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A novel data-driven technique to produce multi- sensor
virtual responses for gas sensor array-based electronic noses

Sumit Srivastava1,2 , Shiv Nath Chaudhri1,3 ,
Navin Singh Rajput1∗ , Ashutosh Mishra4,5

Accurate detection of gas/odor requires highly selective gas sensor. However, the high-performance classification of
gases/odors can be achieved using partial-selective gas sensors. Since 1980s, an array of broadly tuned (partial-selective) gas
sensors have been used in several fields of science and engineering, and the resulting gas sensing systems (GSS) are popularly
known as electronic noses (e-Noses). The combination of similar or different sensors in the array indirectly compensates for
the requirement of high selectivity in GSS. Further, e-Nose’s performance inevitably depends on the salient features drawn
from the initial responses of the gas sensor array (GSA). So obtained features are referred to as the responses of virtual
sensors (VS). In this paper, we have proposed the three-input and three-output (TITO) technique to derive efficient virtual
sensor responses (VSRs) which outperform its well-published peer technique. A GSA consisting of four elements is used to
demonstrate the proposed technique. Our proposed technique augments the VSRs by four times compared to its peer. The
efficacy of our proposed technique has been tested using nine fundamental classifiers, viz., linear support vector machine
(100%), decision tree (97.5%), multi-layer perceptron neural network (100%), K-nearest neighbor (85%), logistic regression
(100%), Gaussian process with radial basis function (95%), linear discriminant analysis (97.5%), random forest (100%),
and AdaBoost (95%). Ten-fold cross-validation has been used to minimize the biasing impact of the intra- and inter-class

variance. With the result, four classifiers successfully provide an accuracy of 100 percent. Hence, we have proposed and
vindicated an efficient technique.
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1 Introduction

The previous three decades have evidenced the prolif-
eration of designing electronic noses (e-Noses) to mimic

the mammalian olfactory system (MOS) [1]-[3]. A vari-
ety of real- life paradigms saw the spike in applications

of e-Nose for areas such as environment [4], healthcare

[5], automobile [6], agriculture [7], foods & beverages [8],
[9], beauty & cosmetics [10], robotics [11], safety & se-

curity [12], forensics [13], textiles [14], coal mines [15],

etc. A brief introduction to e-Nose could be beneficial
to the readers to understand the hypothesis behind vir-

tual gas sensors (VGSs) and virtual gas sensor responses
(VGSRs). Accurate detection of gas/odor requires a sus-

ceptible and specific gas sensor. The fabrication of such

a gas sensor highly depends on the selection of sens-
ing material leading the researchers to an endless loop

of searching for the ideal material. Moreover, thus de-

signed gas sensors respond to multiple gases/odors apart
from the perfect condition of responding to the particular

gas/odor. This cross- selectivity for multiple gases/odors

or non-selectivity for the target gas/odor is the crucial
issue while fabricating the gas sensors. This issue of se-

lectivity while detecting/classifying gases/odors was over-
come using an array of partially selective gas sensors [16].

This breakthrough introduced a surge in utilization of
gas sensor array (GSA). Although, to the best of our in-
formation, no rule fixes the use of the optimal number
of gas sensors in a GSA. This unconstrained use of gas
sensors ensures hardware redundancy in the GSA. Also,
using more gas sensors leads to considerable power con-
sumption, occupies more area on the chip or mounting
platform, makes circuitry complex, and increases the fail-
ure possibility of the gas sensor system (GSS). Thereby
the concept of virtual gas sensors (VGSs) was proposed to
use as few as possible physical gas sensors. In the recent
literature, there are two popular ways to derive virtual
sensors (VSs) or virtual sensor responses (VSRs). In one
way, a single gas sensor was used, but their dynamic re-
sponses were captured by varying physical entities such
as affinity [17], temperature [18], and resonant frequency
[19], etc. In another way, the responses of a few physi-
cal gas sensors are used to derive the VGSRs using some
transformation techniques [20].

