑧2) 1, it makes sense to 

write [16]: 

 

(𝐹(𝐼𝑘)1)𝑖,𝑗 =
1

1 +
1

𝑒

0.5(
1

(𝐹(𝐈𝑘
𝑧1)

1
)

𝑖,𝑗
+(𝐹(𝐈𝑘

𝑧2)
1

)
𝑖,𝑗

)

 

, 

(21) 

 

so that ∀𝑖, 𝑗 ∈ 𝐹(𝐈𝑘
𝑧1) can be obtained using 𝐹(𝐈𝑘

𝑧1)
1
 and 

𝐹(𝐈𝑘
𝑧2)

1
which represents a sigmoidal evaluation of the 

arithmetic mean of all the pixels involved. Repeating the 

previous procedure ∀ℎ1,ℎ2 ∈ 𝑇(to obtain F(Ik), fuzzy 

image associated with kth) and then ∀𝑘 = 1, … , �̃�,the 
required images are obtained. 

 

Table 1. Classification performance: Proposed 

approach versus established methods 

Procedure 
CPU 

time 

|B| 

(numerical) 

|B| 

(experimental) 

Proposed 

approach 
0.26 s 99.6% 99.7% 

FIS 

(Mamdani) 
0.31 s 97.9% 98.1% 

FIS 

(Sunego) 
0.34 s 99.8% 99.8% 

Fuzzy 

clastering 
1.25 s 98.7% 99.4% 

SOM 1.02 s 99.5% 99.5% 

 

5 Numerical results 

The approach proposed in this study, implemented on 

an Intel Core 2 1.79 GHz CPU using the MATLAB 

R2022b environment, has provided classification 

performance comparable to that obtained with soft 

computing techniques consolidated in the literature but 

characterized by higher CPU time. In particular, fuzzy 

inference systems of the Mamdani and Sugeno types 

have also been implemented (to automatically extract 

banks of fuzzy rules that can be improved by tuning 

provided by ANFIS approaches). In addition, a super-

vised fuzzy clustering technique has also been 

implemented, starting from a MATLAB Toolbox, where 

the classes are individual output clusters, and each FS 

calculation provides a distance from each cluster.  

A further comparison has also been carried out through 

the use of unsupervised SOM maps, which, through 

competitive processes, involve inputs to the formation of 

ECs maps to operate an automatic classification of the 

ECs maps (whose specific indices have preliminarily 

quantified the respective content in fuzziness [16]). 

After verifying the fuzziness in each ECs map, the 

proposed procedure was used to highlight the 
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correspondence between numerical and experimental 

maps representing each class; the FSs values obtained 

clearly show the correspondence between the classes 

mentioned above without showing specific trends in the 

values obtained. The proposed approach was then used 

to evaluate the classification performance of ECs maps 

with unknown defects (test database), the results of 

which are presented in Tab. 1, which shows that the per-

formance of the proposed approach is fully comparable 

to the aforementioned soft computing techniques known 

in the literature. By way of example, Fig. 5 shows how 

the ECs map in 4 has been correctly classified (i.e., 

belonging to Class 5). 

 

 

Fig. 5. An example of classification using the 

proposed method: The ECs map shown in Fig. 4 

belongs to the class of defects with a radius equal to 

0.5. 

 

The experiments conducted integrate different soft 

computing techniques for the classification of ECs maps. 

The main objective is to classify maps associated with 

faults accurately and comparably with established 

techniques but with a shorter processing time. Therefore, 

after quantifying the fuzziness in each ECs map, the 

proposed procedure demonstrated a good correspond-

dence between the numerical and experimental maps, 

highlighting the ability to correctly classify faults. As 

shown in Fig. 5, the FSs values as a function of class 

(from class 1 to class 10, with one class ND - No Faults), 

demonstrate how the data related to Class 5 appear 

dominant and stable, indicating a clear identification of 

this class with respect to the others. The other classes 

show generally lower FSs values with limited fluc-

tuations, suggesting a less pronounced classification 

than Class 5. The FSs values also show a consistent 

distribution, but no specific upward or downward trend, 

confirming that the method is independent of particular 

patterns of variation. The correct classification of the 

ECs map belonging to class 5 reinforces the validity of 

the method. The accuracy of the classification in the 

presence of unknown defects indicates robustness, while 

the stability of the FSs values for class 5 demonstrates 

the method's ability to detect this specific class with high 

accuracy. The minimal fluctuations between the other 

classes and the absence of specific trends in FSs values 

indicate that the method has no bias towards a particular 

class. 

 

6 Conclusion  

This paper presents a novel fuzzy technique for 

classifying delamination defects in CFRP elements. The 

proposed classifier is based on the principle that similar 

defects produce eddy current maps that are closely 

related. More precisely, the classifier organizes the maps 

into specific defect classes, each representing the maps 

of similar defects. These classes are formed by adapting 

the corresponding eddy current maps through a fuzzy 

image fusion procedure. The numerical eddy current 

maps, obtained through a FEM modelling approach of 

the plate probe system, were then compared with 

experimental maps generated in the laboratory. This 

comparison, performed in a fuzzy manner, revealed a 

one-to-one correspondence, confirming the reliability of 

the numerical procedure as a substitute for costly and 

expertise-intensive experimental methods. The classi-

fication performance of the proposed approach matches 

that of well-established soft computing techniques found 

in the existing literature. Finally, it should be noted that 

the magnetic permeability of the CFRP elements is 

influenced by changes in their morphology induced by 

cyclic loading. Therefore, it is advisable to develop 

analytical models considering this phenomenon and the 

inevitable increase in the blurring content observed in 

the eddy current maps. Accordingly, the classification 

task will require more sophisticated formulations of 

fuzzy similarity to devise an effective real time 

classification protocol for CFRP delamination defects. 
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