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DISCRETE–TIME VARIABLE STRUCTURE

CONTROLLER FOR AIRCRAFT ELEVATOR CONTROL

Olivera Iskrenović-Momčilovic
∗

A discrete-time variable structure controller for aircraft elevator control using the method for control of plants with finite
zeros in canonical subspace is proposed in this paper. First, a discrete mathematical model of the system over canonical
space, using the delta transform, is given. Then, decomposition of the canonical space to subspaces with and without control
is carried out by introducing the output variable delta transform. Finally, a relation providing the quasi-sliding mode over
the canonical subspace with control is derived. The realized system is stable and robust against parameter and external
disturbances.
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1 INTRODUCTION

The real-life plants that have the practical importance
and their mathematical models have finite zeros are: air-
crafts, helicopters, rockets, nuclear reactors, DC-to-DC
power converters and others. In the past literature special
attention is dedicated to the aircraft dynamic stability.
The concept of dynamic stability studies what happens
to the aircraft in one time period, when it took out the
balanced position. The aircraft longitudinal motion is the
aircraft response to the disturbances.

The aircraft as a plant is a dynamic system on that
the control and external disturbances act in the course
of the flight. The aircraft answers to outputs that are
the function of control and external disturbances. The
goal of aircraft control is that the control system (pilot-
autopilot) controls the aircraft position and path. As it
is known, the aircraft can have the control system for the
control around three axes (Fig. 1):

• x axis — rolling axis (longitudinal axis),

• y axis — pitching axis (transverse axis),

• z axis — yawing axis (normal axis in downward direc-
tion),

that they enable the aircraft motion in the desired direc-
tion.

In classical approaches, the flight control systems can
be realized by: neuronic net [1], adaptive systems [2–5],
conventional PID regulator [6] and variable structure sys-
tem [7–13]. All these control systems are obtained for a
continual time domain, while the attempts of this realiza-
tion were not in the discrete domain [14]. In this paper we
will make an attempt for a discrete-time variable struc-
ture system (DTVSS) for the aircraft elevator control, on
the basis of a method obtained for the control of plants
with finite zeros in the canonical subspace [15–17].

Fig. 1. Aircraft longitudinal motion.

2 AIRCRAFT LONGITUDINAL MOTION

The equations of motion for the aircraft are derived
by applying Newton’s laws of motion which relate the
summation of all external forces and moments to the
linear and angular accelerations of the body. Newton’s
laws are related to the coordinate system (x, y, z), which
is fixed to the aircraft and rotates, while the axis system
(x0, y0, z0) is the inertial coordinate system of the earth.
After that linearization, the equations of motion for the
aircraft are obtained in the following form [18]:

∑

Fx = m(U̇ + WQ) ,
∑

Mx = Ṗ Ix − ṘJxz ,
∑

Fy = m(V̇ +UR − WP ) ,
∑

My = Q̇Iy , (1)
∑

Fz = m(Ẇ − UQ) ,
∑

Mz = ṘIz − ṖJxz .

where: m is the mass, Fx , Fy , Fz are the external forces
in the directions of x , y and z axes, Mx is the rolling
moment, My is the pitching moment, Mz is the yawing
moment, u , v , w are the components of the aircraft
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Fig. 2. The short-period oscillations.

Fig. 3. The phugoid oscillations.

linear velocity vT in the directions of x , y and z axes, P ,
Q , R are the components of the aircraft angular velocity
ω in the directions of x , y and z axes, Ix , Iy , Iz are
the moments of inertia in the directions of x , y and z

axes and Jxz is the product of inertia Ix and Iz . These
six equations (1) can be broken up into two sets of three
simultaneous equations and the aircraft motion can be
broken up to:

• aircraft longitudinal motion,

• aircraft lateral motion.

In aircraft longitudinal motion (Fig. 1) the control
magnitudes are:

• α – the angle of attack,

• θ – the pitch angle,

• u – the variation of flight velocity along the longitu-
dinal axis x ,

and the control input is:

• δe – the elevator deflection.

The aircraft longitudinal motion can be represented as a
system of equations in which the forces and moments are
obtained by the control magnitudes: α , θ and u [18]:

(A1u̇n − Cxu
un) + (A2Cxα

α̇n − Cxα
αn)+

(A2Cxq
θ̇ − Cw(cosΘ)θ) = CFxα

,

−Czu
u̇n + (A4α̇n − Czǫ

αn)+

(A5θ̇ − Cw(sin Θ)θ) = CFzα
,

−Cmu
u̇n + (A2α̇n − Cmα

)+
( Iy

Sqc
θ̈ + A2Cmq

θ̇
)

= Cmα
,

(2)

where: A1 = mU
Sq

, A2 = − c
2U

, A3 = A1 + A2Czα
,

A4 = −A1 + A2Czq
, C∗∗ is the aerodynamic constant

of the aircraft, S is the wing area, q is the dynamic pres-

sure, un = u
U

, αn = w
U

, α̇n = ẇ
U

are nondimensional
coefficients, u, w are the changes of the linear velocity
components and Θ is the angle between the longitudinal

axes of the movable (x) and inertial (x0 ) coordinate sys-
tem. Taking the Laplace transform of equations (2) with
the initial conditions zero, the characteristic equation is
obtained in the form:

(

s2 + 2ξpωnps + ω2
np

)(

s2 + 2ξsωnss + ω2
ns

)

= 0 ,

where: ωnp, ωns are the natural frequencies, ξp, ξs are
the damping factors. We can observe the existence of two
oscillation types:

• the short-period oscillations (ωns, ξs ) — the oscilla-
tions of short period with relatively heavy damping
(Fig. 2),

• the phugoid oscillations (ωnp, ξp ) — the oscillations of
long period with relatively light damping (Fig. 3).

