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Overview of implementation principles of artificial intelligence methods  

in industrial control systems 

 

Ladislav Körösi, Slavomír Kajan 

 

The proposed article discusses the principles of implementing artificial intelligence (AI) methods in industrial control systems 

focusing on the deployment of neural networks (NNs) within programmable logic controllers (PLCs). Recent advancements in 

AI have led to significant improvements in modeling, control, quality control and predictive maintenance. This progress is 

further supported by the development of newer CPU architectures in PLCs, which offer enhanced processing speeds and 

capabilities. These advanced CPUs facilitate the implementation of more complex AI algorithms enabling systems to perform 

real-time data analysis. By leveraging the power of AI and improved hardware, industries can achieve higher levels of 

automation and better decision-making. 
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1 Introduction 

In recent years, AI has experienced remarkable 

progress across various fields including large language 

models (LLMs), convolutional neural networks (CNNs), 

generative adversarial networks (GANs) and others. 

These technologies are being progressively incorporated 

into sophisticated control and modeling solutions for 

automation, quality assurance, predictive maintenance, 

human machine interactions (HMI) and various other 

applications. 

Neural networks can be deployed directly within 

PLCs or leveraged on more powerful external systems 

such as PCs, industrial PCs and edge devices. These 

devices then act as master systems to process data and 

transmit the results of the processing to the control 

system. The direct implementation of neural networks in 

PLCs poses distinct challenges, primarily stemming 

from the high computational requirements of these 

networks, which can impact their ability to process data 

in real time. The integration of neural networks into 

PLC's CPU offers substantial potential for improving 

functionality and performance across a variety of appli-

cations, despite certain challenges [1-8]. Our earlier 

research showed that although CNNs could be applied 

for gesture recognition directly in PLCs CPU, realizing 

real-time control continued to pose a challenge [4]. 

In parallel, edge devices and other powerful master 

systems enable the processing of complex algorithms, 

allowing the inference in real-time. Numerous studies 

highlight the potential of machine vision-based image 

processing in industrial and health applications, 

including object identification, quality assurance, 

disease detection, human activity and gesture 

recognition [6, 9-13]. For example, advancements in 

machine learning-based neural networks, such as 

multilayer perceptrons (MLPs) and long short-term 

memory networks (LSTMs) continue to be refined for 

real-time control applications [14-16]. 

This paper aims to provide an overview of the 

implementation principles of AI methods in industrial 

control systems, specifically focusing on the signifi-

cance of deploying NNs within PLCs while recognizing 

the role of master systems. By analyzing the properties 

of PLCs we seek to demonstrate how the integration of 

AI can enhance the performance and reliability of 

industrial control systems through efficient processing 

and decision-making capabilities. In our overview we 

will show examples from Siemens and Schneider 

Electric control systems. 

 

2 Variables 

The variable (often referred to as a tag) in PLC 

systems [17-20] is defined by at least a data type and  

a physical address (such as %I for inputs, %Q for outputs 

and %M for states) or by a data type and a symbolic 

name. Nowadays, modern CPUs support both 

approaches, however symbolic programming is more 

commonly preferred. This section will focus on 

variables belonging to either the elementary data type 

group or the user-defined data type group for storing 

NNs parameters and process inputs and outputs of the 

technology. 
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2.1 Elementary variables 

Elementary variables (EVs) are those variables that 

belong to the data types such as INT (16 bit), DINT (32 

bit), REAL (32 bit), LREAL (64 bit), BOOL (1 bit) and 

so on [17-24]. To store NN parameters depending on the 

precision needed and the data types supported by the 

CPU, REAL or LREAL are the recommended options. 

The disadvantage of EVs is that they must be created one 

by one, which is not effective for larger NN structures. 

An example of elementary variables (EVs) is shown in 

Fig. 1. The first two examples are for Siemens (TIA 

Portal) representing different memory areas (Data Block 

– it will be discussed later), while the third entry is for 

Schneider Electric (Unity Pro; nowadays EcoStruxure 

Control Expert). 

 

 

Fig. 1. Examples of elementary variables 

 

2.2 Data blocks and structures 

An effective way to define variables is by using DBs 

in Siemens PLCs or by structured variables in Schneider 

Electric PLCs. These concepts are essentially the same 

but are referred to differently by each manufacturer.  

