
Journal of Electrical Engineering, Vol. 75, No. 2, 2024, pp. 151-160

sciendo

PAPERS__

1 GLA University, Mathura, India, 2 Tata Consultancy Services, India

kamal.garg_phd.cs21@gla.ac.in, shashi.shekhar@gla.ac.in

https://doi.org/10.2478/jee-2024-0018, Print (till 2015) ISSN 1335-3632, On-line ISSN 1339-309X

© This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives License

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Fault sensitivity index-based multi-objective testcase prioritization

Kamal Garg1,2, Shashi Shekhar1

Test case prioritization (TCP) is a regression technique that sequences test cases by assigning priority based on specific criteria

defined by software testers. Various parameters, such as code coverage, statement coverage, and method coverage, are utilized

in Test Case Prioritization (TCP), wherein metaheuristic techniques are widely employed to determine the optimal order of test

cases based on these specified parameters. However, simply applying these techniques does not ensure the satisfaction of all

the needs of software testers. This paper introduces an empirical study that employs the multi-objective test case prioritization

(MOTCP) technique to prioritize the test cases based on target points defined by software testers. The study calculates

a Software Complexity Index (SCI) at the code level, identifying fault-prone areas. Furthermore, a Test-case Complexity Index

(TCI) is also used for prioritization. The proposed technique incorporates various target points defined by the software tester

to calculate SCI and TCI, which serve as our main objectives for TCP. A detailed analysis is also performed to examine the

impact of these target points on the generated optimal order of test cases. Finally, the proposed model is compared with other

state-of-the-art techniques across various evaluation parameters.

Keywords: regression testing, test case prioritization, NSGA-2, soft computing, MOTCP, SCI, test case complexity index

1 Introduction

Software and applications, ranging from mobile to

desktop applications, have become integral to daily

human life. Ensuring bug-free software is crucial,

leading software development companies to allocate

a significant portion of their budget to software

maintenance. Regression testing is a crucial aspect of

this process, involving testing new versions or patches

to ensure compatibility with previous software

iterations. This makes regression testing time-

consuming and resource-intensive. There are three main

approaches used for software regression testing: test case

selection, test case reductions, and test case prioritization

which involve execution of the test cases based on

priority order.

In Test Case Prioritization (TCP) [1], the main

objective is to prioritize the test cases in terms of faults

and cost, which means test cases that can detect more

faults should be given high priority compared to other

test cases. Test suites that take less time should also be

prioritized in execution order. Many parameters are

considered during TCP to achieve this objective, e.g.,

code coverage, statement coverage, method coverage,

etc. It is believed that a test case, when it covers a large

amount of code, methods, or statements, can detect

a large amount of fault compared to other test cases that

cover less code. However, simply considering these

parameters in TCP, they are ineffective in fault

detection. Many scholars use more than one parameter

to overcome this problem and generate effective orders

of test cases.

The proposed technique used multiple parameters,

code block coverage and cost in a multi-objective

fashion to optimize the order of test cases. The main

contribution of this paper is to focus on some target

points defined by the software tester to prioritize test

cases. These target points help to identify bugs in

applications and produce cost-efficient TCP. Here,

object-oriented applications are used to test the proposed

methodology. For the implementation, various tools are

used to extract software artefacts and later, these

artefacts are used to find optimal order of the test cases.

To solve this MOTCP problem, a non-dominating

sorting genetic algorithm (NSGA-2) [2] is used.

Detailed analysis is also conducted to find the answer to

the following research question (RQ).

• RQ1: How does the proposed methodology work

in comparison to other state-of-the-art algorithms

in terms of fault detection?

• RQ2: Which of the algorithms achieves the earliest

fault detection?

• RQ3: How does the proposed technique result

in terms of cost-effectiveness?

152 Kamal Garg and Shashi Shekhar: Fault sensitivity index-based multi-objective testcase prioritization

• RQ4: How does the proposed MOTCP model

perform on small, medium and large software

systems?

• RQ5: Which technique can achieve target points

defined by software testers?

The proposed manuscript includes section 2 that

elaborates on related state-of-the-art work, followed by

the proposed methodology in section 3. The experi-

mental assessment and its various assessment metrics are

explained in section 4. Section 5 clearly demonstrates

the results analysis of the proposed scheme. Finally,

conclusions and future scope are listed in section 6.

2 Contextualizing previous studies

The overview is started with review papers that

emphasize regression testing [3] in detail. Recently, in

2021, Mukherjee et al. [4] presented an inclusive survey

containing different techniques on TCP. The author

reviewed almost 90 research articles published on

regression test selection (RTS) and TCP from 2001 to

2024. In 2021, Tian et al. [5] presented an extensive

survey on large-scale multi-objective optimization

techniques, and Qasim et al. [6] presented various

regression testing methods, whereas authors Pan et al.

