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GAIN–SCHEDULED CONTROLLER DESIGN:
VARIABLE WEIGHTING APPROACH

Adrian Ilka — Vojtech Veselý
∗

Among the most popular approaches to non-linear control is gain-scheduled (GS) controller, which can have better
performance than robust and other ones. Our approach is based on a consideration that in linear parameter varying (LPV)
system, scheduling parameters and their derivatives with respect to time are supposed to lie in a priori given hyper rectangles.
To access the performance quality a new quadratic cost function is used, where weighting matrices are time varying depends
on scheduled parameter. The class of control structure includes decentralised fixed order output feedbacks like PID controller.
Numerical examples illustrate the effectiveness of the proposed approach.
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systems, PID controller

1 INTRODUCTION

Consider a linear parameter varying (LPV) system
with state space matrices which are fixed functions of
known vector parameter varying θ(t). This model can
be a linear time invariant (LTI) plant model which is
result from linearisation of the non-linear plants along

trajectories of the known parameter θ(t) ∈ 〈θ, θ〉 . In this
note the following LPV system will be used

ẋ = A(θ(t))x +B(θ(t))u

y = Cx
(1)

where

A(θ(t)) = A0 + A1θ1(t) + . . .+Apθp(t)

B(θ(t)) = B0 +B1θ1(t) + . . .+Bpθp(t)

and x ∈ Rn is the state, u ∈ Rm is a control input,
y = Rl is the measurement output vector, A0 ,B0 ,Ai ,Bi ,
i = 1, 2 . . . p , C are constant matrices of appropriate

dimension, θ(t) ∈ 〈θ, θ〉 ∈ Ω vector of time-varying plant
parameters.

The main motivation for our work lies in [1–5]. In [1]
the author tackles the design problem of gain scheduled
controllers for LPV systems via parameter-dependent
Lyapunov function. Recently, [2] proposed the design
method for gain scheduled problem using a similar tech-
nique to [1]. Improved stability analysis and gain sched-
uled controller synthesis for parameter-dependent sys-
tems are proposed in [3]. Survey of scheduled controller
analysis and synthesis are presented in [4, 5].

In this note our approach is based on

• A consideration of the LPV systems (1), scheduling
parameters θi, i = 1, 2, . . . , p and their derivatives

with respect to time are supposed to lie in a priori

given hyper rectangles, θ ∈ Ω and θ̇ ∈ Ωt .

• Affine quadratic stability (AQS) introduced by [6].

• We use the notion of guaranteed cost to guarantee the
performance of closed-loop system.

• The class of control structure includes decentralised
fixed order output feedback like PID controller.

The paper is organised as follows. Section 2 brings
preliminaries and problem formulation. The main result
is presented in Section 3. In Section 4, numerical example
illustrate the effectiveness of the proposed approach.

2 PRELIMINARIES AND

PROBLEM FORMULATION

Consider an LPV system with p independent schedul-
ing parameters in the form (1). The output feedback con-
trol law is considered for PID controller in the form

u(t) = F (θ)y + Fd(θ)ẏ = F (θ)Cx + FdCdẋ (2)

where

F (θ) = F0 +

p
∑

i=1

Fiθi

is a static output feedback gain scheduled matrix for PI
controller and

Fd(θ) = Fd0
+

p
∑

i=1

Fdi
θi

is a static output feedback gain scheduled matrix for
D part of controller. Substituting (2) to (1) and after
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some manipulation we can obtain the closed-loop system
in the following form

Ad(θ)ẋ = Ac(θ)x (3)

where

Ad(θ) = I −B(θ)Fd(θ)Cd ,

Ac(θ) = A(θ) +B(θ)F (θ)C .

To access the performance quality a quadratic cost func-
tion [7] known from LQ theory is often used. In this note
the original quadratic cost function is used, where weight-
ing matrices depends on scheduling parameters. Using
this approach we can affect on performance quality in
each working point separately. The quadratic cost func-
tion is in the form

J(θ) =

∫ ∞

0

(xTQ(θ)x + uTRu+ ẋTS(θ)ẋ)dt (4)

where

Q(θ) = Q0 +

p
∑

i=1

Qiθi , Qi = QT
i > 0 ,

S(θ) = S0 +

p
∑

i=1

Siθi , Si = ST
i > 0

and R > 0. The guaranteed cost is defined in a standard
way.

Definition 1. Consider the system (1) with control al-
gorithm (2). If there exists a control law u∗ and a positive
scalar J∗ such that the closed-loop system (3) is stable
and the value of closed-loop cost function (4) satisfies
J ≤ J∗ then J∗ is said to be a guaranteed cost and u∗

is said to be guaranteed cost control law for system (1).

