
Journal of Electrical Engineering, Vol. 76, No. 1, 2025, pp. 99-105

Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology,

Bratislava, Slovakia

ladislav.korosi@stuba.sk, slavomir.kajan@stuba.sk

https://doi.org/10.2478/jee-2025-0010, Print (till 2015) ISSN 1335-3632, On-line ISSN 1339-309X

© This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives License

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Overview of implementation principles of artificial intelligence methods

in industrial control systems

Ladislav Körösi, Slavomír Kajan

The proposed article discusses the principles of implementing artificial intelligence (AI) methods in industrial control systems

focusing on the deployment of neural networks (NNs) within programmable logic controllers (PLCs). Recent advancements in

AI have led to significant improvements in modeling, control, quality control and predictive maintenance. This progress is

further supported by the development of newer CPU architectures in PLCs, which offer enhanced processing speeds and

capabilities. These advanced CPUs facilitate the implementation of more complex AI algorithms enabling systems to perform

real-time data analysis. By leveraging the power of AI and improved hardware, industries can achieve higher levels of

automation and better decision-making.

Keywords: PLC, NN, modelling, control, real-time

1 Introduction

In recent years, AI has experienced remarkable

progress across various fields including large language

models (LLMs), convolutional neural networks (CNNs),

generative adversarial networks (GANs) and others.

These technologies are being progressively incorporated

into sophisticated control and modeling solutions for

automation, quality assurance, predictive maintenance,

human machine interactions (HMI) and various other

applications.

Neural networks can be deployed directly within

PLCs or leveraged on more powerful external systems

such as PCs, industrial PCs and edge devices. These

devices then act as master systems to process data and

transmit the results of the processing to the control

system. The direct implementation of neural networks in

PLCs poses distinct challenges, primarily stemming

from the high computational requirements of these

networks, which can impact their ability to process data

in real time. The integration of neural networks into

PLC's CPU offers substantial potential for improving

functionality and performance across a variety of appli-

cations, despite certain challenges [1-8]. Our earlier

research showed that although CNNs could be applied

for gesture recognition directly in PLCs CPU, realizing

real-time control continued to pose a challenge [4].

In parallel, edge devices and other powerful master

systems enable the processing of complex algorithms,

allowing the inference in real-time. Numerous studies

highlight the potential of machine vision-based image

processing in industrial and health applications,

including object identification, quality assurance,

disease detection, human activity and gesture

recognition [6, 9-13]. For example, advancements in

machine learning-based neural networks, such as

multilayer perceptrons (MLPs) and long short-term

memory networks (LSTMs) continue to be refined for

real-time control applications [14-16].

This paper aims to provide an overview of the

implementation principles of AI methods in industrial

control systems, specifically focusing on the signifi-

cance of deploying NNs within PLCs while recognizing

the role of master systems. By analyzing the properties

of PLCs we seek to demonstrate how the integration of

AI can enhance the performance and reliability of

industrial control systems through efficient processing

and decision-making capabilities. In our overview we

will show examples from Siemens and Schneider

Electric control systems.

2 Variables

The variable (often referred to as a tag) in PLC

systems [17-20] is defined by at least a data type and

a physical address (such as %I for inputs, %Q for outputs

and %M for states) or by a data type and a symbolic

name. Nowadays, modern CPUs support both

approaches, however symbolic programming is more

commonly preferred. This section will focus on

variables belonging to either the elementary data type

group or the user-defined data type group for storing

NNs parameters and process inputs and outputs of the

technology.

mailto:ladislav.korosi@stuba.sk

100 L. Körösi, S. Kajan: Overview of implementation principles of artificial intelligence methods in industrial control systems

2.1 Elementary variables

Elementary variables (EVs) are those variables that

belong to the data types such as INT (16 bit), DINT (32

bit), REAL (32 bit), LREAL (64 bit), BOOL (1 bit) and

so on [17-24]. To store NN parameters depending on the

precision needed and the data types supported by the

CPU, REAL or LREAL are the recommended options.

The disadvantage of EVs is that they must be created one

by one, which is not effective for larger NN structures.

An example of elementary variables (EVs) is shown in

Fig. 1. The first two examples are for Siemens (TIA

Portal) representing different memory areas (Data Block

– it will be discussed later), while the third entry is for

Schneider Electric (Unity Pro; nowadays EcoStruxure

Control Expert).

Fig. 1. Examples of elementary variables

2.2 Data blocks and structures

An effective way to define variables is by using DBs

in Siemens PLCs or by structured variables in Schneider

Electric PLCs. These concepts are essentially the same

but are referred to differently by each manufacturer.