[7] studied the TCP using various machine learning

techniques. Strandberg et al. [8] published an article on

automated regression test prioritization in 2017. This

study discussed the challenges and advancement.

Khatibsyarbini et al. [9] also reviewed semantic

regression testing in 2018. Bajaj et al. [10] also

compared and studied various TCP techniques based on

genetic algorithms in 2016. The said review papers give

detailed information on the field of TCP.

The cost-centric prioritization method emphasizes

parameters such as cost analysis, execution, and

maintenance costs while designing cost models. There

are different ways to test software, and we often use

a measure called Average Percentage of Fault Detection

(APFD) to see how well a technique is working. Yu-Chi

Huang et al. proposed history based cost-cognizant test

case prioritization to investigate and improve the APFD

value [11]. In 2021, Huang et al. [12] proposed a learn-

to-rank technique to prioritize the test cases. The

proposal combined extended finite state machine

features with a random forest algorithm to improve the

fault detection rate. The performance is measured in

terms of APFD, which reaches 0.884. In another study,

Yadav et al. [13] calculated the APFD value with the

help of a unified modelling language (UML) diagram

based on object-oriented software. Khanna et al. [14]

compared many algorithms like NSGA-II, genetic

algorithm, random approach, and 2-opt algorithm on five

web applications. The applied algorithms prioritize the

test sequence to increase the APFD rate and minimize

the procedure's cost.

However, APFD works best when all tests have equal

cost, and all faults are equally severe. If the tests have

different levels of faults and cost, using APFD might

give us incorrect results. So, it's crucial to choose the

right measure to get reliable and accurate results. For this

problem, Ahmed et al. [3] proposed two evaluation

metrics called Average Percentage of Fault Detection

per value (APFDv) and Average Percentage of

Requirements Coverage per value (APRCv) with the

help of genetic algorithm. In a study, Nucci et al. [15]

also proposed a genetic algorithm influenced by the

hypervolume Indicator. The results showed that the

proposed technique not only reduced the cost but also

improves the prioritization efficiency. In 2002, Deb et al.

[2] introduced a fast and elitist multi-objective genetic

algorithm named non-dominated NSGA-II for better

coverage and to optimize better performance. It also

requires fewer parameters and a low computational

approach. In 2015, Epitropakis et al. [16] illustrated the

importance of applying Pareto benefits for test case

selection. Baoying et al. [17] proposed a genetic

algorithm solution based on diversity to achieve

balanced testing to enhance fault detection rate. Geetha

et al. [18] suggested a multi-level random walk

algorithm to reduce test cases. The approach also

included a genetic algorithm. In another study, Khanna

et al. [19] focused on multi-objective algorithms and

compared ant bee colony and genetic algorithm- II to

prioritize the test cases.

Bajaj et al. [20] applied a three-level regression

testing approach (prioritization, selection, and

minimization) that is based on nature-inspired algo-

rithms named as particle swarm optimization (PSO),

genetic algorithm (GA), NSGA-II and artificial bee

colony (ABC). Zheng Li et al. [21] presented an

empirical study on greedy, metaheuristic, and

evolutionary search algorithms for regression TCP to

address the problems like finding modality, fitness

metrics and most suited test cases. The result shows that

greedy algorithm performs better than other algorithms.

Bian et al. [22] used a metaheuristic approach,

epistasis based ACO for Regression TCP to combine the

knowledge of biological theory and application domain.

It is clearly visible that in comparison of single objective

technique, meta-heuristic approaches are more effective.

Marchetto et al. [23] applied IR based traceability

recovery and latent semantic indexing to find maximum

early fault cases which results in less execution time.

The experiment is performed on 21 java application.

Hao et al. [24] made an empirical study on optimal

coverage for test case prioritization with intermediate

goals. The comparison is also conducted between the

optimal and standard approaches in terms of coverage,

Journal of Electrical Engineering, Vol. 75, No. 2, 2024 153

fault detection, or execution time. Other than con-

ventional Prioritization approaches, some different

techniques have also been preferred for TCP that is

motivated to enhance fault rate in lesser time. Haidry et

al. [25] evaluated six different industrial systems by

using dependency structures for prioritization. These

dependencies help in enhancing the fault detection rate

in comparison to untreated order, random order, and

other techniques. Singha et al applied African Buffalo

Optimization for TCP with multiple iteration that reports

62.5% decrease in size and 48.57% in the runtime as

compared to original test suite [29]. Learn to Rank

algorithm used for TCP and also mention the challenges

in [30]. The review article represents Large Language

Model based Software Testing and reports 102 relevant

studies [31].