In [17], a virtual sensor array was derived by modulat-
ing the virtues of affinity of a single sensor realized based
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Fig. 1. Sensor responses with dynamic ranges: (a) – initial sensor responses of physical gas sensors, (b) – virtual sensor responses derived
using the NDSRT technique, and (c) – virtual sensor responses derived using the proposed TITO technique with enhanced patterns
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Fig. 2. 3D scatter plots for first three principal components corresponding to: (a) – initial sensor responses of physical gas sensors,
(b) – virtual sensor responses derived using the NDSRT technique, and (c) – virtual sensor responses derived using the proposed TITO

technique with enhanced patterns

on the principle of electrochemical chemo-transistor. The
related modulation was achieved by converting the sen-
sor’s chemo- sensitive material between the varying affin-
ity of redox states, controlled by the electrical process.
The hypothesis of the virtual sensor array was applied
to fish freshness analysis. Far et al , (2009) applied the
concept of temperature modulation to virtually increase
the number of sensors. In their work, the metal oxide
(MOX)-based gas sensor was used to design a biological
olfactory system (BOS). Here, the temperature modula-
tion was carried out with the help of a micro-hotplate.
Their approach improved the resulting performance and
achieved a score of 96 percent [18]. Moreover, by modu-
lating the frequency of several resonant modes, a virtual
sensor array was performed by Li et al (2022) for the iden-
tification of volatile organic compounds (VOCs). They
achieved the experimental results using machine learn-
ing algorithms with identification scores of 95.8 and 87.5
percent, respectively, for VOCs and mixtures [19].

Furthermore, data-driven VSs or VSRs are also pop-
ular in the context of e-Noses. As quoted earlier, in this
way, the VSRs have been derived from a few physical
gas sensor responses applying some transformation tech-
niques. In [20], a Normalized Difference Sensor Response
Transformation (NDSRT) technique was used to obtain

VSRs. For the considered dataset, they have successfully
increased the number of VSRs by (n − 1)/2! times of
initial physical gas sensor responses, where n is the num-
ber of gas sensors in the related GSA. Moreover, they
assessed their technique qualitatively, producing well-
discriminable responses to classify the gases/odors. They
did not demonstrate the classification of gases/odors ex-
perimentally for comparing the results quantitatively.
Furthermore, zero padding and principal component anal-
ysis (PCA)-based VSRs have been used in [21].

However, the PCA-based approach does not increase
the number of VSRs but provides the facility of VSR se-
lection as per requirement. In this paper, we have pro-
posed the three-input and three-output (TITO) tech-
nique for data-driven VSRs. The virtue of our proposed
technique is that it increases the number of VSRs by
6(n − 1)(n − 2)/3! times. Moreover, it produces the up-
scaled and down-scaled VSRs that scale-up the dynamic
range of responses. In this regard, the enhanced dynamic
range facilitates subsequent enhancement in the patterns
of responses as shown in Fig. 1. Thus, the obtained VSRs
using the proposed technique TITO bring the saliency for
classification of gases/odors with higher accuracy. The
efficacy of proposed technique has been verified using
nine machine learning algorithms, viz, linear support vec-
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tor machine (L- SVM), decision tree (DT), multi-layer
perceptron neural network (MLPNN), K-nearest neigh-
bor (KNN), logistic regression (LR), Gaussian process
with radial basis function (GP- RBF), linear discrimi-
nant analysis (LDA), random forest (RF), and AdaBoost
(AB). Experimental results show that our proposed tech-
nique outperforms the well-published data- driven VSRs
technique “NDSRT”. Furthermore, four of nine machine
learning algorithms achieve a perfect classification score
by using our proposed technique.

2 Materials and methods

In this section, details of our proposed approach have
been presented under specific headings.