By using ARRAY one can create one or more 

dimensional variables, which are widely used to store 

weights, biases and other related data. An example of  

a two-dimensional variable W1 is shown in Fig. 2. There 

are two crucial properties of this variable: the start value 

(initial value) and retention. The start values can be used 

for importing trained neural network parameters, while 

retention preserves the current values during a power 

loss of the CPU for example during training procedure. 

 

Fig. 2. Examples of array variables 

 

A more effective approach is to define User Defined 

Data Types (UDTs) in Siemens [18-19] terminology or 

Derived Data Types (DDTs) in Schneider Electric 

terminology [17] combined with ARRAYS. A simple 

example in TIA Portal is shown in Fig. 3. The upper part 

defines the UDT, while the lower part displays the 

structured variable. 

 

 

Fig. 3. Example of UDT and structured variable 

 

3 Programming language 

IEC 61131-3 defines five programming languages for 

PLCs [17-21, 23, 24]: 

• Ladder Diagram (LD) – A graphical programming 

language resembling electrical relay logic. 

• Function Block Diagram (FBD) – Another graphical 

programming language. It uses function blocks (FB) 

for creating complex functions and control logic. 
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• Structured Text (ST) – A high-level text-based 

language similar to Pascal. 

• Instruction List (IL) – A low-level assembly-like 

language for sequential operations. 

• Sequential Function Chart (SFC) – A graphical 

language for programming complex sequences with 

steps and transitions similar to a flowchart. 

Structured Text is ideal for programming NNs within 

PLC environments due to its readability, support for 

complex data types, strong mathematical capabilities 

and fast software development. 

 

4 Mathematical operations 

The PLC software supports many mathematical 

operations, such as addition, multiplication, subtraction 

and so on, but has limitations for vector or matrix 

operations. The TIA Portal library lacks built-in vector 

and matrix operations, whereas Schneider Electric PLCs 

support vector operations. One of such functions is 

MUL_ARDINT which multiplies two double-integer 

arrays. For arrays of the REAL data type, EcoStruxure 

Control Expert does not provide a built-in instruction 

equivalent to MUL_ARDINT. To perform multi-

plication on arrays of the REAL data type one should use 

a FOR loop to iterate through each element in the arrays, 

multiplying (or adding) corresponding elements and 

storing the results in a new array. A code snippet of 

multiplication of arrays for REAL data types is in Fig. 4. 

TIA Portal supports different external libraries 

developed by communities. The Library of general 

functions (LGF) [25] which was created by Siemens, 

supports native matrix operations as addition, multi-

plication and so on, even inverse matrix calculation 

(LGF_MatrixInverse). This function inverts a square 

matrix of type ARRAY[*,*] of LREAL using the 

Shipley-Coleman method, ensuring that the input matrix 

has equal numbers of rows and columns, while the 

output matrix retains the same size and array boundaries 

as the input. 

 

 

Fig. 4. Example of FOR cycle for multiplication 

5 Program organization units (POUs) 

A Program Organization Unit in a PLC is a structured 

block of code used to organize and manage the 

programming of the PLC. It's also defined by the IEC 

61-131 standard. POUs are essential for modular pro-

gramming, allowing for better organization, readability 

and maintainability of the control logic. There are 

typically three main types of POUs [17-19]: 

• Function Blocks (FB) – These are reusable code 

blocks designed to encapsulate specific function-

alities allowing them to be called multiple times 

within a program with different parameters. They 

have an assigned memory area called instance data 

block for each call. Among the standard library, 

timers and counters are the well-known FBs. 

• Functions (FC) – These are similar to function blocks 

but do not retain state information. They are used to 

perform specific tasks and return a single value. From 

the standard library mathematical, bit operations and 

others are examples of functions. 

• Programs (OB) – These are the main execution units 

of the PLC program. An OB defines the sequence of 

operations and can be called upon under specific 

conditions such as during startup or based on a spe-

cific event. 

FC and FB have: 

• Inputs – These are values or parameters (variables) 

provided to the FC or FB that influence its output. 

• Outputs – These are the results produced by the FC 

or FB after processing the input values. They can be 

used in other parts of the program or can be directly 

control actions. 