3 Proposed methodology

Definition: Multi-objective Test case Prioritization

(MOTCP)

Given: A test suite T; All sets of permutations of T,

PT; and n, the number of objective functions 𝑓𝑖, where

𝑖 = 1,2,3 … 𝑛

Objective: To find a permutation set 𝑇′ ∈ PT such

that 𝑇′ belongs to pareto-optimal fronts to the given

objective function 𝑓𝑖.

Pareto optimal front is a set of solutions that are non-

dominated by each other. For example, in three objective

functions 𝐹1 , 𝐹2 , 𝐹3 multiple solutions are belonging to

PT such that 𝐹1(𝑇′′) > 𝐹1(𝑇′), 𝐹2(𝑇′′) > 𝐹2(𝑇′) or

𝐹3(𝑇′′) ≥ 𝐹3(𝑇′) then these solutions 𝑇′ and 𝑇′′ are

non-dominated to each other (if all functions Fi set is

maximized). If there is a solution 𝑇′′ such that for

all 𝐹𝑖(𝑇′′) > 𝐹𝑖(𝑇′), 𝑖 = 1,2,3; it shows that solution 𝑇′′

dominate 𝑇′. Regression testing aims to check the

impact of modification in software development. If

changes are in the code or new functionality are

introduced to the application, the test cases that cover

these changes must run first. Some of the target points

are mentioned below.

• A newly created test case should have high priorities.

• Test cases with modified codes should also have high

priorities.

• Test cases dependent upon a high fault-prone area

should have high priorities.

• High-fault test cases must have higher priorities.

• A test case having a higher failure history should

have high priorities.

The objective is to calculate the fault sensitivity index

(FSI) based on Code Complexity Index (CCI) and the

Test-case Complexity Index (TCI). Using these two

parameters, two-weight metrics WB and WT, are

generated. Lastly, the area under the curve is calculated

to compute the first objective function and cost is

calculated for the second objective. Figure 1 shows the

basic block diagram of proposed approach.

Fig. 1. Block diagram of the proposed technique

3.1 Software complexity index (SCI)

The internal complexity of code and dependency of

functionality is used to find prime test cases. McCabe’s

Cyclomatic Complexity, Object-Oriented Metrics, Line

of code (LOC), Code change density (CCD) and other

custom metrics are calculated to examine the complexity

of code

For complex coding, the software tester specifies

weight metrics used to assess code quality and

complexity as per its need during regression testing. The

weight matrix is used to calculate 𝑊𝑏𝑖. All software

artefact values are initially calculated for each code

block and outliers are detected. Outliers mean that their

matrix values are out of the boundary of the threshold

range. If the value lies within the threshold range, it is

safe; otherwise, it is unsafe and needs testing. So, from

154 Kamal Garg and Shashi Shekhar: Fault sensitivity index-based multi-objective testcase prioritization

these metrics, if the tester finds an outlier, it marks it 1,

otherwise it marks it 0. For example, if coupling between

objects (CBO) ranges from 0 to 47 and the acceptable

range is 15% to 85% (7.5 to 39). If class C1 has CBO 4

and class C2 has CBO 32, C1 is an outlier (below 15%).

So, C1's CBO is marked 1, while C2's CBO is marked 0.
Then after, calculate the weight for the respective code

block [26] using Eqn. (1).

𝑊𝑏𝑖 =
∑ (𝑊𝑐 × 𝑉𝑐𝑏)𝑐∈𝐶

∑ (𝑊𝑐)𝑐∈𝐶
 (1)

Here, 𝑊𝑐 is software tester specified weight and 𝑉𝑐𝑏

is outliers. In the same way, the weights of all remaining

code blocks are calculated. Subsequently, the total

weight of each test case is determined by summing up

the weights of the code blocks covered by that specific

test case, denoted as 𝑊𝐵𝑡𝑖

 . After obtaining the total

weight of each test case, the cumulative sum of 𝑊𝐵𝑡𝑖

𝑐 is

calculated corresponding to the test case order. This

cumulated sum 𝑊𝐵𝑡𝑖

𝑐 is further used to calculate the area

under the curve (AUC) using the trapezoidal rule, as

shown in Eqn. (2). This AUC is nothing but our first

objective function, SCI.