Physical gas sensor response

An e-Nose system basically possesses an array of par-
tially selective gas sensors. And the resulting systems are
widely popular and attracts researchers even today. The
diversity of e-Nose applications makes it one of the best
multidisciplinary streams in the domain of gas sensing.
Current paradigms in this domain pile up the applied ar-
tificial intelligence (AI) to make the advanced GSSs or
e-Noses robust and reliable using intelligent data-driven
(pre-) processing. The considered dataset is the outcome
of an integrated four-sensing elements (eg, tin oxide,
molybdenum oxide, cadmium sulfide, and zinc oxide)-
based GSA fabricated by thick-film technology. The com-
plete detail can be seen through the references [20], [22].
Including a GSA, an e-Nose consists of three schematic
building blocks, as shown in Fig. 3. The related metal-
oxide-based GSA works on the principle of change in re-
sistance of the sensing elements. Furthermore, exposing
it to the considered gases/odors, four physical sensor re-
sponses are captured for four considered gases/odors, viz,
acetone, carbon tetrachloride, ethyl-methyl ketone, and
xylene. The performance of the GSA can be improved
using VSRs, which have more capacity to discriminate
the data [20].

Contextual outline of data-driven VSRs

It would be better to brief the NDSRT technique
first that has been chosen to compare with the pro-
posed data-driven TITO techniques for multi-sensor vir-
tual responses. The initial responses of physical gas sen-
sors are inadequate to distinguish among the considered
gases/odors. Therefore, feature extraction and selection
are the two paradigms used to enhance the discriminabil-
ity. Thus, the curated datasets are obtained that consist
of salient extracted/selected responses capable of provid-
ing high performance. The data-driven VSRs falls in the
arena of feature extraction. NDSRT is a well-published
data driven VSR technique that generates (n − 1)/2!
times VSRs for n physical sensor responses. A mathe-
matical algorithm for NDSRT can be understood as:

Consider a GSA with n physical gas sensors responsi-
ble for producing n initial sensor responses. Let X stand
for an initial physical sensor response then it can be rep-
resented as X = {x1, x2, . . . , xi, . . . , xj , . . . xn}, where

xi and xj are the responses of i -th and j -th physical

gas sensors. In this way, NDSRT-based virtual sensor re-
sponse can be derived as,

r =
xi − xj

xi + xj
, i < j. (1)

Since it takes two physical sensor responses at a time,

producing

(
n
2

)
= n(n − 1)/2! VSRs. For the consid-

ered dataset, NDSRT produces

(
4
2

)
= 6 VSRs for four

physical gas sensor responses.

Data acquisition

Initial physical sensor responses

Feature extraction / selection

Virtual sensor responses

Gas / odor classification

Machine learning algorithms

GSA

VSRs

Pattern
recognition

Fig. 3. Schematic building blocks of an electronic nose GSA: gas
sensor array, VSRs: virtual sensor responses, and pattern recogni-

tion: machine learning algorithms

In contrast, we have proposed the TITO technique for

generating VGSRs. It is capable of generating more VSRs
than the NDSRT technique. For n physical gas sensor re-

sponses, the TITO technique produces (n−1)(n−2) times
VSRs for n physical sensor responses. Half of them, have

up-scaled values, and the rest half have down-scaled val-

ues compared to the initial responses. The synergy of up-
scaled and down-scaled responses scale-up the dynamic

range of responses. In this regard, the enhanced dynamic
range facilitates subsequent enhancement in the patterns

of responses as shown in Fig. 1. Thus, the obtained VSRs

using the proposed technique TITO bring the saliency for
classification of gases/odors with higher accuracy. While

compared to the NDSRT technique, the TITO technique
produces (2!)(n− 2) times more VSRs, proving the pro-

posed technique’s adequate capacity. The mathematical

formulations to derive TITO technique-based VSRs can
be understood as:

Considera GSA with n physical gas sensors responsi-

ble for producing n initial sensor responses. Let X stand
for an initial physical sensor response then it can be rep-

resented as X = {x1, x2, . . . , xi, . . . , xj , . . . , xk, . . . , xn},
where xi and xj and xk are the responses of i -th, j -th
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and k -th physical gas sensors. In this way, TITO-based
virtual sensor response for i < j < k can be derived as,

t1 = xi + xj +
xixj

xk
, t2 = xi + xk +

xixk

xj
, (2)

t3 = xj + xk +
xjxk

xi
, t4 =

xixj

xi + xj + xk
, (3)

t5 =
xixk

xi + xj + xk
, t6 =

xjxk

xi + xj + xk
, (4)

Since it takes three physical sensor responses at a time,

for the considered dataset, TITO produces 6

(
4
3

)
= 24

VSRs for four physical gas sensor responses.

