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Fault sensitivity index-based multi-objective testcase prioritization 

 

Kamal Garg1,2, Shashi Shekhar1 

 

Test case prioritization (TCP) is a regression technique that sequences test cases by assigning priority based on specific criteria 

defined by software testers. Various parameters, such as code coverage, statement coverage, and method coverage, are utilized 

in Test Case Prioritization (TCP), wherein metaheuristic techniques are widely employed to determine the optimal order of test 

cases based on these specified parameters. However, simply applying these techniques does not ensure the satisfaction of all 

the needs of software testers. This paper introduces an empirical study that employs the multi-objective test case prioritization 

(MOTCP) technique to prioritize the test cases based on target points defined by software testers. The study calculates  

a Software Complexity Index (SCI) at the code level, identifying fault-prone areas. Furthermore, a Test-case Complexity Index 

(TCI) is also used for prioritization. The proposed technique incorporates various target points defined by the software tester 

to calculate SCI and TCI, which serve as our main objectives for TCP. A detailed analysis is also performed to examine the 

impact of these target points on the generated optimal order of test cases. Finally, the proposed model is compared with other 

state-of-the-art techniques across various evaluation parameters.  

Keywords: regression testing, test case prioritization, NSGA-2, soft computing, MOTCP, SCI, test case complexity index 

 

 

1 Introduction 

Software and applications, ranging from mobile to 

desktop applications, have become integral to daily 

human life. Ensuring bug-free software is crucial, 

leading software development companies to allocate  

a significant portion of their budget to software 

maintenance. Regression testing is a crucial aspect of 

this process, involving testing new versions or patches 

to ensure compatibility with previous software 

iterations. This makes regression testing time-

consuming and resource-intensive. There are three main 

approaches used for software regression testing: test case 

selection, test case reductions, and test case prioritization 

which involve execution of the test cases based on 

priority order. 

In Test Case Prioritization (TCP) [1], the main 

objective is to prioritize the test cases in terms of faults 

and cost, which means test cases that can detect more 

faults should be given high priority compared to other 

test cases. Test suites that take less time should also be 

prioritized in execution order. Many parameters are 

considered during TCP to achieve this objective, e.g., 

code coverage, statement coverage, method coverage, 

etc. It is believed that a test case, when it covers a large 

amount of code, methods, or statements, can detect  

a large amount of fault compared to other test cases that 

cover less code. However, simply considering these 

parameters in TCP, they are ineffective in fault 

detection. Many scholars use more than one parameter 

to overcome this problem and generate effective orders 

of test cases.  

The proposed technique used multiple parameters, 

code block coverage and cost in a multi-objective 

fashion to optimize the order of test cases. The main 

contribution of this paper is to focus on some target 

points defined by the software tester to prioritize test 

cases. These target points help to identify bugs in 

applications and produce cost-efficient TCP. Here, 

object-oriented applications are used to test the proposed 

methodology. For the implementation, various tools are 

used to extract software artefacts and later, these 

artefacts are used to find optimal order of the test cases. 

To solve this MOTCP problem, a non-dominating 

sorting genetic algorithm (NSGA-2) [2] is used.  

Detailed analysis is also conducted to find the answer to 

the following research question (RQ). 

• RQ1: How does the proposed methodology work  

in comparison to other state-of-the-art algorithms  

in terms of fault detection? 

• RQ2: Which of the algorithms achieves the earliest 

fault detection? 

• RQ3: How does the proposed technique result  

in terms of cost-effectiveness? 
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• RQ4: How does the proposed MOTCP model 

perform on small, medium and large software 

systems? 

• RQ5: Which technique can achieve target points 

defined by software testers? 

The proposed manuscript includes section 2 that 

elaborates on related state-of-the-art work, followed by 

the proposed methodology in section 3. The experi-

mental assessment and its various assessment metrics are 

explained in section 4. Section 5 clearly demonstrates 

the results analysis of the proposed scheme. Finally, 

conclusions and future scope are listed in section 6. 