∫ 𝑓(𝑥)𝑑𝑥 =
𝑥𝑛

𝑥1

(𝑥2 − 𝑥1)
𝑓(𝑥1) + 𝑓(𝑥2)

2
+ (𝑥3 − 𝑥2)

𝑓(𝑥2) + 𝑓(𝑥3)

2
+ ⋯

 ∙∙∙ +(𝑥𝑛 − 𝑥𝑛−1)
𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)

2
 (2)

3.2 Test-case complexity index (TCI)

After calculating SCI, TCI is calculated for the test

case. This TCI can also be referred to as test case cost.

This cost is defined in terms of weights, not execution

time.

Weight WTi is calculated by analysing the behaviour

of the test cases. It is calculated based on test case

behaviour, considering historical and current status

information. The parameters used for WTi calculation

include Code Coverage, where extensive coverage is

assumed to explore more faults. Class coverage

increases fault detection probability with broader

coverage, representing the covered class in a test case.

Dependency involves identifying dependencies between

neighbouring modules, assigning weights based on

dependencies and updating nodes when project

modifications occur. Faults indicate the maximum

number of faults a test case covers in a specific version.

Cost measures the execution time of a test case. New

Functionality is a binary value indicating whether a test

case covers new functionality. Status history, repre-

sented in binary values, indicates test case execution

success (1) or failure (0) and reflects the test case age,

such as "010", signifying a 66.6% failure rate. To

calculate WTi, the same outlier method is used as

described in the previous section but on metrics related

to the test case, not code.

𝑊𝑇𝑖 =
∑ (𝑊𝑐 × 𝑉𝑐𝑖)𝑐∈𝐶

∑ (𝑊𝑐)𝑐∈𝐶
 (3)

The cost of TCI is the second objective function that

needs to be optimized [27]. It is calculated by using

Eqn. (4), where 𝑂𝑖 defines the position of ith test case

among all test case orders, and 𝑊𝑇𝑖
 as in Eqn. (3) is its

weight and 𝐶𝑖 is the cost of test case ith.

𝐹 = ∑
𝑊𝑇𝑖

𝐶𝑖 × 𝑂𝑖

𝑛

𝑖=1

 (4)

3.3 Implementation of NSGA-2

During the implementation of NSGA-2, the chromo-

some is encoded in a random sequential order. Then, two

parents are selected via tournament selection to produce

offspring. The order crossover operation is performed to

ensure each test case appears only once. Then after,

a swapping mutation is applied.

4 Experimental assessment

This section presents information about the experi-

mental setup. The datasets are represented in Tab. 1 are

used to perform experiments. For the experiment, three

customized Java projects are used. The first project is

small, with an average of 2.4K code and 13 classes. The

second project is medium-sized, containing a 2.3 to 6.2k

code and classes ranging from 10 to 27. The third big

project has a maximum 8.6K code size and 36 maximum

classes.

Journal of Electrical Engineering, Vol. 75, No. 2, 2024 155

Software artefact metrics are required to find the

target points. Mutation operation is used to change the

application to introduce any fault, and this faulty version

of codes is called mutants. The mutations are done by

changing arithmetic operators and conditional state-

ments [28]. Despite using mutation operation using

automatic tools, some manual faults seeding is also

introduced in codes.

.

Table 1. Project details: P=projects, V=version

Project P1V0 P1V1 P1V2 P1V3 P2V0 P2V1 P2V2 P2V3 P3V0 P3V1 P3V2 P3V3

Class 8 12 15 18 10 16 21 27 16 23 28 36

Code(K) 1.4 2.2 2.8 3.5 2.3 3.6 4.4 6.2 3.1 4.2 6.4 8.6

Test cases 12 21 30 38 17 33 48 65 28 54 76 102

Faults 15 25 35 45 20 40 60 80 30 60 90 120

4.1 Experimental design

The proposed model is implemented in Python on an

Intel i5 processor with 8 GB memory. During the

extraction of software artefacts, six data files,

• TestCases_Faults.csv,

• TestCases_Classes.csv,

• Class_Weights.csv,

• TestCases_Weights.csv,

• TestCases_Costs.csv

• TestCases.csv,

are generated. These data files are used as input to

calculate our two objective functions. To optimize the

objectives, NSGA-2 is used. During the execution of

NSGA-2, initial populations are taken equal to twice the

number of test cases, the number of iterations used is

500, and the crossover rate and mutation rates taken

during execution are 0.5 and 0.25, respectively.