Machine Learning Algorithms

In this work, we have used nine machine-learning algo-
rithms for the classification of the considered gases/odors.
These are as follows:

The linear SVM classifier has been implemented based
on the SVM library LibSVM [23]. For the multi-class clas-
sification objective, it uses one-vs-one (OVO) policy. Usu-
ally, the gas sensor responses (GSRs) may be affected
by sensor drift, therefore, a stronger L2 regularization
has been used. The decision tree algorithm has also been
used for the aforesaid purpose. Fully grown trees with-
out pruning have been used since GSRs are limited while
using steady-state values. In contrast, while using tran-
sients (larger dataset) the memory consumption can be
reduced using pruning which also results in less complex-
ity and reduced size of the trees. A neural network-based
single-layer MLP has been used with 100 neurons. It uses
the Relu activation function, a learning rate of 0.001, and
stochastic gradient descent (SGD) optimizer for 100 iter-
ations to converge. The k-nearest neighbors (KNN) classi-
fier has been used with 5 neighbors using uniform weights.
For distance metric, the standard Euclidean space has
been used. A logistic regression-based classifier has also
been used that uses Newton’s algorithm of the conjugate
gradient. We have used 100 iterations to converge the
algorithm. The gaussian process (GP) is a classification
algorithm that works on Laplace approximation. A radial
basis function (RBF) is used as the kernel for this classi-
fier 1.0 RBF (1.0). The prediction approximates posterior
using Newton’s method in 100 iterations. It combines the
binary predictors to achieve multiclass predictions using
the one-vs-rest (OVR) policy. Linear Discriminant Anal-
ysis (LDA) classifier utilizes Bayes’ rule to obtain the
class conditional densities for generating a linear decision
boundary. A random forest (RF) is an ensemble classifier
that uses multiple decision trees (DTs) for classification
on several subsets of the considered dataset. It uses the
mean of such DTs to enhance the predictive score and re-
duce the adversity caused by overfitting. The split process
considers ten DTs up to the five levels in the forest. The
AdaBoost algorithm is also an ensemble classifier that
aggregates predictions from multiple variants. We have
used its 50 variants with a unit learning rate. Also, the

SAMME.R’ (Stagewise Additive Modelling using a Multi-

class Exponential loss function, where R stands for Real)

algorithm [24] has been used for boosting that terminates

at the 50th iteration. It works faster than its predecessor

SAMME’ and achieves a lower error rate even using a few

iterations.

3 Experimental results and discussion

Results

This paper proposes a novel TITO technique for multi-

sensor virtual responses. In this technique, combinations

of three physical sensor responses are chosen out of n

using

(
n
3

)
. Thus, the obtained group of three physi-

cal responses produces six virtual sensor responses using

equations (2)-(7). Three of six are up-scaled, and the rest

three are down-scaled versions of initial physical sensor

responses. Hence, we have six VSRs for each combina-

tion resulting in total VSRs 6

(
n
3

)
. The simultaneous

use of up-scaled and down-scaled responses scale-up the

dynamic range of responses. In this regard, the enhanced

dynamic range facilitates subsequent enhancement in the

patterns of responses as shown in Fig. 1. The proposed

technique has been verified by demonstrating VSRs on

an authentic dataset recorded in our departmental lab-

oratory. The proposed technique was successfully com-

pared with the well-published data-driven virtual sen-

sor response technique NDSRT’. The classification per-

formance of the gases/odors using the considered dataset

has been compared in the context of the initial physi-

cal sensor responses, NDSRT and TITO techniques-based

virtual sensor responses. While using the mentioned ma-

chine learning algorithms we have applied ten- fold cross

validation to suppress the impact of intra- and inter-

class variance. Table 1, to Tab. 3 have shown the perfor-

mance of classifiers on initial physical sensor responses,

NDSRT and TITO techniques-based virtual sensor re-

sponses. Moreover, the performance comparison has been

shown in Tab. 4. As depicted depicts, four machine learn-

ing algorithms can classify the considered gases/odors

with an accuracy of 100%.