 

2 Contextualizing previous studies 

The overview is started with review papers that 

emphasize regression testing [3] in detail. Recently, in 

2021, Mukherjee et al. [4] presented an inclusive survey 

containing different techniques on TCP. The author 

reviewed almost 90 research articles published on 

regression test selection (RTS) and TCP from 2001 to 

2024. In 2021, Tian et al. [5] presented an extensive 

survey on large-scale multi-objective optimization 

techniques, and Qasim et al. [6] presented various 

regression testing methods, whereas authors Pan et al. 

[7] studied the TCP using various machine learning 

techniques. Strandberg et al. [8] published an article on 

automated regression test prioritization in 2017. This 

study discussed the challenges and advancement. 

Khatibsyarbini et al. [9] also reviewed semantic 

regression testing in 2018. Bajaj et al. [10] also 

compared and studied various TCP techniques based on 

genetic algorithms in 2016. The said review papers give 

detailed information on the field of TCP. 

The cost-centric prioritization method emphasizes 

parameters such as cost analysis, execution, and 

maintenance costs while designing cost models. There 

are different ways to test software, and we often use  

a measure called Average Percentage of Fault Detection 

(APFD) to see how well a technique is working. Yu-Chi 

Huang et al. proposed history based cost-cognizant test 

case prioritization to investigate and improve the APFD 

value [11]. In 2021, Huang et al. [12] proposed a learn-

to-rank technique to prioritize the test cases. The 

proposal combined extended finite state machine 

features with a random forest algorithm to improve the 

fault detection rate. The performance is measured in 

terms of APFD, which reaches 0.884. In another study, 

Yadav et al. [13] calculated the APFD value with the 

help of a unified modelling language (UML) diagram 

based on object-oriented software. Khanna et al. [14] 

compared many algorithms like NSGA-II, genetic 

algorithm, random approach, and 2-opt algorithm on five 

web applications. The applied algorithms prioritize the 

test sequence to increase the APFD rate and minimize 

the procedure's cost. 

However, APFD works best when all tests have equal 

cost, and all faults are equally severe. If the tests have 

different levels of faults and cost, using APFD might 

give us incorrect results. So, it's crucial to choose the 

right measure to get reliable and accurate results. For this 

problem, Ahmed et al. [3] proposed two evaluation 

metrics called Average Percentage of Fault Detection 

per value (APFDv) and Average Percentage of 

Requirements Coverage per value (APRCv) with the 

help of genetic algorithm. In a study, Nucci et al. [15] 

also proposed a genetic algorithm influenced by the 

hypervolume Indicator. The results showed that the 

proposed technique not only reduced the cost but also 

improves the prioritization efficiency. In 2002, Deb et al. 

[2] introduced a fast and elitist multi-objective genetic 

algorithm named non-dominated NSGA-II for better 

coverage and to optimize better performance. It also 

requires fewer parameters and a low computational 

approach. In 2015, Epitropakis et al. [16] illustrated the 

importance of applying Pareto benefits for test case 

selection. Baoying et al. [17] proposed a genetic 

algorithm solution based on diversity to achieve 

balanced testing to enhance fault detection rate. Geetha 

et al. [18] suggested a multi-level random walk 

algorithm to reduce test cases. The approach also 

included a genetic algorithm. In another study, Khanna 

et al. [19] focused on multi-objective algorithms and 

compared ant bee colony and genetic algorithm- II to 

prioritize the test cases. 

Bajaj et al. [20] applied a three-level regression 

testing approach (prioritization, selection, and 

minimization) that is based on nature-inspired algo-

rithms named as particle swarm optimization (PSO), 

genetic algorithm (GA), NSGA-II and artificial bee 

colony (ABC). Zheng Li et al. [21] presented an 

empirical study on greedy, metaheuristic, and 

evolutionary search algorithms for regression TCP to 

address the problems like finding modality, fitness 

metrics and most suited test cases. The result shows that 

greedy algorithm performs better than other algorithms.  