The periods and the damping of these oscillations vary
from aircraft to aircraft with the flight conditions. The
short-period oscillations challenge the variations of αn

and θ with a very little change of un , and the phugoid
oscillations challenge the variations of θ and un with a
very little change of αn . The phugoid can be thought of
as a change of potential and kinetic energies.

3 TRANSFER FUNCTION

OF AIRCRAFT ELEVATOR

We consider the aircraft flying in a straight and level
flight at with a velocity of . For this aircraft the aerody-
namic constants values are [18]:

Θ = 0 , m = 5800 slugs, U = 600 ft/sec,

S = 2400 sq ft, q = 2.62 × 10−6slug ft2, cw =−0.74 ,

Cxu
= −0.088 , Cxα

= 0.392 , Cw = −0.74 ,

Czu
= −1.48 , Czα

= −4.46 , Czα
= −4.46 ,

Cmα
= −0.619 , Cmα

= −3.27 , Cmq
= −11.4 .

(3)

To obtain the transfer function of the aircraft elevator,
it is necessary to define the positive deflection of the
elevator. Down elevator is defined as a positive elevator
by NASA convention. Thus a positive elevator deflection

produces a negative −θ̇ . Taking the Laplace transform of
relations (2) with the initial conditions zero and after the
substitution of the appropriate values (3) the transform
function of the aircraft elevator is obtained:

θ(s)

δe(s)
=

−1.31(s + 0.016)(s + 0.3)

(s2 + 0.00466s + 0.0053)(s2+ 0.806s + 1.311)
.

(4)
The transfer function (4) shows that a considerable varia-
tion in θ occurs at both short-period (ωns = 1.14 rad/sec,
ξs = 0.352) and phugoid (ωnp = 0.073 rad/sec, ξp =
0.032) oscillations. These observations lead to the fol-
lowing approximations of the phugoid and short-period
oscillations:

• Short-period approximation
The short-period oscillations occur at an almost constant
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Fig. 4. DTVSS for aircraft elevator control.

flight speed u , because forces in the x direction con-
tribute mostly to changes in the flight speed. The transfer
function (4) can be approximated by function:

θ(s)

δe(s)
=

−1.39(s + 0.306)

s(s2 + 0.805s + 1.325)
. (5)

The short-period approximation (5) shows very good
agreement in the vicinity of the natural frequency of the
short-period oscillations. It is wing for the simulation of
the aircraft elevator transfer function.

• Phugoid approximation
The phugoid oscillations take place at an almost constant
angle of attack α . As the phugoid oscillations are of long
period, θ is varying quite slowly, therefore, the inertia
forces can be neglected. The transfer function (4) can be
approximated by function:

θ(s)

δe(s)
=

0.018(s + 0.00637)

s2 + 0.00645s + 0.00582
. (6)

Comparison of (4) and (6), shows good agreement for the
natural frequencies and damping ratios. There is a 180◦

phase difference. Thus, the phugoid approximation is not
satisfactory for simulation purposes.

4 DTVSS FOR AIRCRAFT

ELEVATOR CONTROL

For aircraft elevator control a DTVSS is proposed that
is shown in Fig. 4. The discrete-time variable structure
controller synthesis is performed on the basis of the el-
evator transfer function short-period approximation (5)
that can be introduced in the state space as:

ẋ(t) =





0 1 0
0 0 1

−a0 −a1 −a2



x(t) +





0
0
1



u(t) ,

y(t) = [ d0 d1 0 ]x(t) ,

a0 = 0 , 1.06 ≤ a1 ≤ 1.59 , 0.744 ≤ a2 ≤ 0.966 ,

−0.5 ≤ d0 ≤ −0.34 , −1.668 ≤ d1 ≤ −1.112 .

(7)

The DTVS controller synthesis is performed using the
method for control of plants with finite zeros in canoni-
cal subspace [15–17] because the transfer function (5) has
finite zero. The elevator the under the action of a distur-
bance:

f(t) = 0.1
(

h(t − 7) − h(t − 9)
)

.

First, we must determine the system mathematical model
(7) in canonical space. Applying delta transformation for
the discretization period T = 0.1 ms, the DTVSS model
takes the form:

δx(kT ) =

[

0 0.99999999 0.00004999
0 −0.0006625 0.99995975
0 −1.32494667 −0.80493385

]

x(kT )+

[

0
0.00004999
0.99995975

]

u(kT ) ,

y(kT ) = [−0.42534 −1.39 0 ]x(kT ) .

