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Object classification with aggregating multiple spatial views  

using a machine-learning approach 

 

Šimon Grác1, Peter Beňo1, František Duchoň2*, Michal Malý1, Martin Dekan2 

 

The article proposes a solution for object classification using multiple views generated from 3D data rendering and 

convolutional neural networks. For presentation purposes and easier verification of the solution, an application was developed 

to create views of 3D objects, classify them using the selected CNN, and evaluate the performance of the CNN. The evaluation 

is based on metrics and characteristics described in the article. Seven testing objects were used to verify the proposed solution; 

five CNNs were tested for each.  
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1 Introduction 

In recent years, convolutional neural networks 

(CNNs) have made significant strides in enhancing the 

speed and accuracy of object classification. Despite 

these notable achievements, there are situations in which 

these networks falter, especially when dealing with 

objects presented from various angles or positions. In 

such instances, integrating a 3D scene model proves 

invaluable, as it facilitates the generation of diverse 2D 

perspectives of the same scene. Subsequently, 

employing CNNs for object classification based on these 

perspectives emerges as an effective strategy. 

When addressing this issue, it is unnecessary to 

construct a custom CNN architecture from scratch. 

Instead, it is recommended to seek pre-trained networks 

specifically tailored for this task. These networks, 

known as classification networks, include well-

established architectures such as Google's Inception, 

renowned for their remarkable balance between 

performance and computational demands [1]. Another 

successful recent entrant is ResNet, which demonstrates 

comparable results [2] [3]. YOLO is another architecture 

we considered, owing to its prowess in object 

classification, particularly its detection speed [4, 5, 16]. 

Given that our approach independently generates 3D 

data, we can tailor the considered objects to align with 

the selected network's training. The effectiveness of our 

proposed solution is evaluated based on the predicted 

object occurrence percentage in the image. 

Notably, CNNs are not exclusively employed for 

object detection but also for object segmentation, i.e., 

isolating objects from their backgrounds. Noteworthy 

architectures designed to address this challenge include 

FCNs [6, 7, 19] and Mask R-CNN [8-11, 20]. This work 

strives to assess the performance and adaptability of 

networks, aiming to select the most suitable one for 

classifying specific objects. It involves considering 

variations of the same networks or networks trained on 

different objects. 

This article centres on harnessing three-dimensional 

data to enhance the reuse of existing and newly 

developed machine-learning procedures. Typically, 

these procedures excel in controlled conditions, where 

images are captured under ideal lighting without 

extraneous disturbances. Under such circumstances, the 

input image can be predicted, simplifying the neural 

networks' task. Our proposed solution employs a 3D 

model of an object that a trained neural network 

endeavours to locate in its 2D representation. We 

leverage a 3D scene model in conjunction with CNNs to 

bolster the reliability of object classification. 

Specifically, we demonstrate that aggregating data from 

multiple 2D perspectives within a 3D scene model yields 

higher object classification accuracy. This approach 

permits the "recycling" of existing neural networks, 

trained on extensive datasets, to classify objects from 

various viewpoints. Furthermore, labeling objects based 

on aggregated statistics derived from numerous 

perspectives instills greater confidence than relying on a 

single viewpoint. 

Moreover, the paper presents experimental findings 

illustrating the substantial enhancements in object 

classification reliability achievable through our 
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approach. Our research reveals that aggregating labels 

from diverse views enables identifying and rectifying 

errors in object classification. Based on these results, we 

conclude that label aggregation within a 3D scene model 

presents a promising avenue for augmenting the 

reliability of object classification using convolutional 

neural networks. 

The presented research is industry-oriented on the 

typical application of bin picking [18] with industrial 

robots. Created point clouds in bin-picking applications 

analyse the optimal selection of an object that the robot 

can pick from the bin. It is especially possible for objects 

for which there is a CAD model. However, in the 

industry, many objects do not have CAD models. We 

focus our research on such objects. The proposed 

approach offers the possibility of effectively using 

existing CNNs to classify objects in a 2D scene on 

created point clouds, which are commonly used in bin-

picking applications. Thus, this approach makes using 

significantly successful classifiers (2D images + CNN) 

more efficient for identification in point clouds without 

creating new structures of CNNs and new datasets [15, 

17].  