Bian et al. [22] used a metaheuristic approach, 

epistasis based ACO for Regression TCP to combine the 

knowledge of biological theory and application domain. 

It is clearly visible that in comparison of single objective 

technique, meta-heuristic approaches are more effective. 

Marchetto et al. [23] applied IR based traceability 

recovery and latent semantic indexing to find maximum 

early fault cases which results in less execution time. 

The experiment is performed on 21 java application. 

Hao et al. [24] made an empirical study on optimal 

coverage for test case prioritization with intermediate 

goals. The comparison is also conducted between the 

optimal and standard approaches in terms of coverage, 



Journal of Electrical Engineering, Vol. 75, No. 2, 2024                                                              153 

fault detection, or execution time. Other than con-

ventional Prioritization approaches, some different 

techniques have also been preferred for TCP that is 

motivated to enhance fault rate in lesser time. Haidry et 

al. [25] evaluated six different industrial systems by 

using dependency structures for prioritization. These 

dependencies help in enhancing the fault detection rate 

in comparison to untreated order, random order, and 

other techniques. Singha et al applied African Buffalo 

Optimization for TCP with multiple iteration that reports 

62.5% decrease in size and 48.57% in the runtime as 

compared to original test suite [29]. Learn to Rank 

algorithm used for TCP and also mention the challenges 

in [30]. The review article represents Large Language 

Model based Software Testing and reports 102 relevant 

studies [31]. 

 

3 Proposed methodology 

Definition: Multi-objective Test case Prioritization 

(MOTCP)  

Given: A test suite T; All sets of permutations of T, 

PT; and n, the number of objective functions 𝑓𝑖, where 

𝑖 = 1,2,3 … 𝑛 

Objective: To find a permutation set 𝑇′ ∈ PT such 

that 𝑇′ belongs to pareto-optimal fronts to the given 

objective function  𝑓𝑖. 

Pareto optimal front is a set of solutions that are non-

dominated by each other. For example, in three objective 

functions 𝐹1 , 𝐹2 , 𝐹3 multiple solutions are belonging to 

PT such that 𝐹1(𝑇′′) > 𝐹1(𝑇′), 𝐹2(𝑇′′) > 𝐹2(𝑇′) or 

𝐹3(𝑇′′) ≥ 𝐹3(𝑇′) then these solutions 𝑇′ and 𝑇′′ are 

non-dominated to each other (if all functions Fi set is 

maximized). If there is a solution 𝑇′′ such that for 

all 𝐹𝑖(𝑇′′) > 𝐹𝑖(𝑇′), 𝑖 = 1,2,3; it shows that solution 𝑇′′ 

dominate  𝑇′. Regression testing aims to check the 

impact of modification in software development. If 

changes are in the code or new functionality are 

introduced to the application, the test cases that cover 

these changes must run first. Some of the target points 

are mentioned below. 

• A newly created test case should have high priorities. 

• Test cases with modified codes should also have high 

priorities. 

• Test cases dependent upon a high fault-prone area 

should have high priorities. 

• High-fault test cases must have higher priorities. 

• A test case having a higher failure history should 

have high priorities. 

The objective is to calculate the fault sensitivity index 

(FSI) based on Code Complexity Index (CCI) and the 

Test-case Complexity Index (TCI). Using these two 

parameters, two-weight metrics WB and WT, are 

generated. Lastly, the area under the curve is calculated 

to compute the first objective function and cost is 

calculated for the second objective. Figure 1 shows the 

basic block diagram of proposed approach. 

