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IDENTIFICATION OF NONLINEAR CASCADE
SYSTEMS WITH TIME–VARYING BACKLASH

Jozef Vörös
∗

Recursive identification of cascade systems with time-varying input backlash and linear dynamic system is presented. A
new analytic form of backlash characteristic description is used, hence all the parameters in the cascade model equation are
separated and their estimation is solved as a quasi-linear problem using the recursive least squares method with internal
variable estimation. Simulation studies are included.
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1 INTRODUCTION

One of the most important nonlinearities that limits
control systems performance in many applications is the
so-called backlash [19]. The backlash (see Fig. 1) can be
classified as a hard (i.e. non-differentiable) and dynamic
nonlinearity. It is well known that this kind of nonlinear-
ity may often cause delays, oscillations and inaccuracy
which severely limit the performance of control systems
[2, 16, 24, 31–33]. Therefore, compensation of backlash has
attracted research effort by several decades [25, 27].

In most applications the backlash parameters are ei-
ther poorly known or completely unknown, therefore the
identification of backlash is fundamental for its compen-
sation and implementation of corresponding inverse. Un-
fortunately, there are only few contributions in the litera-
ture on the identification of systems with hard nonlinear-
ities [1, 30, 34] and even fewer on backlash identification
[3, 12, 13, 29, 38]. To the authors best knowledge, no con-
tribution can be found which addresses the identification
of cascade systems with time-varying input backlash.

In this paper a recursive identification method for cas-
cade systems consisting of an input backlash followed by
a linear dynamic system is presented. This is based on
a new mathematical model for the backlash where this
multi-valued nonlinearity is expressed in a special analyt-
ical form [37]. Application of a decomposition technique
[34] leads to a cascade system description, which is quasi-
linear, and the parameters can be estimated using the
recursive least squares (RLS) method with internal vari-
able estimation based on available measured inputs and
outputs [36]. The recursive method enables the on-line
estimation of not only the parameters of linear dynamic
system transfer function, but also the slopes of backlash
and the constants determining the dead-zones, character-
izing the time-varying nonlinear dynamic block, ie the
approach deals with the problem never solved before.
Simulation studies illustrate the feasibility of proposed
identification method.

2 BACKLASH

The backlash characteristic with input u(t) and out-
put x(t) is described by two straight lines, upward (right)
and downward (left) sides of backlash, connected with
horizontal line segments [3]. The backlash nonlinearity
is shown in Fig. 1, and the mathematical model for the
discrete-time case is given by

x(t) =











mL[u(t) + cL], u(t) ≤ zL

mR[u(t)− cR], u(t) ≥ zR

x(t− 1), zL ≤ zR

(1)

where mL , mR , cL > 0, cR > 0 are constant parameters
characterizing the backlash and

zL =
x(t− 1)

mL

− cL , (2)

zR =
x(t− 1)

mR

+ cR (3)

are the u -axis values of intersections of the two lines,
with slopes mL , mR , with the horizontal inner segment
containing x(t−1). Evidently, the backlash is a first-order
nonlinear dynamic system and (1) is not appropriate for
the estimation of backlash parameters.

To describe the multi-valued nonlinearity (1) by one
equation, a switching function and its complement are
needed. One way, how to simplify the backlash description
is the use of switching function [35]

h(s) =

{

0 , if s > 0

1, if s ≤ 0
(4)

switching between two sets of values, ie, (−∞, s) and
(s,∞). The complementary function to h(s) is simply
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Fig. 1. Backlash characteristic

Fig. 2. Cascade system with backlash

[1 − h(s)] . Now the following variables based on (4) can
be defined

f1(t) = h[u(t)− zL]

= h{[mLu(t) +mLcL − x(t− 1)]
/

mL} , (5)

f2(t) = h[zR − u(t)]

= h{[x(t− 1)−mRu(t) +mRcR]
/

mR} (6)

and the backlash can be modeled by one equation as

x(t) = mLu(t)f1(t) +mLcLf1(t) +mRu(t)f2(t)−

mRcRf2(t) + x(t − 1)[1− f1(t)][1 − f2(t)] . (7)

The input/output relation (7) is identical with that of (1).
This backlash model allows the upward and downward
line slopes to be different provided that the intersection
of the two lines is not in the region of practical interest
[37].