The article structure comprises five sections. The 

initial section outlines the procedure for acquiring 3D 

models of selected objects. The second section 

elucidates the method for representing these 3D models 

in 2D space. The third section deliberates on the 

selection of CNNs subjected to testing. In the fourth 

section, the methodology for evaluating the experiments 

detailed in the fifth section is expounded upon. 

 

2 Methods of obtaining 3D models of selected objects 

PhoXi 3D Scanner S [12] was used to create a point 

cloud representing the surface of the scanned objects. 

The overall scene was created using the Meshlab tool. 

The 3D object generated exhibits areas devoid of data. 

This absence of data is attributed to the fact that these 

regions were concealed from the sensor's view due to 

other sections of the object obstructing them. 

Consequently, capturing the object from diverse angles 

is recommended to address this limitation. A rotary table 

(Fig. 1) was used to achieve such capturing. When set in 

motion, this rotary platform systematically produces  

a predetermined quantity of 3D images, contingent upon 

the desired fidelity of the final model. The halting of the 

rotary platform is carefully synchronized with the object 

scanning process. 

 

 

 

 

Fig. 1. Rotary table and 3D model of the scene  
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The resulting 3D model begins with a collection of 

generated point clouds and information regarding the 

transformations between camera views. The output is a 

3D model of the object in mesh format. This 

multifaceted process comprises the following key steps: 

1. Alignment: The alignment of input scanned data 

into a unified coordinate system. 

2. ICP Algorithm: Utilizing a chosen ICP algorithm 

to minimize the distances between individual scan 

points. It involves finding the nearest neighbors for each 

point in one scan within the next scan and minimizing 

the distances between these points. 

3. Data Filtering: The filtration of data that does not 

pertain to the scene, often caused by noise, reflections, 

and other undesired artifacts. It involves verifying the 

presence of processed points from one scan in 

subsequent scans. 

4. Unification and Surface Reconstruction: Integra-

ting the scans into a cohesive whole and performing 

surface reconstruction. It can be achieved through 

techniques like Poisson reconstruction or other methods 

that approximate a function based on the input points 

defining the object's surface. 

5. Triangular Mesh: Obtaining the final triangular 

mesh using a chosen algorithm for triangulation, such as 

Marching cubes or Tetrahedra. 

The process of amalgamating multiple scans is 

visually represented in Fig. 2, where each new scan is 

denoted in a distinct color. The ultimate 3D model is 

constructed from a total of 15 scans. The resulting point 

cloud is depicted in Fig. 3. Still, it necessitates further 

refinement, encompassing the removal of erroneous 

data, surface reconstruction, and the eventual acquisition 

of the triangular mesh, as shown in the figure. 

Subsequently, a series of 3D models are generated, 

which will serve as the basis for generating views and 

subsequent classification using CNN. Examples of these 

generated 3D models are showcased in Fig. 4. 

 

 

 

Fig. 2. The process of merging scans. The data from each new scan are depicted in a different colour  

on the image, and the final object consists of a total of 15 scans (the first scan is in the top left corner, 

the last scan is in the bottom right). The resulting scene displays 3 game figurines, a dice, and a rubber 

duck. 
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Fig. 3. Resulting point cloud (left) and mesh (right) 

 

 

Fig. 4. Example of created 3D models 

 

 

Fig. 5. The texture used to color the 3D model and the resulting colored 3D model 

 

 

3 Generating 2D views of 3D object models 

We employed an OpenGL environment to generate 

2D views of 3D object models, configuring the 

following settings: 

• Lighting: A direct white light source was directed 

above the object. 

• Background: A white background was utilized. 

• Projection Matrix: The projection matrix featured 

perspective image settings with fixed image cropping 

parameters. It defined the distances on the z-axis 

from which the projection is considered. 

• Model Matrix: A fixed model matrix was employed. 

• Image Matrix: A gradual transformation of the image 

matrix was executed to simulate the camera's rotation 

around the object. 