Definition 2 [8]. The linear closed-loop system (3) for

θ ∈ Ω and θ̇ ∈ Ωt is affinally quadratically stable if and
only if there exist p+1 symmetric matrices P0, P1, . . . , Pp

such that

P (θ) = P0 +

p
∑

i=1

Piθi > 0 (5)

and for the first derivative of Lyapunov function V (θ) =

x⊤P (θ)x along the trajectory of closed-loop system (3)
holds

dV (x, θ)

dt
= x⊤Vv(θ)x < 0 (6)

where

Vv(θ) = Acd(θ)
⊤P (θ) + P (θ)Acd(θ) +

dP (θ)

dt
,

dP (θ)

dt
=

p
∑

i=1

Piθ̇i ≤

p
∑

i=1

Piρi ,

Acd(θ) = Ad(θ)
−1Ac(θ) ,

assuming Pi > 0, i = 1, 2, . . . p .

From LQ theory we introduce the well known results.

Lemma 1. Consider the closed-loop system (3). Closed-
loop system (3) is affinally quadratically stable with guar-

anteed cost if and only if the following inequality holds

Be = min
u

{dV (θ)

dt
+x⊤Q(θ)x+u⊤Ru+ẋ⊤S(θ)ẋ

}

≤ 0 (7)

for all θ ∈ Ω and θ̇ ∈ Ωt

3 MAIN RESULTS

In this section we presented the gain scheduled con-
troller design procedure which guarantees the affine
quadratic stability and required guaranteed costs for all

θ ∈ Ω and θ̇ ∈ Ωt . The main results for the case of gain
scheduled closed-loop stability analysis reduces to LMI
condition and for gain scheduled controller synthesis to
BMI one.

The main results of this section is given by following
theorem

Theorem 1. Closed-loop system (3) is AQS if there ex-

ists p + 1 symmetric matrices P0, P1, . . . , Pp , satisfying

(5), matrices N1 and N2 and gain scheduled matrices

F (θ) and Fd(θ) satisfying

Mij +Mji < 0 ,

i, j = 1, 2, . . . , p
(8)

where

Mij =

[

W
ij
11

W
ij
12

W
ij
12

⊤

W
ij
22

]

, (9)

W
ij
11

= N1A
ij
d + (Aij

d )
T
N1 +

S0

θ2m
+

1

θm
Si + C⊤

dF
ij
d Cd ,

W
ij
12

= −N1A
ij
c + (Aij

d )
⊤N⊤

2 +
P0

θ2m
+

1

θm
Pi + C⊤

dF
ij
d C ,

W
ij
22

= −N2A
ij
c − (Aij

c )
⊤N⊤

2 +
1

θ

2

m

(

p
∑

k=1

Pkρk +Q0

)

+
1

θm
Qi + C⊤F ij

p C ,

A
ij
d =

1

θ2m
I −

[ 1

θ2m
B0Fd0

+
1

θm
B0Fdi

+
1

θm
BiFd0

+BiFdj

]

Cd ,

F
ij
d =

1

θ2m
F⊤

d0
RFd0

+
1

θm

(

Fd0
RFdi

+ F⊤

di
+ Fdi

RFd0

)

+ F⊤

di
RFdj

,

θm =

p
∑

i=1

θi ,

Aij
c =

1

θ2m

(

A0 +B0F0C
)

+
1

θm

(

Ai +B0FiC +BiF0C
)

+ BiFjC ,
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Fig. 1. Exogenous signal α(t)

F
ij
dr

=
1

θ2m
F⊤

d0
RF0 +

1

θm

(

F⊤

d0
RFi + Fdi

RF0

)

+Fdi
RFj ,

F ij
p =

1

θ2m
F⊤

0
RF0 +

1

θm

(

F⊤

0
RFi + FiRF0

)

+FiRFj .

P r o o f . Proof is based on Lemma 1. Time deriva-
tive of Lyapunov function using free matrix weighting
approach is

dV

dt
= z⊤

[

Z11 Z12

Z21 Z22

]

z (10)

where

Z11 = N1Ad(θ) +A⊤

d (θ)N
⊤

1
,

Z12 = −N1Ac(θ) +A⊤

d (θ)N
⊤

2 + P (θ) ,

Z21 = −A⊤

c (θ)N
⊤

1
+N2Ad(θ) + P (θ) ,

Z22 = −N2Ac(θ)A
⊤

d (θ)N
⊤

2
+

p
∑

k=1

Pkρk ,

N1, N2 ∈ Rn×n are auxiliary matrices.

When one substitutes to the third part of (7) control
algorithm (2) and the obtained results with (3) to (7)
after some manipulation we obtain (9). The proof is com-
pleted.

4 EXAMPLE

An illustrative example is taken from [9]. Consider
a simple non-linear plant with parameter varying coef-
ficients

ẋ(t) = a(α)x(t) + b(α)u(t) ,

y(t) = x(t)
(11)

where α(t) ∈ R is an exogenous signal that changes the
parameters of the plant as follows

a(α) = −6−
2

π
arctan

α

20
, (12)

b(α) =
1

2
+

5

π
arctan

α

20
. (13)

Let the aim is to design gain-scheduled PID controller

which will guarantee the closed-loop stability and guar-

anteed cost for α ∈ 〈0, 100〉 . We will demonstrate that

with our gain-scheduled controller design we can obtain

for closed-loop system practically identical behaviour for

each working point. To be able to demonstrate this fea-

ture, let us divide the working area to 2 sections (with

3 working points) so that in each area where the plant

parameter changes they are nearly linear (Fig. 1 – the

green lines indicates the chosen working points).