 

 

Fig. 1. Block diagram of the proposed technique 

 

3.1 Software complexity index (SCI) 

The internal complexity of code and dependency of 

functionality is used to find prime test cases. McCabe’s 

Cyclomatic Complexity, Object-Oriented Metrics, Line 

of code (LOC), Code change density (CCD) and other 

custom metrics are calculated to examine the complexity 

of code 

For complex coding, the software tester specifies 

weight metrics used to assess code quality and 

complexity as per its need during regression testing. The 

weight matrix is used to calculate  𝑊𝑏𝑖. All software 

artefact values are initially calculated for each code 

block and outliers are detected. Outliers mean that their 

matrix values are out of the boundary of the threshold 

range. If the value lies within the threshold range, it is 

safe; otherwise, it is unsafe and needs testing. So, from 



154                              Kamal Garg and Shashi Shekhar:  Fault sensitivity index-based multi-objective testcase prioritization 

these metrics, if the tester finds an outlier, it marks it 1, 

otherwise it marks it 0. For example, if coupling between 

objects (CBO) ranges from 0 to 47 and the acceptable 

range is 15% to 85% (7.5 to 39). If class C1 has CBO 4 

and class C2 has CBO 32, C1 is an outlier (below 15%). 

So, C1's CBO is marked 1, while C2's CBO is marked 0. 
Then after, calculate the weight for the respective code 

block [26] using Eqn. (1). 

𝑊𝑏𝑖 =
∑ (𝑊𝑐 × 𝑉𝑐𝑏)𝑐∈𝐶

∑ (𝑊𝑐)𝑐∈𝐶
                                        (1) 

Here, 𝑊𝑐 is software tester specified weight and 𝑉𝑐𝑏 

is outliers. In the same way, the weights of all remaining 

code blocks are calculated. Subsequently, the total 

weight of each test case is determined by summing up 

the weights of the code blocks covered by that specific 

test case, denoted as 𝑊𝐵𝑡𝑖

 . After obtaining the total 

weight of each test case, the cumulative sum of 𝑊𝐵𝑡𝑖

𝑐  is 

calculated corresponding to the test case order. This 

cumulated sum 𝑊𝐵𝑡𝑖

𝑐  is further used to calculate the area 

under the curve (AUC) using the trapezoidal rule, as 

shown in Eqn. (2). This AUC is nothing but our first 

objective function, SCI.  

 

 

∫ 𝑓(𝑥)𝑑𝑥 =
𝑥𝑛

𝑥1

(𝑥2 − 𝑥1)
𝑓(𝑥1) + 𝑓(𝑥2)

2
+ (𝑥3 − 𝑥2)

𝑓(𝑥2) + 𝑓(𝑥3)

2
+ ⋯ 

 ∙∙∙  +(𝑥𝑛 − 𝑥𝑛−1)      
𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)

2
                                       (2) 

 

 

 

3.2 Test-case complexity index (TCI) 

After calculating SCI, TCI is calculated for the test 

case. This TCI can also be referred to as test case cost. 

This cost is defined in terms of weights, not execution 

time. 

Weight WTi is calculated by analysing the behaviour 

of the test cases. It is calculated based on test case 

behaviour, considering historical and current status 

information. The parameters used for WTi calculation 

include Code Coverage, where extensive coverage is 

assumed to explore more faults. Class coverage 

increases fault detection probability with broader 

coverage, representing the covered class in a test case. 

Dependency involves identifying dependencies between 

neighbouring modules, assigning weights based on 

dependencies and updating nodes when project 

modifications occur. Faults indicate the maximum 

number of faults a test case covers in a specific version. 

Cost measures the execution time of a test case. New 

Functionality is a binary value indicating whether a test 

case covers new functionality. Status history, repre-

sented in binary values, indicates test case execution 

success (1) or failure (0) and reflects the test case age, 

such as "010", signifying a 66.6% failure rate. To 

calculate WTi, the same outlier method is used as 

described in the previous section but on metrics related 

to the test case, not code. 

𝑊𝑇𝑖 =         
∑ (𝑊𝑐 × 𝑉𝑐𝑖)𝑐∈𝐶

∑ (𝑊𝑐)𝑐∈𝐶
                                 (3) 

The cost of TCI is the second objective function that 

needs to be optimized [27]. It is calculated by using 

Eqn. (4), where 𝑂𝑖 defines the position of ith test case 

among all test case orders, and 𝑊𝑇𝑖 
 as in Eqn. (3) is its 

weight and 𝐶𝑖 is the cost of test case ith. 