To generate views of the 3D model, we moved the 

virtual camera along an imaginary sphere. The point 'P,' 

situated on the sphere's surface, is characterized by three 

parameters: 

• Radial Distance (r): Representing the distance of 

point 'P' from the fixed starting point 'S,' located at 

the sphere's center. 
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• Polar Angle (θ): This angle originates from the center 

of the sphere and defines the deviation angle of the 

position vector �̅� considering the x-axis. 

• Azimuth Angle (φ): This angle reflects the angle 

between the positional vector 𝑖 ̅ of point 'P' and the z-

axis, with the vertex at the sphere's center. 

The camera is consistently adjusted backward by  

a predetermined value to ensure the scene is visible. This 

displacement value was determined experimentally and 

corresponds to the radial distance 'r' from the object's 

center in the scene. The range of rotation for individual 

angles is specified as follows: 

• Rotation around the z-axis produces 60 views, 

corresponding to a 6° increment in the angle φ. 

• Along the x-axis, the camera's movement is confined 

between 0° and 180° to prevent the generation of 

identical views with a rotated object. The camera 

traverses this axis seven times, considering positions 

at 0° and 180°, altering the angle θ by 30°. 

The initial camera position, denoted as Ci, is defined 

by coordinates (φ, θ) = (0°, 0°). In this position, each 3D 

model is viewed from an overhead perspective (as 

illustrated in Fig. 6). 

In generating views, the OpenGL library was 

harnessed, allowing various projection matrices to be 

applied. The projection matrix is pivotal in determining 

which parts of the scene are displayed in 2D and which 

are omitted. It defines the mapping of 3D coordinates to 

2D screen coordinates. We tested two types of projection 

matrices: perspective and orthographic. For both, it's 

imperative to specify six parameters establishing two 

cropping planes. In orthographic projection, the center 

of projection is at infinity, and the projection direction 

remains consistent and perpendicular to the image 

surface for all scene points. The orthographic projection 

matrix, Mo, is defined as:  

 

𝑴o =

(
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          (1) 

 

In the provided context, the notation is as follows: 'l' 

represents the cropping from the left side, 'r' signifies the 

cropping from the right side, 't' corresponds to cropping 

from the top, 'b' denotes cropping from the bottom, 'n' 

designates the depth on the z-axis from which the 

projection is taken into account, and 'f' specifies the 

depth on the z-axis up to which the projection is 

considered. 

 

Fig. 6. Initial camera position and the generated view 

from this camera position 

The projection process, common to both ortho-

graphic and perspective types, unfolds in two 

fundamental stages: 

1. Conversion from Eye Coordinates to Clip 

Coordinates: This initial step involves transforming all 

object points from eye coordinates into clip coordinates, 

resulting from multiplying the model matrix with object 

coordinates. These clip coordinates are achieved by 

multiplying the projection matrix with the eye 

coordinates. 

2. Transformation into Normalized Device Coordi-

nates (NDC): Subsequently, the clip coordinates undergo 

conversion into normalized device coordinates (NDC). 

This transformation is accomplished by dividing by the 

component 'w' [13]. 

The perspective matrix, distinctive for its ability to 

depict scenes with a more lifelike perspective, accounts 

for the varying sizes of objects or the scene itself, 

contingent on the camera's distance from them. This 

perspective projection is described by matrix Mp 

designed as follows:  
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    (2) 

 

The symbols in Eqn. (2) have the same meaning as 

those in Eqn. (1). A visual juxtaposition of orthographic 

and perspective projections is illustrated in Fig. 7. 
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4 Sets of CNNs 

We leveraged the Keras library to discern the most 

fitting neural network (NN) structure, benefiting from 18 

CNNs available for unrestricted application. These 

networks are equipped to classify a wide array of object 

categories, having undergone extensive training on the 

ImageNet image database, which comprises over 1.4 

million images. In addition to these 18 networks, our 

testing suite encompassed three additional CNN 

networks, resulting in 21 CNNs under scrutiny (as 

presented in Table 1). Two networks used the COCO 

(Common Objects in COntext) database, boasting a vast 

image collection of 2.5 million. 