3 CASCADE SYSTEMS

WITH INPUT BACKLASH

Cascade systems consist of serially connected lin-
ear and nonlinear subsystems. One of the simpliest
cases is the connection of a static nonlinear subsystem
followed by a linear dynamic one. This cascade sys-
tem is known as the Hammerstein system and there
are lots of identification methods for different types
of nonlinearities and corresponding models, eg, [4, 5, 7–
11, 14, 15, 17, 18, 20, 21, 23, 26, 28, 39].

In many real control systems the backlash appears in a
cascade connection with a linear dynamic system. One of

the possible cases is the cascade system where the back-
lash is followed by a linear dynamic system as shown in
Fig. 2. The input nonlinearity is static in the Hammer-
stein system, while in the presented case the input non-
linearity is dynamic. It means that the cascase system
consists of a nonlinear dynamic and a linear dynamic sub-
system.

The linear dynamic system can be described by the
difference equation model

A(q−1)y(t) = B(q−1)x(t− d) (8)

where x(t) and y(t) are the inputs and outputs, respec-

tively, A(q−1) and B(q−1) are scalar polynomials in the

unit delay operator q−1

A(q−1) = 1 + a1q
−1 + · · ·+ arq

−r, (9)

B(q−1) = b0 + b1q
−1 + · · ·+ bsq

−s. (10)

and d > 0 is the pure delay. It is assumed that the
constants d , r and s are known.

Assuming b0 = 1 (one parameter can always be fixed
in this model), the internal variable x(·) can be separated
in the linear block description as follows

y(t) = x(t− d) +
s

∑

i=1

bix(t− d− i)−
r

∑

j=1

y(t− j) , (11)

and substitution of (7) only for the separated variable
x(t-d) leads to the following equation

y(t) = mLu(t− d)f1(t− d) +mLcLf1(t− d)+

mRu(t− d)f2(t− d)−mRcRf2(t− d)+

x(t− d− 1)[1− f1(t− d)][1− f2(t− d)]+

s
∑

i=1

bix(t− d− i)−

r
∑

j=1

ajy(t− j) . (12)

Defining the parameter and data vectors

θ = [m1, c1,m2, c2, b1, . . . , bs, a1, . . . , ar]
⊤, (13)

mL = m1 , cL =
c1

m1

, mR = m2 , cR =
c2

m2

, (14)

ϕ(t) =
[

u(t− d)f1(t− d) , f1(t− d) , u(t− d)f2(t− d) ,

− f2(t− d) , x(t− d− 1) , . . . , x(t− d− s) ,

− y(t− 1) , . . . ,−y(t− r)
]⊤

(15)

and the corrected output, similarly as in [18]

yc(t) = y(t)−x(t−d−1)[1−f1(t−d)][1−f2(t−d)] (16)

the model output equation can be written in the concise
form as

yc(t) = ϕ⊤(t)θ (17)
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Fig. 3. Backlash characteristic — Example 1
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Fig. 4. Time-varying backlash parameter estimates — Example 1
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Fig. 5. Linear system parameter estimates — example 1

where the variables f1(t), f2(t) and x(t) depend on the
vector θ and therefore (implicitly) ϕ(t) = ϕ(t, θ) and
yc(t) = yc(t, θ).

The estimates of the parameter vector can be evalu-
ated using the modified RLS algorithm, minimizing the
quadratic criterion

J(θ, t) =
1

2

t
∑

k=1

λt−k
[

yc(k)− ϕ⊤(k)θ
]2

(18)

where 0 < λ ≤ 1 is the forgetting factor, the data vec-
tor ϕ(t) and the corrected output yc(t) are replaced by
ϕ̂(t) and ŷ(t), respectively, with the estimates of corre-
sponding internal variables. The recursive identification
algorithm [22] supplemented with the internal variables
estimation can be written as follows

θ̂(t) = θ̂(t− 1)

+
P̂ (t− 1)ϕ̂(t)[ŷc(t)− ϕ̂⊤(t)θ̂(t− 1)]

λ+ ϕ̂⊤(t)P̂ (t− 1)ϕ̂(t)
, (19)

P̂ (t) =
1

λ

[

P̂ (t− 1)

−
P̂ (t− 1)ϕ̂(t)ϕ̂⊤(t)P̂ (t− 1)