𝐹 = ∑
𝑊𝑇𝑖

𝐶𝑖 × 𝑂𝑖

𝑛

𝑖=1

                                                   (4) 

3.3 Implementation of NSGA-2 

During the implementation of NSGA-2, the chromo-

some is encoded in a random sequential order. Then, two 

parents are selected via tournament selection to produce 

offspring. The order crossover operation is performed to 

ensure each test case appears only once. Then after,  

a swapping mutation is applied. 

 

4 Experimental assessment 

This section presents information about the experi-

mental setup. The datasets are represented in Tab. 1 are 

used to perform experiments. For the experiment, three 

customized Java projects are used. The first project is 

small, with an average of 2.4K code and 13 classes. The 

second project is medium-sized, containing a 2.3 to 6.2k 

code and classes ranging from 10 to 27. The third big 

project has a maximum 8.6K code size and 36 maximum 

classes.  
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Software artefact metrics are required to find the 

target points. Mutation operation is used to change the 

application to introduce any fault, and this faulty version 

of codes is called mutants. The mutations are done by 

changing arithmetic operators and conditional state-

ments [28]. Despite using mutation operation using 

automatic tools, some manual faults seeding is also 

introduced in codes. 

. 

Table 1. Project details: P=projects, V=version 
 

Project P1V0 P1V1 P1V2 P1V3 P2V0 P2V1 P2V2 P2V3 P3V0 P3V1 P3V2 P3V3 

Class 8 12 15 18 10 16 21 27 16 23 28 36 

Code(K) 1.4 2.2 2.8 3.5 2.3 3.6 4.4 6.2 3.1 4.2 6.4 8.6 

Test cases 12 21 30 38 17 33 48 65 28 54 76 102 

Faults 15 25 35 45 20 40 60 80 30 60 90 120 

 

 

4.1 Experimental design 

The proposed model is implemented in Python on an 

Intel i5 processor with 8 GB memory. During the 

extraction of software artefacts, six data files, 

• TestCases_Faults.csv, 

• TestCases_Classes.csv, 

• Class_Weights.csv, 

• TestCases_Weights.csv, 

• TestCases_Costs.csv  

• TestCases.csv,  

are generated. These data files are used as input to 

calculate our two objective functions. To optimize the 

objectives, NSGA-2 is used. During the execution of 

NSGA-2, initial populations are taken equal to twice the 

number of test cases, the number of iterations used is 

500, and the crossover rate and mutation rates taken 

during execution are 0.5 and 0.25, respectively.

4.2 Evaluation metrics 

The model's performance is evaluated in terms of 

average percentage of fault detection (APFD). APFD is 

a metric commonly used in software testing to evaluate 

the effectiveness of test case prioritization techniques. It 

quantifies how well a prioritization technique orders test 

cases to detect faults early in the testing process. APFD 

is calculated based on the positions of faults detected by 

executed test cases and the total number of test cases and 

faults. The formula for APFD, Eqn. (5), incorporates 

these values to produce a single metric that ranges from 

0 to 1, with higher values indicating better fault detection 

effectiveness. [11] 

𝐴𝑃𝐹𝐷 = 1 −
∑ 𝑇𝐹𝑖

𝑚
𝑖=1

𝑛𝑚
+

1

2𝑛
                              (5) 

The other evaluation criteria is the target points analysis, 

where the algorithm's performance is also calculated on 

behave of some criteria defined by the software tester. 

The proposed technique is evaluated against several 

benchmark algorithms outlined in Tab. 2. 