Conventionally, initial physical gas sensor responses

are inadequate in satisfactorily classifying the gases/odors

due to suffering from various aspects, viz., drift, noise,

outliers, etc. Therefore, several strategies are applied to

overcome the mentioned issues using drift correction or

drift removal algorithms, noise suppression methods, and

outliers’ elimination techniques. In addition to such ef-

forts, feature selection and feature extraction methods

are also used to enhance the discriminability of the data.

The VSRs belong to the paradigm of feature extraction

that enhance the performance of e-Noses. As of now, it
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Table 1. Performance of the considered machine learning algorithms (classifiers) for gases/odors’ classification using the intial physical
gas sensor responses

Learning
Test accuracy for ten-folds of cross validation

Average accuracy

algorithm ±σ

L-SVM 0.75 0.75 0.75 1.00 0.75 0.75 0.50 0.75 1.00 0.50 0.75 ±0.158

DT 1.00 0.75 1.00 1.00 0.75 1.00 0.75 1.00 1.00 1.00 0.925 ±0.114

MLPNN 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 0.950 ±0.100

KNN 0.50 0.75 1.00 1.00 0.75 0.75 0.50 0.75 0.75 0.75 0.75 ±0.158

LR 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 0.950 ±0.150

GP-RBF 1.00 0.75 1.00 1.00 0.75 1.00 0.75 1.00 1.00 1.00 0.925 ±0.114

LDA 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 1.00 0.950 ±0.100

RF 0.75 1.00 1.00 1.00 0.75 0.75 0.75 1.00 1.00 1.00 0.900 ±0.122

AB 0.50 0.75 1.00 0.50 0.75 0.50 0.75 1.00 0.50 0.75 0.700 ±0.187

Table 2. Performance of the considered machine learning algorithms (classifiers) for gases/odors’ classification using the NDSRT
technique-based virtual gas sensor responses

Learning
Test accuracy for ten-folds of cross validation

Average accuracy

algorithm ±σ

L-SVM 0.75 0.75 0.75 1.00 0.75 0.75 0.50 0.75 1.00 0.50 0.75 ± 0.158

DT 1.00 0.75 1.00 1.00 0.75 1.00 0.75 1.00 1.00 1.00 0.925 ± 0.114

MLPNN 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 0.950 ± 0.100

KNN 0.50 0.75 1.00 1.00 0.75 0.75 0.50 0.75 0.75 0.75 0.75 ± 0.158

LR 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 0.950 ± 0.150

GP-RBF 1.00 0.75 1.00 1.00 0.75 1.00 0.75 1.00 1.00 1.00 0.925 ± 0.114

LDA 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 1.00 0.950 ± 0.100

RF 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 0.75 1.00 0.925 ± 0.160

AB 0.50 0.75 1.00 0.50 0.75 0.50 0.75 1.00 0.50 0.75 0.700 ± 0.187

Table 3. Performance of the considered machine learning algorithms (classifiers) for gases/odors’ classification using the TITO technique-
based virtual gas sensor responses

Learning
Test accuracy for ten-folds of cross validation

Average accuracy

algorithm ±σ

L-SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ±0.000

DT 1.00 1.00 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 0.975 ±0.075

MLPNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ±0.000

KNN 0.50 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.850 ±0.165

LR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ±0.000

GP-RBF 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.950 ±0.150

LDA 1.00 1.00 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 0.975 ±0.075

RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ±0.000

AB 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 1.00 0.950 ±0.100

is obvious that we have four initial physical responses for

the considered dataset.

In this case, NDSRT technique produces only six VSRs

that are merely 1.1/2 times of the number of initial phys-

ical responses. In contrast, our proposed TITO technique

produces more virtual sensors than NDSRT. It produces

6 times VSRs to the initial responses and 4 times to

the NDSRT-based VSRs. Thus, the produced VSRs can

be considered as (pre-)proposed or curated samples of
dataset that have more capability to discriminate among
the considered gases/odors. The patterns enhancement
through our proposed TITO technique is clearly visible
in Fig. 1.