By using ARRAY one can create one or more

dimensional variables, which are widely used to store

weights, biases and other related data. An example of

a two-dimensional variable W1 is shown in Fig. 2. There

are two crucial properties of this variable: the start value

(initial value) and retention. The start values can be used

for importing trained neural network parameters, while

retention preserves the current values during a power

loss of the CPU for example during training procedure.

Fig. 2. Examples of array variables

A more effective approach is to define User Defined

Data Types (UDTs) in Siemens [18-19] terminology or

Derived Data Types (DDTs) in Schneider Electric

terminology [17] combined with ARRAYS. A simple

example in TIA Portal is shown in Fig. 3. The upper part

defines the UDT, while the lower part displays the

structured variable.

Fig. 3. Example of UDT and structured variable

3 Programming language

IEC 61131-3 defines five programming languages for

PLCs [17-21, 23, 24]:

• Ladder Diagram (LD) – A graphical programming

language resembling electrical relay logic.

• Function Block Diagram (FBD) – Another graphical

programming language. It uses function blocks (FB)

for creating complex functions and control logic.

Journal of Electrical Engineering, Vol. 76, No. 1, 2025 101

• Structured Text (ST) – A high-level text-based

language similar to Pascal.

• Instruction List (IL) – A low-level assembly-like

language for sequential operations.

• Sequential Function Chart (SFC) – A graphical

language for programming complex sequences with

steps and transitions similar to a flowchart.

Structured Text is ideal for programming NNs within

PLC environments due to its readability, support for

complex data types, strong mathematical capabilities

and fast software development.

4 Mathematical operations

The PLC software supports many mathematical

operations, such as addition, multiplication, subtraction

and so on, but has limitations for vector or matrix

operations. The TIA Portal library lacks built-in vector

and matrix operations, whereas Schneider Electric PLCs

support vector operations. One of such functions is

MUL_ARDINT which multiplies two double-integer

arrays. For arrays of the REAL data type, EcoStruxure

Control Expert does not provide a built-in instruction

equivalent to MUL_ARDINT. To perform multi-

plication on arrays of the REAL data type one should use

a FOR loop to iterate through each element in the arrays,

multiplying (or adding) corresponding elements and

storing the results in a new array. A code snippet of

multiplication of arrays for REAL data types is in Fig. 4.

TIA Portal supports different external libraries

developed by communities. The Library of general

functions (LGF) [25] which was created by Siemens,

supports native matrix operations as addition, multi-

plication and so on, even inverse matrix calculation

(LGF_MatrixInverse). This function inverts a square

matrix of type ARRAY[*,*] of LREAL using the

Shipley-Coleman method, ensuring that the input matrix

has equal numbers of rows and columns, while the

output matrix retains the same size and array boundaries

as the input.

Fig. 4. Example of FOR cycle for multiplication

5 Program organization units (POUs)

A Program Organization Unit in a PLC is a structured

block of code used to organize and manage the

programming of the PLC. It's also defined by the IEC

61-131 standard. POUs are essential for modular pro-

gramming, allowing for better organization, readability

and maintainability of the control logic. There are

typically three main types of POUs [17-19]:

• Function Blocks (FB) – These are reusable code

blocks designed to encapsulate specific function-

alities allowing them to be called multiple times

within a program with different parameters. They

have an assigned memory area called instance data

block for each call. Among the standard library,

timers and counters are the well-known FBs.

• Functions (FC) – These are similar to function blocks

but do not retain state information. They are used to

perform specific tasks and return a single value. From

the standard library mathematical, bit operations and

others are examples of functions.

• Programs (OB) – These are the main execution units

of the PLC program. An OB defines the sequence of

operations and can be called upon under specific

conditions such as during startup or based on a spe-

cific event.

FC and FB have:

• Inputs – These are values or parameters (variables)

provided to the FC or FB that influence its output.

• Outputs – These are the results produced by the FC

or FB after processing the input values. They can be

used in other parts of the program or can be directly

control actions.

• InOuts – These are parameters that serve as both

inputs and outputs. They allow data to be passed into

the FC or FB, modified and then returned as output.

Combining InOuts with structures enables more

flexible and dynamic data handling.

In addition, FBs have static variables (or Global

Variables in Schneider Electric PLCs). These are states

stored in instance DBs. Beside inputs they influence the

output values.

To design an AI model, one must choose between the

FB approach and the combination of FC with global DBs

that contain structured arrays. The FB approach is

recommended for encapsulating functionality and

maintaining state across multiple calls. Combining FB

with structured InOuts with global DBs are also possible.

In contrast, using FCs offers the advantage of a flexible

interface and customizable internal structure design.