 

 

  

 Table 2. Peer techniques for comparison 
 

 M1 M2 M3 [14] M4 [14] M5 [24] [15] 
M6 M5 

[24] [15] 
M7 Proposed 

 Random Add. Greedy 
3-Opt 

No Cost 

3-Opt 

With Cost 

GA 

With Cost 

GA 

No Cost 

NSGA-2 

FSI 

APFD 

Project-P1 
61.52 - 68.6 66.38 - 69.05 67.4 - 72.03 65.59 - 75.25 60.37 - 67.89 72.47 - 74.28 73.44 - 76.81 

APFD 

Project-P2 
66.8 - 77.94 73.68 - 76.48 76.51 -79.12 70.47 - 75.25 71.55 - 73.91 77.63 - 80.88 81.33 - 82.84 

APFD 

Project-P3 
75.79 -81.49 78.89 - 84.54 83.18 -88.11 78.15 - 84.8 76.87 - 85.5 85.93 - 88.58 87.27 - 88.98 
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5 Result analysis 

This section briefly analyses experimental results in 

terms of the quantitative value and the statistical graph. 

The algorithms are compared for APFD values and box 

plots generated corresponding to APFD metrics. The 

different APFD values are analyzed for Project-P1, 

Project-P2 add Project-P3 as shown in Tab. 2. For 

Project-P1, it is reported that algorithm M7 (APFD %: 

73.44-76.81) performs better than others. While M6 

(APFD %: 72.47-74.28) is the second-best performer, on 

the other hand M5 (APFD %: 60.37-67.89) performs 

worst among all.  

Similarly, for Project-P2, it is clear that M7 

(APFD %: 81.33-82.84) and M6 (APFD %: 77.63-

80.88) still performing well among all as previously 

while the performance of M4 and M5 is almost the same 

but M1(APFD %: 66.8-77.94) performs worst as 

compared to others.  

Almost same behavior is found in a large-scale 

project Project-P3, where M7 (APFD %: 87.27-88.98) 

still performing well and M1(APFD %: 75.79-81.49) 

perform worst among all, while the performance of M2 

and M4 are almost same for Project-P3. The analysis 

across three projects demonstrates that proposed 

prioritization methods M7, consistently outperform, 

indicating their critical role in enhancing fault detection 

efficiency in complex software systems.  

For detailed analysis, the box plots are drawn as 

shown in Fig. 2. This box plot represents APFD values 

of all versions of a project; Fig. 2(a) is for small project 

P1, Fig. 2(b) for medium scale project P2 and Fig. 2(c) 

for large project data. In the box plot, the red line 

indicates the median APFD value and the edges of the 

box represent percentile value on the mark of 25 and 75. 

By analyzing the above box plots, it can be concluded 

that M7 perform better compares to other benchmark 

techniques. In Fig. 2(a) and Fig. 2(b) it is visible that M7 

constantly improve its performance compared to others 

but in Fig. 2(c) median of M7 and M6 appears to be the 

same. 

Slight similarity is perceived in APFD by 

overlapping of the box plot. For further analysis,  

a detailed comparison between benchmark algorithms 

and proposed NSGA-2 is performed in terms of mean 

value difference using the ANOVA method. Here, 

Tukey’s mean group comparison is used at a 5% 

significance level. The results are shown in Fig. 3 for all 

three projects. It is visible from Figs. 3(a, b, c) that M7 

has no overlap with M5, M4, M2 and M1 in all three 

projects. Some overlapping of M7 with M3, M6 is 

found, but it is clear that the mean value of M7 is greater 

than M3 and M6 for all projects, which rejects the 

hypothesis that all mean values are equal because the p-

value corresponding to the ANOVA analysis is less than 

0.05. 

 

 
Fig. 2. Boxplot of benchmark techniques: (a) Project-P1, (b) Project-P2, (c) Project-P3 
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Fig. 3. Tukey test graph comparing the difference of mean: (a) Project-P1, (b) Project-P2, (c) Project-P3 

 

 

 
Fig. 4. APFD representation of proposed techniques 
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Figure 4 illustrates the APFD representation of all 

techniques, with each column representing a single 

project and its versions. The graph reveals that 

techniques leading to fault detection initially tend to 

have the highest APFD values. Additionally, it is 

noteworthy that with a small number of test cases, there 

is a significant gap between the APFD graphs, indicating 

a substantial difference in APFD values. As the number 

of test cases increases, e.g., Figs. 4 (Project-P3V2 and 

Project-P3V3) the graphs become denser, signifying  

a reduced gap in APFD values. 