4.2 Evaluation metrics

The model's performance is evaluated in terms of

average percentage of fault detection (APFD). APFD is

a metric commonly used in software testing to evaluate

the effectiveness of test case prioritization techniques. It

quantifies how well a prioritization technique orders test

cases to detect faults early in the testing process. APFD

is calculated based on the positions of faults detected by

executed test cases and the total number of test cases and

faults. The formula for APFD, Eqn. (5), incorporates

these values to produce a single metric that ranges from

0 to 1, with higher values indicating better fault detection

effectiveness. [11]

𝐴𝑃𝐹𝐷 = 1 −
∑ 𝑇𝐹𝑖

𝑚
𝑖=1

𝑛𝑚
+

1

2𝑛
 (5)

The other evaluation criteria is the target points analysis,

where the algorithm's performance is also calculated on

behave of some criteria defined by the software tester.

The proposed technique is evaluated against several

benchmark algorithms outlined in Tab. 2.

 Table 2. Peer techniques for comparison

 M1 M2 M3 [14] M4 [14] M5 [24] [15]
M6 M5

[24] [15]
M7 Proposed

 Random Add. Greedy
3-Opt

No Cost

3-Opt

With Cost

GA

With Cost

GA

No Cost

NSGA-2

FSI

APFD

Project-P1
61.52 - 68.6 66.38 - 69.05 67.4 - 72.03 65.59 - 75.25 60.37 - 67.89 72.47 - 74.28 73.44 - 76.81

APFD

Project-P2
66.8 - 77.94 73.68 - 76.48 76.51 -79.12 70.47 - 75.25 71.55 - 73.91 77.63 - 80.88 81.33 - 82.84

APFD

Project-P3
75.79 -81.49 78.89 - 84.54 83.18 -88.11 78.15 - 84.8 76.87 - 85.5 85.93 - 88.58 87.27 - 88.98

156 Kamal Garg and Shashi Shekhar: Fault sensitivity index-based multi-objective testcase prioritization

5 Result analysis

This section briefly analyses experimental results in

terms of the quantitative value and the statistical graph.

The algorithms are compared for APFD values and box

plots generated corresponding to APFD metrics. The

different APFD values are analyzed for Project-P1,

Project-P2 add Project-P3 as shown in Tab. 2. For

Project-P1, it is reported that algorithm M7 (APFD %:

73.44-76.81) performs better than others. While M6

(APFD %: 72.47-74.28) is the second-best performer, on

the other hand M5 (APFD %: 60.37-67.89) performs

worst among all.

Similarly, for Project-P2, it is clear that M7

(APFD %: 81.33-82.84) and M6 (APFD %: 77.63-

80.88) still performing well among all as previously

while the performance of M4 and M5 is almost the same

but M1(APFD %: 66.8-77.94) performs worst as

compared to others.

Almost same behavior is found in a large-scale

project Project-P3, where M7 (APFD %: 87.27-88.98)

still performing well and M1(APFD %: 75.79-81.49)

perform worst among all, while the performance of M2

and M4 are almost same for Project-P3. The analysis

across three projects demonstrates that proposed

prioritization methods M7, consistently outperform,

indicating their critical role in enhancing fault detection

efficiency in complex software systems.

For detailed analysis, the box plots are drawn as

shown in Fig. 2. This box plot represents APFD values

of all versions of a project; Fig. 2(a) is for small project

P1, Fig. 2(b) for medium scale project P2 and Fig. 2(c)

for large project data. In the box plot, the red line

indicates the median APFD value and the edges of the

box represent percentile value on the mark of 25 and 75.

By analyzing the above box plots, it can be concluded

that M7 perform better compares to other benchmark

techniques. In Fig. 2(a) and Fig. 2(b) it is visible that M7

constantly improve its performance compared to others

but in Fig. 2(c) median of M7 and M6 appears to be the

same.

Slight similarity is perceived in APFD by

overlapping of the box plot. For further analysis,

a detailed comparison between benchmark algorithms

and proposed NSGA-2 is performed in terms of mean

value difference using the ANOVA method. Here,

Tukey’s mean group comparison is used at a 5%

significance level. The results are shown in Fig. 3 for all

three projects. It is visible from Figs. 3(a, b, c) that M7

has no overlap with M5, M4, M2 and M1 in all three

projects. Some overlapping of M7 with M3, M6 is

found, but it is clear that the mean value of M7 is greater

than M3 and M6 for all projects, which rejects the

hypothesis that all mean values are equal because the p-

value corresponding to the ANOVA analysis is less than

0.05.