 

 

Fig. 7. Comparison of orthographic projection (left) 

and perspective projection (right) in the OpenGL 

 

Table 1. Networks that can be tested in the created application 

Name of the 

network 

Supported 

number of classes 

Image dataset Number of 

parameters 

Depth 

YOLO 80 COCO - - 

Mask_RCNN 80 COCO - - 

Xception 1 000 ImageNet 22 910 480 160 

VGG16 1 000 ImageNet 138 357 544 - 

VGG19 1 000 ImageNet 143 667 240 - 

Resnet50 1 000 ImageNet 25 636 712 - 

Resnet101 1 000 ImageNet 44 707 176 - 

Resnet152 1 000 ImageNet 60 419 944 - 

Resnet50V2 1 000 ImageNet 25 613 800 - 

Resnet101V2 1 000 ImageNet 44 675 560 - 

Resnet152V2 1 000 ImageNet 60 380 648 - 

Inception 21 000 ImageNet - - 

InceptionV3 1 000 ImageNet 23 851 784 159 

InceptionResNetV2 1 000 ImageNet 55 873 736 572 

MobileNet 1 000 ImageNet 4 253 864 88 

MobileNetV2 1 000 ImageNet 3 538 984 88 

DenseNet121 1 000 ImageNet 8 062 504 121 

DenseNet169 1 000 ImageNet 14 307 880 169 

DenseNet201 1 000 ImageNet 20 242 984 201 

NasNetMobile 1 000 ImageNet 5 326 716 - 

NasNetLarge 1 000 ImageNet 88 949 818 - 
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5 Evaluation metric 

Various methodologies were employed to assess the 

performance of the chosen CNNs, a common practice for 

evaluating data classification. This evaluation occurred 

on the test set after each network completed the training 

and validation phases. 

To initiate the fundamental assessment, a classic 

contingency table comprising four values [14] was 

utilized: TP (true positive), TN (true negative), FP (false 

positive), and FN (false negative). While the proposed 

evaluation system categorizes objects into multiple 

classes, the success measurement is confined to a binary 

classification perspective, focusing solely on the 

considered object within the 3D model. The overall 

success rate is quantified as the ratio of correct 

classifications to the total number of classifications [14]: 

TP TN
acc

TP TN FP FN

+
=

+ + +
          (3) 

The true positive rate (TPR) and the rate of 

incorrectly classified positive samples (FPR – false 

positive rates) will be used to express the success of 

CNN classifiers. Sensitivity (TPR) is determined as 

follows: 

TP
TPR

TP FN
=

+
           (4) 

The inverse value of sensitivity expresses the rate of 

incorrectly classified negative samples (False Negative 

Rate): 

FN
FNR

TP FN
=

+
           (5) 

Specificity defines the rate of correctly classified 

negative samples (True Negative Rate): 

TN
TNR

FP TN
=

+
           (6) 

 

 

 

 

 

 

 

 

 

The inverse value representing incorrectly classified 

negative samples (False Positive Rate) is derived from 

it: 

FP
FPR

FP TN
=

+
           (7) 

Each value will be calculated concerning the 

acceptance threshold, forming classification curves. 

More details about these classification curves can be 

found in [14]. 

 

6 Results 

To assess the efficacy of our proposed solution, we 

employed a combination of 3D models generated using 

the PhoXi 3D scanner and readily available models 

sourced from the Internet (as detailed in Table 2). 

Throughout the application's development, we 

conducted experiments involving varying scene and 

object settings, with optimal outcomes achieved when 

adhering to the following guidelines: 

• Ensuring the considered object is scaled 

appropriately to maximize its presence within the 

generated view. 

• Implement rotations that avoid interference between 

the object and unobservable camera areas. 

• Attaining scene lighting synchronized with the 

camera's position, ensuring direct illumination of the 

object without casting shadows. 

To streamline the experiments, we focused on scenes 

featuring a solitary object. This approach simplified the 

evaluation process, as handling multiple objects in the 

scene would complicate the identification of "bad views" 

based on the established conditions. Moreover, evalu-

ating the network's performance in scenarios with 

multiple objects would offer limited informative value. 