λ+ ϕ̂⊤(t)P̂ (t− 1)ϕ̂(t)

]

, (20)

f̂1(t− d) = h{[m̂1(t)u(t− d)

+ ĉ1(t)− x̂(t− d− 1)]
/

m̂1(t)} , (21)

f̂2(t− d) = h{[x̂(t− d− 1)− m̂2(t)u(t− d)

+ ĉ2(t)]
/

m̂2(t)} , (22)

x̂(t− d) = m̂1(t)u(t− d)f̂1(t− d) + ĉ1(t)f̂1(t− d)

+m̂2u(t− d)f̂2(t− d)− ĉ2f̂2(t− d)

+x̂(t− d− 1)[1− f̂1(t− d)][1 − f̂2(t− d)] ,
(23)

ϕ̂(t) =
[

u(t− d)f̂1(t− d) , f̂1(t− d) , u(t− d)f̂2(t− d) ,

− f̂2(t− d) , x̂(t− d− 1) , . . . , x̂(t− d− s) ,

− y(t− 1) , . . . ,−y(t− r)
]⊤

, (24)

ŷc = y(t)− x̂(t− d− 1)[1− f̂1(t− d)][1 − f̂2(t− d)] ,
(25)

P̂ (0) = µI , 0 < µ < ∞ (26)

where the new values (estimates) of all the internal vari-
ables for the data vector and the corrected output in each

recursion are computed by (21–25) with the previous es-

timates of corresponding parameters.

A bad initialization of a recursive algorithm leads gen-
erally to various problems such as convergence to a lo-

cal minimum, to a wrong estimate or instability. For the

proposed form of cascade model, the first estimates of

backlash parameters must be chosen nonzero enabling to

compute the first estimates of internal variables f1(t),
f2(t) and x(t) and the value of corrected output yc(t).

It means that the initial values of cL and cR must be

chosen as small positive real numbers, while the choice

of the initial values of mL and mR has only one restric-

tion, ie, the sign of initial estimates of the slopes of linear
segments coincides with that of identified backlash. The

input amplitudes must be large enough not to fall fully

into the backlash deadzone area, however, they should

not exceed the intersection of the upward and downward

lines.

The key properties of the proposed algorithm (conver-

gency, bias, consistency, etc) can be considered as anal-

ogous to those of the applied well-known recursive least-

squares algorithm [22] because the segments of backlash
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Fig. 6. Backlash characteristic — Example 2
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Fig. 7. Time-varying backlash parameter estimates — Example 2

are linear. The restriction is that only the estimates of in-
ternal variables are used in the data vector, which depend
on the previous estimates of corresponding parameters.

4 SIMULATION STUDIES

The method for the recursive identification of systems
with input backlash was implemented and tested in MAT-
LAB. The performance of the proposed method is il-
lustrated on examples of cascade systems with constant
backlash parameters and cascade systems with time-
varying backlash parameters.

Example 1. This example shows the process of param-
eter estimation for a cascade system with time-varying
backlash. The linear dynamic system was given by the
difference equation

y(t) = x(t− 1) + 0.5x(t− 2) + 0.2y(t− 1)− 0.35y(t− 2) .

The nonlinear block was given by the original backlash
characteristic (the thin line in Fig. 3) that was changed
during the process to the new one (the thick line in Fig. 3).
The corresponding sets of parameters are given in Table 1.

Table 1. Backlash parameters — Example 1

Parameter Original Changed

mL 1.2000 1.4000
cL 0.6000 0.4000
mR 1.5000 1.7000
cR 0.7000 0.5000

The recursive identification was carried out for 3000
samples of uniformly distributed random inputs with
|u(t)| < 1.5 and simulated outputs. Normally distributed
random noise with zero mean and signal to noise ra-
tio (the square root of the ratio of output and noise
variances) SNR = 50 was added to the outputs. The
changes of backlash parameters occurred slowly and grad-
ually in the time interval t ∈ (1000, 2000). The recur-
sive estimation algorithm was applied with initial values

mL = mR = 1 and cL = cR = 0.001 for the first esti-
mates of f1(t), f2(t) and x(t), while the initial values of
the linear system parameters were chosen zero. The use of
a proper forgetting factor in the RLS is particularly use-
ful in order to assign less weight to errors computed in
the early steps of the procedure. However, as λ decreases,
noise sensitivity increases [6, 22]. Therefore two forgetting
factors were used in this example, ie λ = 0.9 for the first
150 samples and λ = 0.995 for the rest of data. The pro-
cess of backlash parameter estimation is shown in Fig. 4
(the top-down order of parameters is mR , mL , cR , cL )
and the estimates of linear block parameters are shown
in Fig. 5 (the top-down order of parameters is b1 , a2 ,
a1 ). It can be seen that the model parameter estimates
are able to track the true parameters.