Fig. 2. Boxplot of benchmark techniques: (a) Project-P1, (b) Project-P2, (c) Project-P3

Journal of Electrical Engineering, Vol. 75, No. 2, 2024 157

Fig. 3. Tukey test graph comparing the difference of mean: (a) Project-P1, (b) Project-P2, (c) Project-P3

Fig. 4. APFD representation of proposed techniques

158 Kamal Garg and Shashi Shekhar: Fault sensitivity index-based multi-objective testcase prioritization

Figure 4 illustrates the APFD representation of all

techniques, with each column representing a single

project and its versions. The graph reveals that

techniques leading to fault detection initially tend to

have the highest APFD values. Additionally, it is

noteworthy that with a small number of test cases, there

is a significant gap between the APFD graphs, indicating

a substantial difference in APFD values. As the number

of test cases increases, e.g., Figs. 4 (Project-P3V2 and

Project-P3V3) the graphs become denser, signifying

a reduced gap in APFD values.

The APFD graph also suggests that executing all test

cases may not be necessary, as several algorithms

achieve 100% fault detection before completing all tests.

Many flat horizontal lines in the graphs support this

observation, indicating the early detection of all faults.

This property is further utilized to assess the

performance of all algorithms.

The experiments also report the percentage of test

cases needed to detect 100% faults. Notably, M7 is the

technique that consistently detects all faults early,

followed by M6 in this criterion. The minimum

percentage of test cases required to cover all faults

ranges from 38.24% to 76.19% for M7, while for M6, it

is 33.33% to 76.19%.

Reducing test cases also leads to lower execution

costs. The experimental analysis conducted across

various projects, comparing methods M1 to M7, reveals

that M7 excels in reducing costs. Although M7, M6, M5,

and M4 all achieve execution cost reductions, M5 stands

out by detecting all faults within merely 20% of the total

execution time.

Finally, the evaluation is conducted on target points

defined by the software tester, as presented in Tab. 3.

These table illustrates the coverage of code blocks and

test cases within the defined limits, particularly highly

complex ones. In this context, the limit is defined as the

length of a test case covering all faults, and complexity

is considered only if the weights surpass 50% of the

maximum, as explained earlier. From the Tab. 3, it is

evident that M7 can cover more target points than other

benchmark algorithms. Although M7 lags behind M6 in

code coverage but it detects 98% of faults compared to

M6's 95%. It is noteworthy that M6 operates in a single

direction, whereas M7 explores multiple directions in

the search space. The algorithm securing the third

position is M3, with the covering difference being less

than 5% compared to M6 at some points. M2 secures the

fourth position, while the performance of M5 and M4 is

quite similar, and M1 ranks the least effective among all

algorithms.

Table 3. Percentage of target point coverage

 M7 M6 M5 M4 M3 M2 M1

Code Coverage 72.43 76.58 55.24 51.16 70.58 62.48 43.26

Faults 98.10 95.46 76.48 78.32 92.32 86.67 64.26

New functionality 74.63 70.94 57.36 58.28 67.28 54.52 42.54

Test case Status 76.04 66.18 54.58 52.46 61.45 58.26 43.88

Code complexity 84.24 74.43 58.47 54.50 72.12 63.45 48.21

Code change density 78.18 72.32 56.36 52.92 67.45 54.30 44.62

6 Conclusion and future scope

The proposed techniques utilize NSGA2 for

optimizing specified objectives and undergo thorough

testing across three Java projects of varying scales,

including small, medium, and large-scale projects. Upon

concluding the performance evaluation of our proposed

technique, we handled the research questions posed. In

response to RQ1, we evaluate the performance of the

technique using the APFD value and compare the result

the other benchmark algorithms. While addressing RQ2,

the proposed approach shows a tendency to handle

highly complex faults early stage, effectively bounding

and handling complex code blocks compared to

alternative techniques. Considering RQ3, the proposed

technique generally surpasses others, with GA demon-

strating superior performance. Responding to RQ4, the

performance suggested techniques vary with project size

as for smaller projects, it excels compared to others

while for larger projects, performance reaches saturation

with marginal increments across versions. Answering

RQ5, our proposed technique successfully achieves all

target points defined by software testers. Additional

objective functions, such as fault severity and other

coverage parameters, can be incorporated into our

approach as future work. Furthermore, including more

software artefacts is recommended to enhance accuracy

in terms of fault sensitivity.

Journal of Electrical Engineering, Vol. 75, No. 2, 2024 159

Conflict of Interest: There is no conflict of interest.

Statement of interest: DATA can be made available on

reasonable request.

Funding: No funding was obtained for this study.

References

[1] A. Attaallah, K. Al-Sulbi, A. Alasiry, M. Marzougui, M. W.