In cases where an object was obscured by another object 

or incorrectly captured by the camera, such instances 

indicated the network's inability to classify the object. 

Consequently, we manually segmented the objects from 

the created scenes, submitting only these isolated objects 

to the network for classification. 
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Table 2. Set of tested objects and selected parameters 

Object Max. spherical 

angle (°) 

Classes of 

negative images 

Texture preview Preview of the 3D 

object 

1 – apple 180 

(420 views) 

Pear, peach, 

apricot, 

pomegranate, 

tomato 

  

2 – artichoke 180 

(420 views) 

Sugar apple, 

donut, green 

strawberry, 

banana, 

gyromitra 

  

3 – fig 180 

(420 views) 

Plum, purple 

grapes, 

blackberries, red 

onion, blueberry 

  

4 – lemon 180 

(420 views) 

Tangerine, 

grapefruit, 

orange, lime, 

Granny Smith 

apple 

  

5 – banana  90 

(240 views) 

Rocket, worm, 

corn, sea 

cucumber 

 
 

6 – Teddy bear 120 

(300 views) 

Brown bear, 

polar bear, 

raccoon, gorilla 

  

7 - binoculars 180 

(420 views) 

Buckle, lighter, 

microphone, 

holster, bottle 
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The experiments were executed as follows: 

• A series of views was generated for the imported 3D 

object, spanning from 0° to the maximum spherical 

angle, and a texture was applied to these views. 

• Negative images depicting objects listed in Table 2 

were generated. The selection of these objects was 

based on a combination of objects supported by the 

networks and objects that exhibited similarity when 

subjected to object classification testing. 

• The classification process was initiated for each 

model, comprising both the generated views and the 

negative images, using multiple networks that 

support the classification of the specific object. 

• The resulting label for each model from these 

classifications was determined based on the label that 

occurred most frequently. 

• Subsequently, the selected CNNs were compared, 

and the most successful one was determined based on 

the experimental outcomes. 

6.1 Object class apple 

Apple object detection is supported by Mask_RCNN 

and YOLO networks. Other networks support the 

classification of specific apple varieties, so only these 

two were used in testing. The scanned object is 

complete, so views were generated up to the maximum 

possible spherical angle of 180°. The generated views of 

the object are shown in Fig. 8. The views of the negative 

images used to test the network's success are shown in 

Fig. 9.  

The tested networks achieved a high success rate 

(Table 3). The resulting labeling of the 3D model (the 

most frequently occurring label) is correct for both 

networks. The YOLO network achieved an overall 

success rate (the success rate of correctly classifying the 

generated views and correctly rejecting negative images) 

higher than the Mask_RCNN network. Incorrectly 

classified generated views for the YOLO network were 

only 4. The network achieved the best results with an 

acceptance threshold value of 0.95. 

 

      

 

Fig. 8. Example of several out of 420 generated 2D 

views of the scanned 3D point cloud of the Apple class. 

 

Fig. 9. The set of negative images for the class Apple 

included images downloaded from the internet such as 

peaches, apricots, oranges, etc., with a total count of 

350. 

 

Table 3. Object class apple – classification results 

Name of the 

network 

Overall success 

rate (%) 

Classification success  

of generated views (%) 

Acceptance threshold at 

maximum success 

The most 

common labeling 

YOLO 90.0 99.0 0.95 apple 

Mask_RCNN 74.5 76.9 0.95 apple 
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The accuracy achieved, depending on the change in 

the acceptance threshold of the YOLO network, is 

shown in Fig. 10. The maximum success achieved in this 

case was 89.99%. The development of TPR, FPR, TNR, 

and FNR metrics, depending on the threshold change, is 

shown in Fig. 11. 

 

 

 

Fig. 10. The achieved accuracy of the apple object 

classification by the YOLO network depending on the 

acceptance threshold (The achieved maximum accuracy 

for the threshold range from 0 to 1.0 is depicted in green 

color, while the results for individual thresholds with a 

change of +0.04 are indicated in blue.) 