Example 2. The linear dynamic system in the cascade
system with time-varying backlash was the same as in
Example 1. The nonlinear block was given by the original
backlash characteristic (the thin line in Fig. 6) that was
changed during the process to the new one (the thick line
in Fig. 6). The corresponding sets of parameters are given
in Table 2.

Table 2. Backlash parameters — Example 2

Parameter Original Changed

mL 0.2400 0.2000
cL 0.0350 0.0850
mR 0.2600 0.2200
cR 0.0700 0.1200

The identification was performed on the basis of 3000
samples of uniformly distributed random inputs with
|u(t)| < 1.0 and simulated outputs. Normally distributed
random noise with zero mean and SNR = 50 was
added to the outputs. The changes of backlash param-
eters occurred slowly and gradually in the time inter-
val t ∈ (1000, 2000). However, the algorithm was applied
with initial values mL = mR = 0.5 and cL = cR = 0.01
for the first estimates of f1(t), f2(t) and x(t), while the
initial values of the linear system parameters were cho-
sen zero. The process of backlash parameter estimation is
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Fig. 8. Linear system parameter estimates — Example 2

shown in Fig. 7 (the top-down order of parameters is mR ,

mL , cR , cL ) and the estimates of linear block parameters

are shown in Fig. 8 (the top-down order of parameters is

b1 , a2 , a1 ).

The recursive algorithm proved good convergence in

all the above cases. The parameter estimate fluctuations

appearing in the early steps are not too severe. This is

due to the fact that the segments of backlash are linear.

The effects of the initialization of the proposed recur-

sive algorithm on the quality of the estimates are almost

marginal.

5 CONCLUSIONS

The identification of systems with unknown backlash

is still an open theoretical problem of major relevance

to control and other applications. The proposed identifi-

cation method is a direct application of the known RLS

algorithm [22] extended with the estimation of internal

variables. It may be used in on-line monitoring and anal-

ysis of time-varying processes and also combined with

on-line control strategies to produce adaptive control al-

gorithms.

Although a convergence proof for the recursive identi-

fication of nonlinear systems with internal variable es-

timation is not available, the simulation studies have

shown good convergence of the proposed algorithm. This

is caused by the fact that the backlash has actually lin-

ear segments and the switching functions separate these

segments. As always the corresponding linear segments of

the nonlinearity are included into the computation, the

convergence of estimates corresponds to that of the linear

RLS method. Finally note, that the presented method can

be easily extended for more complex cascaded systems

with backlash.
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[37] VÖRÖS, J. : Modeling and Identification of Systems with Back-

lash, Automatica 46 (2010), 369–374.

[38] WANG, J.—SANO, A.—CHEN, T.—HUANG, B. : Identifica-

tion of Hammerstein Systems without Explicit Parameterization

of Nonlinearity, Int. J. Control 82 (2009), 937–952.

[39] ZHANG, X.—TAN, Y. : Modelling of Ultrasonic Motor with

Dead-Zone Based on Hammerstein Model Structure, Journal of

Zhejiang University – Science A 9 (2008), 58–64.

Received 19 March 2010

Jozef Vörös (Ing, PhD) was born in Hurbanovo on July
9, 1949. He graduated in automatic control from the Fac-
ulty of Electrical Engineering of Slovak Technical University,
Bratislava in 1974 and received his PhD degree in control the-
ory from the Institute of Technical Cybernetics of the Slo-
vak Academy of Sciences, Bratislava in 1983. Since 1992 he
has been with the Faculty of Electrical Engineering and In-
formation Technology at the Slovak Technical University in
Bratislava where he is acting as a senior research scientist in
the Institute of Control and Industrial Informatics. His re-
search interests include the analysis and identification of non-
linear systems. He is also interested in the area of mobile robot
path planning using quadtree and octree representations.