In these working points calculated transfer functions

are

Gs1

∣

∣

α=0
=

0.5

s+ 6
, Gs2

∣

∣

α=30
=

2.064

s+ 6.626
,

Gs3

∣

∣

α=100
=

2.686

s+ 6.874
.

(14)

We transform the above transfer functions into time do-

main to obtain scheduling model in the form (1). The

obtained model was extended for gain scheduled PID con-

troller design. The extended model is given as follows

A0 =

[

−6.4370 0
1 0

]

, A1 =

[

−0.3130 0
0 0

]

,

A2 =

[

−0.1240 0
0 0

]

, B0 =

[

1.5930
0

]

,

B1 =

[

0.7820
0

]

, B2 =

[

0.3110
0

]

,

C =

[

1 0
0 1

]

, D = 0 .

Using Theorem 1 with weighting matrices Qi = qiI ,
q1 = q2 = q3 = 1 × 10−4 , R = rI , r = 1, Si = siI ,
s1 = s2 = s3 = 1 × 10−7 we obtain gain scheduled

controller in the form

GrGS
= Gr0 +Gr1θ1 +Gr2θ2 (15)

where

Gr0 =
0.3033s2 + 2.3036s+ 2.0949

s
,

Gr1 = −
3.93× 10−6s2 + 8.86× 10−5s+ 3.13× 10−5

s
,

Gr2 = −
0.0724s2 + 1.6323s+ 0.5773

s
.

Simulation results (Figs. 2, 3) confirm, that Theorem 1

holds, but we can see also that with equal qi , si we do

not obtain identical behaviour in each working point.
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Fig. 2. Simulation results with GSC (15)
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Fig. 3. Simulation results with GSC (15) – zoomed
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Fig. 4. Simulation results with GSC (16)
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Fig. 5. Simulation results with GSC (16) – zoomed
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Fig. 6. Simulation results with GSC (17) Fig. 7. Simulation results with GSC (17) – zoomed

Amplitude

0.6

0.8

t(s)

0 50 100 150 200 250

2

3

y (t)

300

0.4

w (t)

u (t)

Fig. 8. Simulation results (y(t), w(t), u(t)) with GSC (16) Fig. 9. Simulation results (θ(t), α(t)) with GSC (16)



120 A. Ilka — V. Veselý: GAIN-SCHEDULED CONTROLLER DESIGN: VARIABLE WEIGHTING APPROACH

We can change the weighting matrices in the 1. work-
ing point to get required performance quality. An an-
other gain-scheduled controller was obtained with weight-
ing matrices Qi = qiI , q1 = 1×10−2 , q2 = q3 = 1×10−4 ,
R = rI , r = 1, Si = siI , s1 = s2 = s3 = 1× 10−7 ,

GrGS
= Gr0 +Gr1θ1 +Gr2θ2 (16)

where

Gr0 =
0.5554s2 + 0.8513s+ 2.7286

s
,

Gr1 = −
0.0064s2 + 0.0559s+ 0.0653

s
,

Gr2 = −
0.0589s2 + 0.5173s+ 0.6048

s
.

Simulation results (Figs. 4, 5) confirm, that with variable
weighting matrices we can affect performance quality sep-
arately in each working points and we can tune the system
to the desired conditions.

With our gain-scheduled controller design approach we
can tune also the change of states with weighting matrices
Si and we can influence to the overshot and oscillation
and make the system more slowly.

Let the system to be more slowly in the last working
point (WP3 : α = 100). An another gain-scheduled con-
troller was obtained with weighting matrices Qi = qiI ,
q1 = 1 × 10−2 , q2 = q3 = 1 × 10−4 , R = rI , r = 1,
Si = siI , s1 = s2 = 1× 10−7 , s3 = 1× 10−1

GrGS
= Gr0 +Gr1θ1 +Gr2θ2 (17)

where

Gr0 =
0.2161s2 − 0.1509s+ 0.7893

s
,

Gr1 = −
0.0095s2 + 0.1084s+ 0.3770

s
,

Gr2 = −
0.0088s2 + 0.1010s+ 0.3515

s
.

Simulation results are shown in Figs. 6, 7. Gain-scheduled
controller obtained with our controller design method is
remains stable under slowly parameter changes too. This
is shown in Figs. 8, 9 with gain-scheduled controller (16).

5 CONCLUSION

This paper addresses the problem to design gain-
scheduled controller which guarantee the closed-loop
stability and performance for all scheduled parameter
changes. The proposed original procedure is based on
Lyapunov theory of stability, notion of guaranteed cost
and BMI. Using original variable weighting matrices we
can affect performance quality separately in each working
points and we can tune the system to the desired condi-
tion through all parameter changes. Numerical example
illustrate the effectiveness of the proposed approach.
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