 

 

 

Fig. 11. The values of individual metrics TPR, FPR, 

TNR, and FNR for the classification of objects of type 

"Apple" by the YOLO network, their dependence is 

shown based on the choice of threshold type. The change 

in threshold values is scaled by +0.04. 

 

From the results, it can be concluded that the YOLO 

network is suitable and recyclable for classifying an 

object (3D model) of the Apple class. The network 

labeled almost all views correctly, and the overall 

success rates are good. Also, TPR and TNR reach high 

values, and FNR and FPR, on the contrary, have low 

values. 

6.2 Object class artichoke 

All networks from the Keras library support 

artichoke object detection. Five networks were 

randomly selected (Table 4). The best success rate was 

achieved by the Inception V3 network, with a total 

success rate of 90.3% and a success rate of classification 

of generated views of 81.4%. Seventy-eight generated 

views out of a total of 420 were incorrectly classified. 

Examples of unsuccessfully classified views are shown 

in Fig. 15. Artichoke was often classified as a banana or 

a mushroom in unsuccessful attempts. The network 

performed best with a very low acceptance threshold. 

 

6.3 Object class fig 

The fig class object is also supported by all networks 

from the Keras library, and five networks from this 

library was also randomly selected to verify detection 

from generated views and selected negative images 

(Table 5). The most successful network, in this case, was 

ResNet152V2, which correctly classified 50.7% of 

views and achieved a total success rate of 67.65%. Up to 

207 out of 420 generated views were incorrectly 

classified. However, even with many incorrect 

classifications, the labeling was correct for all tested 

networks. 

 

6.4 Object class lemon 

All networks from the Keras library also support the 

lemon class object, and five networks from this library 

were randomly selected (Table 6). DenseNet169 

achieved the highest overall success rate, and 

NASNetLarge achieved the best classification rate of 

generated views. All networks were able to classify the 

object successfully. 

 

6.5 Object class banana 

The banana class object is supported by all networks, 

from which five were randomly selected for testing 

(Table 7). In this case, the model is scanned from above 

and incomplete, so views were generated only up to a 

polar angle of 90°, or a total of 240 views. DenseNet201 

networks achieved the highest success at a low 

acceptance threshold of 0.2 and Yolo at a threshold of 

0.55. Both networks achieved an overall success rate of 

approximately 85% and a classification success of 
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generated views of 70%. Thus, approximately 70 views 

were incorrectly classified. Most of these views come 

from views generated at a polar angle of 90°, where 

numerous imperfections of the generated 3D model are 

visible. 

 

6.6 Object class Tedddy 

All Keras library networks support the teddy bear 

class object. Five networks were randomly selected and 

tested with 300 generated views of this object (Table 8). 

The highest classification success was achieved by the 

Xception network, which successfully classified 42% of 

views, representing up to 173 incorrectly labeled views 

(out of 300). This result corresponds to the observed 

variety of views when the object resembles a teddy bear, 

mostly only from the front side of the object. Other 

networks achieved very low classification success rates, 

but most of them could still determine the resulting 

labeling of the 3D model successfully. 

 

6.7 Object class binoculars 

All networks from the Keras library support the 

binoculars class object, and five were randomly selected 

for testing (Table 9). All the selected networks could 

determine the final labeling of the 3D model correctly. 

The InceptionV3 network achieved the highest success 

but with a low classification acceptance threshold. For 

example, with a threshold of 0.7, the overall success rate 

is 72.8%. The number of incorrectly classified views is 

75 out of 420. 

 

Table 4. Artichoke object classification results 

Name of the 

network 

Overall success 

rate (%) 

Classification success 

of generated views (%) 

Acceptance threshold 

at maximum success 

The most 

common labeling 

MobileNet 85.1 71.0 0.2 artichoke 

ResNet50 79.0 58.8 0.15 artichoke 

Vgg16 86.5 73.8 0.2 artichoke 

InceptionV3 90.3 81.4 0.05 artichoke 

Xception 78.7 58.6 0.1 artichoke 

 

Table 5. Fig object classification results 

Name of the 

network 

Overall success 

rate (%) 

Classification success of 

generated views (%) 