• InOuts – These are parameters that serve as both 

inputs and outputs. They allow data to be passed into 

the FC or FB, modified and then returned as output. 

Combining InOuts with structures enables more 

flexible and dynamic data handling. 

In addition, FBs have static variables (or Global 

Variables in Schneider Electric PLCs). These are states 

stored in instance DBs. Beside inputs they influence the 

output values. 

To design an AI model, one must choose between the 

FB approach and the combination of FC with global DBs 

that contain structured arrays. The FB approach is 

recommended for encapsulating functionality and 

maintaining state across multiple calls. Combining FB 

with structured InOuts with global DBs are also possible. 

In contrast, using FCs offers the advantage of a flexible 

interface and customizable internal structure design. 

Direct implementation within OBs is also possible, 

allowing for straightforward execution of program 

without the need for separate FC or FB definitions. 
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However, for more complex algorithms, structuring the 

logic using FCs is recommended. 

 

6 Tasks 

In PLCs, tasks are important units of execution that 

determine how and when specific programs are 

executed. In Siemens PLCs, tasks are closely related to 

OBs which define the execution behavior of these tasks. 

In Schneider Electric software, tasks are defined 

according to IEC 61131 standards. There are three types 

of tasks in PLCs [17-20]: 

• Cyclic Tasks – These tasks are executed continuously 

and once a task finishes its execution a new execution 

begins as soon as possible. They are ideal for discrete 

event systems typically found in industries such as 

automotive, electrical engineering and manufac-

turing, where logical states are processed. 

• Periodic Tasks – Unlike cyclic tasks, periodic tasks 

are executed at fixed time intervals. This makes them 

suitable for operations that require precise timing, 

which is crucial for continuous control applications. 

An example of such applications includes those that 

utilize PID controllers. 

• Event Tasks – These tasks are triggered by specific 

events, such as a change in input signals or a specific 

condition being met. Event tasks are particularly 

useful for responding to alarms or external signals. 

Tasks have specific priorities. In Siemens PLCs, one 

can change these priorities in the OB properties [18].  

In Schneider Electric PLCs there are four types of tasks: 

Mast, Fast, Event and Aux [17]. Mast is cyclic, Fast is 

periodic, Event is event and Aux is used for background 

functions that do not require real-time processing.  

In a multitasking environment, tasks with higher priority 

interrupt tasks with lower priority ensuring that critical 

functions are executed promptly. This priori-tization 

mechanism helps maintain system respon-siveness and 

reliability, especially in applications requiring real-time 

control. 

Each task has its own watchdog parameter [17-19, 

21-24]. A watchdog is a safety mechanism in PLCs that 

monitors system operations and can trigger a transition 

from the RUN state of the CPU to the STOP state, 

causing the program to cease execution and thereby 

halting system control. The considered AI algorithm 

should be executed within the watchdog timeout to avoid 

causing the program execution to stop. 

According to the usage of the NN, we can call the 

program within either a cyclic or a periodic task.  

In control applications a periodic task is essential.  

A modern PLC's simplified periodic cycle (task) consists 

of the following steps [17-21, 23, 24]: 

• Reading inputs (RI) – Reading input states using 

sensors connected to digital and analog input 

modules, with the process image of inputs being 

updated. 

• Program execution (PE) – Execution of the program 

in different programming languages. 

• Writing outputs (WO) – Writing the process image of 

output to output modules. 

In these modern PLCs the execution order is WO, RI, 

and PE ensuring a fixed period for reading inputs and 

updating outputs [17-19]. 

 

7 Neural networks 

Like in other devices one may face two stages related 

to NNs. One is the training procedures and the second is 

the inference. The training can be divided to [26]: 

• Online (or incremental) Training is such training, 

when the model learns continuously by updating its 

parameters as each new data point is measured. This 

approach is suited for dynamic environments because 

it allows the model to adapt in real-time to new 

patterns and changes (i.e. uncertainties). However, it 

may struggle to retain long-term knowledge if not 

managed well. In this case the PLC collects the 

measured data and prepares the input vector for the 

NN. One epoch is faster due less input and output 

data. 