Direct implementation within OBs is also possible,

allowing for straightforward execution of program

without the need for separate FC or FB definitions.

102 L. Körösi, S. Kajan: Overview of implementation principles of artificial intelligence methods in industrial control systems

However, for more complex algorithms, structuring the

logic using FCs is recommended.

6 Tasks

In PLCs, tasks are important units of execution that

determine how and when specific programs are

executed. In Siemens PLCs, tasks are closely related to

OBs which define the execution behavior of these tasks.

In Schneider Electric software, tasks are defined

according to IEC 61131 standards. There are three types

of tasks in PLCs [17-20]:

• Cyclic Tasks – These tasks are executed continuously

and once a task finishes its execution a new execution

begins as soon as possible. They are ideal for discrete

event systems typically found in industries such as

automotive, electrical engineering and manufac-

turing, where logical states are processed.

• Periodic Tasks – Unlike cyclic tasks, periodic tasks

are executed at fixed time intervals. This makes them

suitable for operations that require precise timing,

which is crucial for continuous control applications.

An example of such applications includes those that

utilize PID controllers.

• Event Tasks – These tasks are triggered by specific

events, such as a change in input signals or a specific

condition being met. Event tasks are particularly

useful for responding to alarms or external signals.

Tasks have specific priorities. In Siemens PLCs, one

can change these priorities in the OB properties [18].

In Schneider Electric PLCs there are four types of tasks:

Mast, Fast, Event and Aux [17]. Mast is cyclic, Fast is

periodic, Event is event and Aux is used for background

functions that do not require real-time processing.

In a multitasking environment, tasks with higher priority

interrupt tasks with lower priority ensuring that critical

functions are executed promptly. This priori-tization

mechanism helps maintain system respon-siveness and

reliability, especially in applications requiring real-time

control.

Each task has its own watchdog parameter [17-19,

21-24]. A watchdog is a safety mechanism in PLCs that

monitors system operations and can trigger a transition

from the RUN state of the CPU to the STOP state,

causing the program to cease execution and thereby

halting system control. The considered AI algorithm

should be executed within the watchdog timeout to avoid

causing the program execution to stop.

According to the usage of the NN, we can call the

program within either a cyclic or a periodic task.

In control applications a periodic task is essential.

A modern PLC's simplified periodic cycle (task) consists

of the following steps [17-21, 23, 24]:

• Reading inputs (RI) – Reading input states using

sensors connected to digital and analog input

modules, with the process image of inputs being

updated.

• Program execution (PE) – Execution of the program

in different programming languages.

• Writing outputs (WO) – Writing the process image of

output to output modules.

In these modern PLCs the execution order is WO, RI,

and PE ensuring a fixed period for reading inputs and

updating outputs [17-19].

7 Neural networks

Like in other devices one may face two stages related

to NNs. One is the training procedures and the second is

the inference. The training can be divided to [26]:

• Online (or incremental) Training is such training,

when the model learns continuously by updating its

parameters as each new data point is measured. This

approach is suited for dynamic environments because

it allows the model to adapt in real-time to new

patterns and changes (i.e. uncertainties). However, it

may struggle to retain long-term knowledge if not

managed well. In this case the PLC collects the

measured data and prepares the input vector for the

NN. One epoch is faster due less input and output

data.

• Offline (or batch) Training is such training, when the

model is trained on a fixed dataset all at once or in

batches. This method is generally more used,

efficient for large datasets and allows for extensive

hyperparameter tuning. However, it does not adapt to

new data until retrained, making it less suited for

environments, where data change frequently. In this

case one should have the measured data logged in

DBs using arrays. These data then are transformed

into matrices depending on the task. For example, let

us have a single-input and single-output (SISO)

system, one may logged the control signal (u) and the

systems response (y). One may create a nonlinear

neural network based autoregressive exogenous input

(NNARX) model in PLC by combining the (u and y)

into matrix. One epoch will be slower compared to

online training.

In both cases the designer should take into account

the watchdog time. The same applies for the inference.

From the inference point of view, it is similar to the

online training phase, because one needs to prepare the

input vector and calculate the output of the NN.

Nowadays PLC CPU are fast enough to deal with the

inference of larger NN structures (including deep NNs).