Acceptance threshold at 

maximum success 

The most 

common labeling 

InceptionV3 59.4 35.5 0.45 fig 

Xception 65.31 48.8 0.4 fig 

DenseNet169 64.32 49.8 0.55 fig 

ResNe152V2 67.65 50.7 0.7 fig 

MobileNetV2 58.27 31.7 0.1 fig 

 

Table 6. Lemon object classification results 

Name of the 

network 

Overall success 

rate (%) 

Classification success of 

generated views (%) 

Acceptance threshold at 

maximum success 

The most 

common labeling 

DenseNet169 93.5 98.1 0.75 lemon 

NASNetLarge 92.6 98.8 0.9 lemon 

MobileNet 65.8 49.3 0.05 lemon 

ResNet152 88.9 91.9 0.3 lemon 

Xception 91.3 98.3 0.2 lemon 
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Table 7. Banana object classification results 

Name of the 

network 

Overall success 

rate (%) 

Classification success of 

generated views (%) 

Acceptance threshold at 

maximum success 

The most 

common labeling 

YOLO 84.1 70.0 0.55 banana 

ResNet152V2 78.4 57.9 0.35 banana 

InceptionV3 82.0 65.0 0.1 banana 

DesneNet201 86.3 72.9 0.2 banana 

MobileNetV2 79.3 59.2 0.1 banana 

 

Table 8. Teddy object classification results 

Name of the 

network 

Overall success 

rate [%] 

Classification success of 

generated views [%] 

Acceptance threshold at 

maximum success 

The most 

common labeling 

MobileNet 51.8 11.3 0.1 hook 

ResNet101V2 57.7 22.7 0.2 teddy 

Vgg19 52.5 12.0 0.05 necklace 

Xception 68.2 42.3 0.05 teddy 

NasNetMobile 61.3 29.0 0.05 teddy 

 

Table 9. Binoculars object classification results 

Name of the 

network 

Overall success 

rate (%) 

Classification success of 

generated views (%) 

Acceptance threshold at 

maximum success 

The most 

common labeling 

ResNet50V2 73.8 51.0 0.25 binoculars 

DenseNet201 73.6 50.2 0.1 binoculars 

Vgg16 65.1 34.3 0.1 binoculars 

InceptionV3 90.5 82.1 0.05 binoculars 

MobileNetV2 80.7 63.6 0.05 binoculars 

 

 

 

6.8 General comments on the results 

Drawing from the obtained results, several 

overarching observations can be made: 

• Most classifications exhibit notably low False 

Positive Rate (FPR) values, reflecting their 

proficiency in minimizing misclassifications. 

• Many classifications demonstrate high True Negative 

Rate (TNR) values, highlighting their effectiveness 

in correctly identifying non-object instances. 

• The most informative metrics for recognizing a 

specific object are True Positive Rate (TPR) and 

False Negative Rate (FNR). 

• TPR and FNR are pivotal in determining how 

effectively a multi-classifier can handle binary 

classification tasks. 

• The classification acceptance threshold tends to be 

lower for networks designed to support the 

classification of numerous objects. 

When assessing whether a selected network can 

accurately classify the chosen object, a critical 

prerequisite is that the network has been trained on a 

class representing such an object. Our experiments 

aimed to ascertain the extent to which the selected 

classifier could discern the presence or absence of the 

object in the generated view. In this context, the most 

crucial metrics are TPR and FNR, which gauge the 

accuracy of classifying the view as "object" or "non-

object" within the given acceptance threshold. The 

acceptance threshold's value is intrinsically linked to the 

classifier's capability to make correct classifications 

while rejecting negative images. It also influences the 

accurate selection of the classes represented in the 

negative images. 

Our experiments revealed that networks achieve their 

highest success rates at lower classification acceptance 

thresholds. Notably, this tendency can be partly 

attributed to numerous objects within the classifier. A 
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direct comparison of threshold values for maximum 

classification success between X-class networks 

(comprising 80 classes) and Y-class networks 

(encompassing 1,000 classes) underscores this trend: 

• X-type networks achieve their best results at higher 

thresholds (0.95, 0.95, 0.55). 