Khan et al., "Security test case prioritization through ant colony

optimization algorithm," Computer Systems Science and

Engineering, vol. 47, no.3, pp. 3165–3195, 2023. doi:

10.32604/csse.2023.040259

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and

elitist multiobjective genetic algorithm: NSGA-II,” IEEE

Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

doi: 10.1109/4235.996017.

[3] F. S. Ahmed, A. Majeed and T. A. Khan, "Value-based test

case prioritization for regression testing using genetic

algorithms," Computers, Materials & Continua, vol. 74, no.1,

pp. 2211–2238, 2023. doi: 10.32604/cmc.2023.032664

[4] R. Mukherjee and K. S. Patnaik, “A survey on different

approaches for software test case prioritization,” J. King Saud

Univ. - Comput. Inf. Sci., vol. 33, no. 9, pp. 1041–1054, Nov.

2021. doi: 10.1016/j.jksuci.2018.09.005.

[5] Y. Tian et al., “Evolutionary Large-Scale Multi-Objective

Optimization: A Survey,” ACM Comput. Surv., vol. 54, no. 8,

pp. 1–34, Nov. 2022. doi: 10.1145/3470971.

[6] Shaheed Zulfikar Ali Bhutto Institute of Science and

Technology, Karachi, Pakistan and Q. Et Al., “Test case

prioritization techniques in software regression testing: An

overview,” Int. J. Adv. Appl. Sci., vol. 8, no. 5, pp. 107–121,

May 2021. doi: 10.21833/ijaas.2021.05.012.

[7] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test

case selection and prioritization using machine learning: a

systematic literature review,” Empir. Softw. Eng., vol. 27, no.

2, p. 29, Mar. 2022. doi: 10.1007/s10664-021-10066-6.

[8] P. Erik Strandberg, W. Afzal, T. J. Ostrand, E. J. Weyuker, and

D. Sundmark, “Automated System-Level Regression Test

Prioritization in a Nutshell,” IEEE Softw., vol. 34, no. 4, pp.

30–37, 2017. doi: 10.1109/MS.2017.92.

[9] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, and R. Tumeng,

“Test case prioritization approaches in regression testing:

A systematic literature review,” Inf. Softw. Technol., vol. 93,

pp. 74–93, Jan. 2018. doi: 10.1016/j.infsof.2017.08.014.

[10] A. Bajaj and O. P. Sangwan, “A Systematic Literature Review

of Test Case Prioritization Using Genetic Algorithms,” IEEE

Access, vol. 7, pp. 126355–126375, 2019. doi:

10.1109/ACCESS.2019.2938260.

[11] Yu-Chi Huang, Kuan-Li Peng, Chin-Yu Huang "A history-

based cost-cognizant test case prioritization technique in

regression testing" Journal of Systems and Software, Vol.85/3,

pp 626-637, 2012. doi: 10.1016/j.jss.2011.09.063.

[12] Y. Huang, T. Shu, and Z. Ding, “A Learn-to-Rank Method for

Model-Based Regression Test Case Prioritization,” IEEE

Access, vol. 9, pp. 16365–16382, 2021. doi:

10.1109/ACCESS.2021.3053163.

[13] D. K. Yadav and S. Dutta, “Regression test case selection and

prioritization for object oriented software,” Microsyst.

Technol., vol. 26, no. 5, pp. 1463–1477, May 2020. doi:

10.1007/s00542-019-04679-7.

[14] M. Khanna, N. Chauhan, D. Sharma, A. Toofani, and A.

Chaudhary, “Search for Prioritized Test Cases in Multi-

Objective Environment During Web Application Testing,”

Arab. J. Sci. Eng., vol. 43, no. 8, pp. 4179–4201, Aug. 2018.

doi: 10.1007/s13369-017-2830-6.

[15] D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, “A

Test Case Prioritization Genetic Algorithm Guided by the

Hypervolume Indicator,” IEEE Trans. Softw. Eng., vol. 46, no.

6, pp. 674–696, Jun. 2020. doi: 10.1109/TSE.2018.2868082.

[16] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke,

“Empirical evaluation of pareto efficient multi-objective

regression test case prioritisation,” in Proceedings of the 2015

International Symposium on Software Testing and Analysis, in

ISSTA 2015. New York, NY, USA: Association for

Computing Machinery, pp. 234–245, Jul. 2015. doi:

10.1145/2771783.2771788.

[17] B. Ma, L. Wan, N. Yao, S. Fan, and Y. Zhang, “Evolutionary

selection for regression test cases based on diversity,” Front.

Comput. Sci., vol. 15, no. 2, p. 152205, Apr. 2021. doi:

10.1007/s11704-020-9229-3.