• Offline (or batch) Training is such training, when the 

model is trained on a fixed dataset all at once or in 

batches. This method is generally more used, 

efficient for large datasets and allows for extensive 

hyperparameter tuning. However, it does not adapt to 

new data until retrained, making it less suited for 

environments, where data change frequently. In this 

case one should have the measured data logged in 

DBs using arrays. These data then are transformed 

into matrices depending on the task. For example, let 

us have a single-input and single-output (SISO) 

system, one may logged the control signal (u) and the 

systems response (y). One may create a nonlinear 

neural network based autoregressive exogenous input 

(NNARX) model in PLC by combining the (u and y) 

into matrix. One epoch will be slower compared to 

online training. 

In both cases the designer should take into account 

the watchdog time. The same applies for the inference. 

From the inference point of view, it is similar to the 

online training phase, because one needs to prepare the 

input vector and calculate the output of the NN. 

Nowadays PLC CPU are fast enough to deal with the 

inference of larger NN structures (including deep NNs). 
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8 Example 

Let us consider a multilayer perceptron (MLP) 

created in Matlab for PLC. One need to define for the 

inference: 

• The number of inputs and outputs (depends on the 

task) 

• The number of hidden layers 

• Number of neurons in layers including activation 

function types 

• Hyperparameters (weights and biases) between 

layers 

• Other parameters, e.g., for normalizations and for 

training: 

o Method type (if more than one is implemented) 

o Parameters of the training method (learning rate, 

etc.) 

o End conditions of the training (epochs, minimum 

gradient, etc.) 

o Other parameters, e.g., for normalizations 

An example of the DB for the NN inference and 

training is in Fig. 5. In this example the NN structure and 

the processed data are stored in one place. The creation 

of the DB manually (entering the proper settings 

including hyperparameters) is time consuming and can 

lead to errors, therefore one may export the NN structure 

from Matlab to XML format that can be imported into 

TIA Portal. The trained neural network whether 

developed using traditional algorithms or Neuro-

Evolution based algorithms can be transferred to the 

PLC [16]. 

 

 

Fig. 5. Examples of NN structure in DB 

 

 

Part of the XML structure is shown below: 

DATA_BLOCK "NeuralNetwork" 

{ S7_Optimized_Access := 'TRUE' } 

VERSION : 0.1 

NON_RETAIN 

   VAR  

      NumInputs : Int; 

      NumOutputs : Int; 

      NumHiddenLayers : Int; 

      NumLayers : Int; 

      Iteration : Int; 

      IterationTest : Int; 

      LRate : Real; 

      Epoch : Int; 

      Minmaxinput : Array[1..1] of Struct 

         Xmin : Array[1..4] of Struct 

            Value : LReal; 

         END_STRUCT; 

         Xmax : Array[1..4] of Struct 

            Value : LReal; 

         END_STRUCT; 

         Ymin : LReal; 

         Ymax : LReal; 

      END_STRUCT; 

      ... 

 

This structure can be integrated as an external source 

in TIA Portal allowing for the generation of the DB from 

the source. To handle the learning and training procedure 

one may implement ST program. An example of a code 

snippet of the inference is shown in Fig. 6. In this 

example a FOR loop is used to iterate through all layers 

to calculate the output(s) of the NN.  

The NeuralNetwork.Iteration represents the number 

of samples (column vectors; columns of input matrix).  

In the first part of the snippet, the input layer is 

processed. It continues with data normalization using 

min and max predefined values in DB. A part of a nested 

loop iterates all layers and finally the output is 

calculated. 
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Fig. 6. Example of code snippet of the inference 

 

9 Conclusions 

Integrating AI methods into industrial control 

systems presents a promising approach enhancing 

system quality and efficiency. By leveraging the power 

of neural networks, industries can achieve higher levels 

of automation and better decision-making. The 

deployment of NNs within PLCs offers a unique oppor-

tunity to improve the efficiency of control systems 

enabling real-time data analysis and decision-making. 

As discussed in the article, it is suitable for structures 

whose inference and training can occur in real time 

(within the watchdog time). The implementation of NNs 

in PLCs requires careful consideration of variables, 

programming languages, mathematical operations, 

POUs, tasks and NNs approaches. By following the 

principles outlined in this paper one can successfully 

integrate AI methods into their control systems thereby 

enhancing their capabilities and performance without the 

need of additional hardware (Edge, PC, etc.). 
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