Journal of Electrical Engineering, Vol. 76, No. 1, 2025 103

8 Example

Let us consider a multilayer perceptron (MLP)

created in Matlab for PLC. One need to define for the

inference:

• The number of inputs and outputs (depends on the

task)

• The number of hidden layers

• Number of neurons in layers including activation

function types

• Hyperparameters (weights and biases) between

layers

• Other parameters, e.g., for normalizations and for

training:

o Method type (if more than one is implemented)

o Parameters of the training method (learning rate,

etc.)

o End conditions of the training (epochs, minimum

gradient, etc.)

o Other parameters, e.g., for normalizations

An example of the DB for the NN inference and

training is in Fig. 5. In this example the NN structure and

the processed data are stored in one place. The creation

of the DB manually (entering the proper settings

including hyperparameters) is time consuming and can

lead to errors, therefore one may export the NN structure

from Matlab to XML format that can be imported into

TIA Portal. The trained neural network whether

developed using traditional algorithms or Neuro-

Evolution based algorithms can be transferred to the

PLC [16].

Fig. 5. Examples of NN structure in DB

Part of the XML structure is shown below:

DATA_BLOCK "NeuralNetwork"

{ S7_Optimized_Access := 'TRUE' }

VERSION : 0.1

NON_RETAIN

 VAR

 NumInputs : Int;

 NumOutputs : Int;

 NumHiddenLayers : Int;

 NumLayers : Int;

 Iteration : Int;

 IterationTest : Int;

 LRate : Real;

 Epoch : Int;

 Minmaxinput : Array[1..1] of Struct

 Xmin : Array[1..4] of Struct

 Value : LReal;

 END_STRUCT;

 Xmax : Array[1..4] of Struct

 Value : LReal;

 END_STRUCT;

 Ymin : LReal;

 Ymax : LReal;

 END_STRUCT;

 ...

This structure can be integrated as an external source

in TIA Portal allowing for the generation of the DB from

the source. To handle the learning and training procedure

one may implement ST program. An example of a code

snippet of the inference is shown in Fig. 6. In this

example a FOR loop is used to iterate through all layers

to calculate the output(s) of the NN.

The NeuralNetwork.Iteration represents the number

of samples (column vectors; columns of input matrix).

In the first part of the snippet, the input layer is

processed. It continues with data normalization using

min and max predefined values in DB. A part of a nested

loop iterates all layers and finally the output is

calculated.

104 L. Körösi, S. Kajan: Overview of implementation principles of artificial intelligence methods in industrial control systems

Fig. 6. Example of code snippet of the inference

9 Conclusions

Integrating AI methods into industrial control

systems presents a promising approach enhancing

system quality and efficiency. By leveraging the power

of neural networks, industries can achieve higher levels

of automation and better decision-making. The

deployment of NNs within PLCs offers a unique oppor-

tunity to improve the efficiency of control systems

enabling real-time data analysis and decision-making.

As discussed in the article, it is suitable for structures

whose inference and training can occur in real time

(within the watchdog time). The implementation of NNs

in PLCs requires careful consideration of variables,

programming languages, mathematical operations,

POUs, tasks and NNs approaches. By following the

principles outlined in this paper one can successfully

integrate AI methods into their control systems thereby

enhancing their capabilities and performance without the

need of additional hardware (Edge, PC, etc.).

Acknowledgement

This work was supported by APVV-22-0169 Grant

from the Slovak Scientific Grant Agency.

References

[1] L. Körösi, V. Németh, J. Paulusová and Š. Kozák, “RBF neural

network for identification and control using PAC”,

International Joint Conference SOCO'13-CISIS'13-

ICEUTE'13, Salamanca, Spain, Berlin : Springer, pp. 329-337,

2013.

[2] L. Körösi, J. Paulusová and Š. Kozák, “PLC online control

using orthogonal neural network”, MENDEL 2013 : 19th

International Conference on Soft Computing, Brno, Czech

Republic, pp. 227-232, 2013

[3] L. Körösi, “Neural Network Modeling and Control Using

Programmable Logic Controller”, Posterus, Vol. 4, No. 12,

2011.

[4] L. Körösi, S. Kajan, J. Paulusová and P. Štefaňák, “Servo

System Control Using Gestures”, 2022 Cybernetics &

Informatics (K&I) 31st IEEE International Conference,

Visegrád, Hungary, p. 5, 2022.

[5] C. Tian, J. Yi and J. Gao, “An Intelligent Stereo Garage

System,”, 2024 43rd Chinese Control Conference (CCC),

pp. 6439–6444, 2024.

[6] M. Akhmetov, D. Kanymkulov, A. Amirov, A. Askhatova and

T. Alizadeh, “Integrated Machine Vision and PLC

Commanding for Efficient Bottle Label Detection in Industrial

Processes: A Unified Approach for Quality Control”, 2024

10th International Conference on Control, Automation and

Robotics (ICCAR), pp. 66–70, 2024.

[7] G. A. David, P. M. d. C. Monson, C. Soares, P. d. O.