(8)

For simplicity of the relations in the future explanation
•(kT ) will be •(k). Using the matrix coordinate trans-
formation [15–17]:

x(k) = Px(k) ,

where:

P =

[

0.999959776882 0.000099996646 0.000000001667
0 0.999959748451 0.000049998658
0 0 0.999959748871

]

,

the system (8) is transformed into controllable canonical
form:

δx(k) =

[

0 1 0
0 0 1
0 −1.324947 −0.804934

]

x(k) +

[

0
0
1

]

u(k) ,

y(k) = [−0.42534 −1.39 0 ]x(k) .

(9)

Then, we do the decomposing of the canonical space (9)
to subspace with and without control. Successively find-
ing the delta transform of the output variable y(k), the
system model over the two-dimensional subspace in the
following form:

δy(k)=[ 0 −0.425323 −1.389986 ]x(k) ,

δ2y(k)=[ 0 1.841658 0.693524 ]x(k)−1.389986u(k) .
(10)

will be composed.

The aim of the DTVS controller is to select control
u(k) so that for any arbitrary initial conditions the stable
discrete-time sliding mode on the switching line:

g(k) = cy(k) + δy(k) , c = const, (11)

will occur. To choose the switching line parameter c ,
let us determine the equivalent control ueq(k) from the
condition [19] for the system to remain on the switching
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Fig. 5. Step response of the nominal plant with load disturbance

f(t) = 0.1
(

h(t − 7) − h(t − 9)
)

.

Fig. 6. Step responses of the plant with parameter d1 variation.

Fig. 7. Control signal of the nominal plant with load disturbance

f(t) = 0.1
(

h(t − 7) − h(t − 9)
)

.

Fig. 8. Switching funcyion dynamics of the nominal with load

disturbance f(t) = 0.1
(

h(t − 7) − h(t − 9)
)

.

line g(k+1) = g(k) for each k , that is, from the condition,
that:

g(k) = 0 , δg(k) = 0 . (12)

From the condition (12) the equivalent control ueq(k) is
obtained as:

ueq(k) = [ 0 0.305991c+1.324934 −c+0.498943 ]x(k). (13)

The system characteristics equation with the equivalent
control ueq(k) (13) is:

z3 + (c + 0.305991)z2 + (0.305991c + 0.000013)z = 0 .

Applying the Jury’s stability test [20], the parameter c

of the switching line is chosen as c = 1, in such way that
the system is stable over the whole canonical space (over
the subspaces both with and without control). Then the
switching line (11) has the following form:

g(k) = y(k) + δy(k) ,

and the equivalent control ueq(k) (13) is:

ueq(k) = [ 0 1.018943 −0.501057 ]x(k) .

At the end the quasi-sliding mode in canonical sub-
space (10) with control is realized by theorem [15–17]:

Theorem. The system is stable in canonical subspace,

if the control:

u(k) = h−1gx(k) + h−1fx(k) + h−1βg(k) ,

where:

β – constant |β| < 1 , β 6= 0 ,

f = [ f1 f2 . . . fn ] – commutation coefficients,

such that:

|f+

i | = f−
i | = fi =

{

0 |g(k) ≤ γ(k) ,

−f sgn
(

βg(k)xi(k)
)

|g(k)| > γ(k) ,

i = 1, . . . , n ,

γ(k) = f
2|β|

n
∑

i=1

|xi(k)| ,

0 < f < 2|β| max
1≤i≤n

(

cp

[

d⊤
δ (dδA

⊤
δ . . . (dδ(A

p−1

δ )⊤
]⊤

)

.

The following parameter values according to theorem

g = [ 0 1.018943 −0.501057 ] × 10−4,

h = −.× 10−4,

f = 9 × 10−6, β = 0.0015 .

are determined. The simulation results are shown in the
form of step responses (Figs. 5 and Fig. 6), for plant pa-
rameters variation in the above given boundaries and
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disturbance action, control signal (Fig. 7) and switch-
ing function dynamics (Fig. 8). Based on the diagram
(Fig. 6), it is concluded that the system is stable, in-
variant and robust against plant parameters variation in
the given boundaries. It is robust for disturbation action
(Fig. 7).

6 CONCLUSION

Discrete-time variable structure controller for aircraft
elevator control, using the method for control of plants
with finite zeros in canonical subspace is proposed in this
paper. First, a discrete mathematical model of the system
over canonical space, using the delta transform, is given.
Then, decomposition of the canonical space to subspaces
with and without control is carried out by introducing the
output variable delta transform. Finally, a relation pro-
viding the quasi-sliding mode over the canonical subspace
with control is derived. The realized system is stable and
robust against parameter and external disturbances.
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[16] ISKRENOVIĆ-MOMČILOVIC, O. : Discrete-Time Variable
Structure Controller Synthesis Using Delta Transform, Electri-

cal Engineering (Archiv für Elektrotechnik) 85 No. 4 (2003),
261–266.
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