• In contrast, Y-type networks attain optimal results at 

lower thresholds (ranging from 0.05 to 0.35). 

When the acceptance threshold is increased for Y-type 

networks, we observe a decrease in the rate of accurate 

classifications, leading to a lower overall success rate. 

This behavior is particularly noticeable when negative 

images are predominantly recognized correctly and are 

appropriately assigned to their corresponding classes by 

the network. In such cases, there is a scenario in which 

negative images are consistently identified correctly, and 

even a small portion of the object within the generated 

view is sufficient to warrant a successful classification. 

Consequently, most views are accurately identified, and 

most negative images are rejected even when using the 

minimum classification acceptance threshold. 

Conversely, when negative images are poorly identified, 

meaning they are erroneously labeled with the class of 

the 3D model, a higher classification acceptance 

threshold becomes necessary. 

It implies that if we know the object classes that the 

selected network can effectively recognize, we can 

introduce them as negative images. If the network rejects 

these negative images, we can confidently employ  

a lower acceptance threshold. In this scenario, where 

erroneous classifications are infrequent, opting for  

a lower threshold will yield a higher classification 

success rate than selecting a higher threshold, leading to 

a considerable loss of correct classifications. 

In certain cases, the False Positive Rate (FPR) metric 

reaches a zero value because the negative images do not 

fall within the class of the considered object. It signifies 

that in the case of object A classification and a negative 

image B, the classifier either labels image B as B (if it 

can classify such an object) or selects another class from 

its supported classes that is most akin to object B. The 

likelihood of the classifier correctly identifying the class 

to which the object under consideration belongs from a 

large pool of supported classes is quite low. This 

phenomenon is especially prevalent in networks that 

support the recognition of numerous classes. The reason 

behind the frequently occurring high value of the True 

Negative Rate (TNR) metric is analogous, as it is the 

reciprocal value of the FPR metric. 

We postulate that a similar scenario might arise if we 

attempt to recognize multiple objects within a scene. In 

this context, we would only cover a portion of the  

supported classes when utilizing negative images. 

However, this hypothesis warrants further investigation. 

The aggregation of classifications from multiple 

spatial perspectives significantly aids in the final object 

labeling, even when dealing with networks that may not 

be ideally suited for detecting the specific object due to 

their achieved success rate. While the number of 

correctly classified views may be less than 50%, this still 

proves adequate for achieving correct overall labeling. 

In many instances, even networks that were not highly 

successful managed to classify the correct class as the 

second or third choice. Consequently, during the final 

object labeling, it is prudent to consider classifications 

with the highest probability and others. This approach 

enables a statistically more sophisticated assessment of 

the classification data. 

 

7 Conclusion 

Out of 32 classifications spanning seven distinct 

objects, our chosen networks accurately classified the 

object within the 3D model 30 times. This high success 

rate, achieved through aggregating the most frequently 

occurring labels, equates to a remarkable 96% precision 

in object labeling. It's worth noting that model labeling 

encountered challenges in the case of the teddy bear 

object. 

Our testing affirms that our solution reliably delivers 

the final labeling of 3D models by automating the 

generation of views and subsequent classification using 

existing convolutional neural networks. Importantly, our 

proposed methodology doesn't gauge the overall success 

of the selected network but rather elucidates its 

competence in determining the presence or absence of 

the specific object within the generated views and 

negative images. Furthermore, we've demonstrated that 

the desired outcome can be attained by aggregating 

information from multiple perspectives, even when 

working with networks not originally trained for such 

classifications. 

The aim of this article was to highlight the 

possibilities of using CNNs trained on 2D image data for 

the classification of 3D point clouds. The method of 

obtaining the point cloud scans is irrelevant for the 

results presented in the article, as only one of many 

possible methods is demonstrated. Another approach 

could involve placing the camera on the end effector of 

a robot. An important aspect of the design is how to 

segment individual objects into different views and how 

to aggregate the results from these views. The results 

indicate that object identification would achieve high 

accuracy even with incomplete point clouds. However, 

this was not the goal of this research. 
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