Conceição, P. R. de Aguiar and A. Simeone, “IoT-Driven Deep

Learning for Enhanced Industrial Production Forecasting”,

IEEE Internet of Things Journal, pp. 1–1, 2024.

[8] J. Liguš, T. A. Murajda and S. Filip, “Optimisation of hybrid

power system with on site meteo station with integrated

prediction methods”, 8th International Hybrid Power Plants &

Systems Workshop (HYB2024), vol. 2024, pp. 273–279, 2024.

[9] A. Alihodžić, A. Mujezinović and E. Turajlić, “Artificial neural

network-based method for overhead lines magnetic flux

density estimation”, Journal of Electrical Engineering, vol. 75,

no. 3, pp. 181–191, 2024.

[10] D. Filimonov, A. Onabek, K. Smolyarchuk and T. Alizadeh,

“Integrating Computer Vision in a CODESYS PLC to Enable

Intelligent Object Identification,”, 2024 9th International

Conference on Mechatronics Engineering (ICOM), pp. 65–70,

2024.

[11] V. Kurilová, S. Rajcsányi, Z. Rábeková, J. Pavlovičová,

M. Oravec and N. Majtánová, “Detecting glaucoma from

fundus images using ensemble learning”, Journal of Electrical

Engineering, vol. 74, no. 4, pp. 328–335, 2023.

[12] L. Wen, B. Liang, L. Zhang, B. Hao and Z. Yang, "Research

on Coal Volume Detection and Energy-Saving Optimization

Intelligent Control Method of Belt Conveyor Based on Laser

and Binocular Visual Fusion", IEEE Access, vol. 12, pp.

75238-75248, 2024.

[13] E. Genc, M. E. Yildirim and Y. B. Salman, “Human activity

recognition with fine-tuned cnn-lstm”, Journal of Electrical

Engineering, vol. 75, no. 1, pp. 8–13, 2024.

[14] W. Cao, “Research on Control Optimization Method of

Grinding System Based on PLC and Swarm Intelligence

Algorithm”, 2023 7th Asian Conference on Artificial

Intelligence Technology (ACAIT), pp. 1014–1018, 2023.

Journal of Electrical Engineering, Vol. 76, No. 1, 2025 105

[15] C.-T. Lin, M.-F. Han, Y.-Y. Lin, S.-H. Liao and J.-Y. Chang,

“Neuro-fuzzy system design using differential evolution with

local information”, 2011 IEEE International Conference on

Fuzzy Systems (FUZZ-IEEE 2011), pp. 1003–1006, 2011.

[16] F. Zúbek, A. Melichar, I. Kenický, L. Körösi and I. Sekaj,

“Autonomous Systems Control Design Using Neuro-

Evolution”, 2022 Cybernetics & Informatics (K&I), pp. 1–6,

2022.

[17] Schneider Electric, “Ecostruxure control expert - program

languages and structure reference manual”,

https://download.schneider-

electric.com/files?p_Doc_Ref=35006144K01000&p_enDocT

ype=User+guide&p_File_Name=35006144_K01_000_25.pdf,

Last accessed: November 2024.

[18] H. Berger, Automating with simatic: Controllers, software,

programming, data, Publicis, 5th edition, 2013.

[19] H. Berger, Automating with simatic s7-1500: Configuring,

programming and testing with step 7 professional, Publicis,

2nd edition, 2014.

[20] F. D. Petruzella, Programmable Logic Controllers, McGraw-

Hill Education, 5th edition, 2016.

[21] J. Hugh, Automating Manufacturing Systems with PLCs,

Lulu.com, 5th edition, 2008.

[22] B. G. Lipták, Instrument Engineers’ Handbook, Vol. 2: Process

Control and Optimization, CRC Press, 4th edition, 2005.

[23] L. A. Bryan and E. A. Bryan, Programmable Controllers -

Theory and Implementation, Amer Technical Pub, 2nd edition,

2003.

[24] W. Bolton, Programmable Logic Controllers, Newnes, 5th

edition, 2009.

[25] Siemens, “Library of general functions (lgf) for simatic step 7

(tia portal) and simatic s7-1200 / s7-1500”,

https://support.industry.siemens.com/cs/document/109479728

/library-of-general-functions-(lgf)-for-simatic-step-7-(tia-

portal)-and-simatic-s7-1200-s7-1500?dti=0lc=en-SK, 2024.

Last accessed: November 2024.

[26] J. Cai and Z. Deng, “Offline and online modeling of switched

reluctance motor based on rbf neural networks”, Journal of

Electrical Engineering, vol. 64, no. 3, pp. 186–190, 2013.

Received 12 November 2024