Disscussion

Results have shown the outperformance of the pro-
posed data-driven technique to produce multi-sensor vir-
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Table 4. Comparison of the performances of the considered ma-
chine learning algorithms (classifiers) for gases/odors’ classification
using intial physical gas sensor responses, NDSRT technique-based
virtual gas sensor responses, and TITO technique-based virtual gas

sensor responses

Machine Average accuracy±σ

learning Initial NDSRT- TITO-

algorithm response based VSRs based VSRs

L-SVM 0.750 ±0.158 0.750 ±0.158 1.000 ±0.000

DT 0.925 ±0.114 0.925 ±0.114 0.975 ±0.075

MLPNN 0.950 ±0.100 0.950 ±0.100 1.000 ±0.000

KNN 0.750 ±0.158 0.750 ±0.158 0.850 ±0.165

LR 0.950 ±0.150 0.950 ±0.150 1.000 ±0.000

GP-RBF 0.925 ±0.114 0.925 ±0.114 0.950 ±0.150

LDA 0.950 ±0.100 0.950 ±0.100 0.975 ±0.075

RF 0.900 ±0.122 0.925 ±0.160 1.000 ±0.000

AB 0.700 ±0.187 0.700 ±0.187 0.950 ±0.100

tual responses (e.g., TITO). Now the discussion about

the outcomes of all the techniques is being presented. As

shown Tab. 1, MLPNN, LR, and LDA produces the same

average accuracy but the first and third of them are more

efficient due to the low standard deviation. Six out of nine

machine learning algorithms are capable of providing 90

or more 90 percent average accuracy using initial physical

gas sensor responses. Evidently, virtual sensor responses

are derived to obtain more salient responses that must

have enhanced capability to discriminate among the con-

sidered gases/odors. From Fig. 1, it is neatly shown that

the NDSRT-based VSRs coincides and do not enhance the

patterns confined in the responses. Also, according to the

Tab. 2, NDSRT-based VSRs do not show the performance

enhancement. Except for RF machine learning algorithm

each one show similar performance. Moreover, the per-

formance while using RF merely enhanced by 2.5%. Al-

though, NDSRT upscales the dynamic range of VSRs (as

shown in Fig. 1) but not up to the mark so that a sig-

nificant performance enhancement can be produced. In

contrast, As shown in Tab. 3, TITO-based VSRs are ca-

pable of delivering 100% average accuracy while using

four machine learning algorithms, viz, L-SVM, MLPNN,

LR, and RF. Except for KNN, each classifier delivers av-

erage accuracy of 95 or more than 95 percent using our

proposed technique. From the Tab. 4, the least perform-

ing classifier (eg, KNN) using our technique is capable

of enhancing the classification performance by 10% com-

pared to its peers. All these comparisons show the efficacy

of our proposed TITO technique for generating efficient

multi-sensor virtual responses that enhance the classifi-

cation performance.

4 Conclusion

The efficient virtual sensor response technique proves
the potential for performance enhancement of electronic
noses. Conventionally, the gas sensor array consists of
multiple sensors regardless of the optimal number of sen-
sors. This practice evidently consumes more power and
occupies more space on chips. Also, more sensor elements
lead to frequent recalibration, which is tedious and time-
consuming. A large number of sensor elements is also re-
sponsible for the extensive drift in the captured datasets.
Thus, instead of using multiple sensor elements, the con-
cept of virtual sensor responses would be beneficial. The
potential of VSRs has been proved by the outperformance
of the TITO technique (as shown in Tab. 4). Its efficacy
has also been proven by producing efficient virtual sen-
sor responses whose derivation follows a straightforward
manner feasible to test in laboratory conditions. The po-
tential use of such techniques allows the development of
more efficient electronic noses. Consequently, the virtual
multi-sensor responses deliver outstanding performance
and save cost and power.
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