The APFD graph also suggests that executing all test 

cases may not be necessary, as several algorithms 

achieve 100% fault detection before completing all tests. 

Many flat horizontal lines in the graphs support this 

observation, indicating the early detection of all faults. 

This property is further utilized to assess the 

performance of all algorithms.  

The experiments also report the percentage of test 

cases needed to detect 100% faults. Notably, M7 is the 

technique that consistently detects all faults early, 

followed by M6 in this criterion. The minimum 

percentage of test cases required to cover all faults 

ranges from 38.24% to 76.19% for M7, while for M6, it 

is 33.33% to 76.19%.  

Reducing test cases also leads to lower execution 

costs. The experimental analysis conducted across 

various projects, comparing methods M1 to M7, reveals 

that M7 excels in reducing costs. Although M7, M6, M5, 

and M4 all achieve execution cost reductions, M5 stands 

out by detecting all faults within merely 20% of the total 

execution time. 

Finally, the evaluation is conducted on target points 

defined by the software tester, as presented in Tab. 3. 

These table illustrates the coverage of code blocks and 

test cases within the defined limits, particularly highly 

complex ones. In this context, the limit is defined as the 

length of a test case covering all faults, and complexity 

is considered only if the weights surpass 50% of the 

maximum, as explained earlier. From the Tab. 3, it is 

evident that M7 can cover more target points than other 

benchmark algorithms. Although M7 lags behind M6 in 

code coverage but it detects 98% of faults compared to 

M6's 95%. It is noteworthy that M6 operates in a single 

direction, whereas M7 explores multiple directions in 

the search space. The algorithm securing the third 

position is M3, with the covering difference being less 

than 5% compared to M6 at some points. M2 secures the 

fourth position, while the performance of M5 and M4 is 

quite similar, and M1 ranks the least effective among all 

algorithms.  

 

 

Table 3. Percentage of target point coverage 

 M7 M6 M5 M4 M3 M2 M1 

Code Coverage 72.43 76.58 55.24 51.16 70.58 62.48 43.26 

Faults 98.10 95.46 76.48 78.32 92.32 86.67 64.26 

New functionality 74.63 70.94 57.36 58.28 67.28 54.52 42.54 

Test case Status 76.04 66.18 54.58 52.46 61.45 58.26 43.88 

Code complexity 84.24 74.43 58.47 54.50 72.12 63.45 48.21 

Code change density 78.18 72.32 56.36 52.92 67.45 54.30 44.62 

 

 

6 Conclusion and future scope 

The proposed techniques utilize NSGA2 for 

optimizing specified objectives and undergo thorough 

testing across three Java projects of varying scales, 

including small, medium, and large-scale projects. Upon 

concluding the performance evaluation of our proposed 

technique, we handled the research questions posed. In 

response to RQ1, we evaluate the performance of the 

technique using the APFD value and compare the result 

the other benchmark algorithms. While addressing RQ2, 

the proposed approach shows a tendency to handle 

highly complex faults early stage, effectively bounding 

and handling complex code blocks compared to 

alternative techniques. Considering RQ3, the proposed 

technique generally surpasses others, with GA demon-

strating superior performance. Responding to RQ4, the 

performance suggested techniques vary with project size 

as for smaller projects, it excels compared to others 

while for larger projects, performance reaches saturation 

with marginal increments across versions. Answering 

RQ5, our proposed technique successfully achieves all 

target points defined by software testers. Additional 

objective functions, such as fault severity and other 

coverage parameters, can be incorporated into our 

approach as future work. Furthermore, including more 

software artefacts is recommended to enhance accuracy 

in terms of fault sensitivity. 
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