[18] U. Geetha, S. Sankar, and M. Sandhya, “Acceptance testing

based test case prioritization,” Cogent Eng., vol. 8, no. 1, p.

1907013, Jan. 2021. doi: 10.1080/23311916.2021.1907013.

[19] M. Khanna, A. Chaudhary, A. Toofani, and A. Pawar,

“Performance Comparison of Multi-objective Algorithms for

Test Case Prioritization During Web Application Testing,”

Arab. J. Sci. Eng., vol. 44, no. 11, pp. 9599–9625, Nov. 2019.

doi: 10.1007/s13369-019-03817-7.

[20] A. Bajaj and O. P. Sangwan, “Tri-level regression testing using

nature-inspired algorithms,” Innov. Syst. Softw. Eng., vol. 17,

no. 1, pp. 1–16, Mar. 2021. doi: 10.1007/s11334-021-00384-9.

[21] Z. Li, M. Harman, and R. M. Hierons, “Search Algorithms for

Regression Test Case Prioritization,” IEEE Trans. Softw. Eng.,

vol. 33, no. 4, pp. 225–237, Apr. 2007. doi:

10.1109/TSE.2007.38.

[22] Y. Bian, Z. Li, R. Zhao, and D. Gong, “Epistasis Based ACO

for Regression Test Case Prioritization,” IEEE Trans. Emerg.

Top. Comput. Intell., vol. 1, no. 3, pp. 213–223, Jun. 2017. doi:

10.1109/TETCI.2017.2699228.

[23] A. Marchetto, Md. M. Islam, W. Asghar, A. Susi, and G.

Scanniello, “A Multi-Objective Technique to Prioritize Test

Cases,” IEEE Trans. Softw. Eng., vol. 42, no. 10, pp. 918–940,

Oct. 2016. doi: 10.1109/TSE.2015.2510633.

[24] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie, “To

Be Optimal or Not in Test-Case Prioritization,” IEEE Trans.

Softw. Eng., vol. 42, no. 5, pp. 490–505, May 2016. doi:

10.1109/TSE.2015.2496939.

[25] S.-Z. Haidry and T. Miller, “Using Dependency Structures for

Prioritization of Functional Test Suites,” IEEE Trans. Softw.

Eng., vol. 39, no. 2, pp. 258–275, Feb. 2013. doi:

10.1109/TSE.2012.26.

[26] R. Lincke, J. Lundberg, and W. Löwe, “Comparing software

metrics tools,” in Proceedings of the 2008 international

symposium on Software testing and analysis, Seattle WA USA:

ACM, Jul. 2008, pp. 131–142. doi: 10.1145/1390630.1390648.

[27] R. Mukherjee and K. S. Patnaik, “Prioritizing JUnit Test Cases

Without Coverage Information: An Optimization Heuristics

Based Approach,” IEEE Access, vol. 7, pp. 78092–78107,

2019, doi: 10.1109/ACCESS.2019.2922387.

[28] C. Fang, Z. Chen, and B. Xu, “Comparing logic coverage

criteria on test case prioritization,” Sci. China Inf. Sci., vol. 55,

no. 12, pp. 2826–2840, Dec. 2012. doi: 10.1007/s11432-012-

4746-9.

[29] S. Singhal, N. Jatana, A. F. Subahi, C. Gupta, O. I. Khalaf et

al., "Fault coverage-based test case prioritization and selection

using african buffalo optimization," Computers, Materials &

Continua, vol. 74, no.3, pp. 6755–6774, 2023. doi:

10.32604/cmc.2023.032308

[30] A. Ramírez, M. Berrios, J..R. Romero, R. Feldt, "Towards

Explainable Test Case Prioritisation with Learning-to-Rank

Models" In 2023 IEEE International Conference on Software

Testing, Verification and Validation Workshops (ICSTW),

IEEE, pp. 66-69, doi: 10.1109/ICSTW58534.2023.00023

[31] Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., & Wang, Q.

"Software testing with large language models: Survey,

landscape, and vision" IEEE Transactions on Software

Engineering, 2024. pp 1-27. doi: 10.1109/TSE.2024.3368208

https://doi.org/10.32604/csse.2023.040259
https://doi.org/10.32604/csse.2023.040259
https://doi.org/10.32604/cmc.2023.032308
https://doi.org/10.1109/ICSTW58534.2023.00023
https://doi.org/10.1109/TSE.2024.3368208

160 Kamal Garg and Shashi Shekhar: Fault sensitivity index-based multi-objective testcase prioritization

Kamal Garg obtained his BTech from APJ Abdul

Kalam Technical University in Lucknow and his MS

from BITS Pilani. He has been working with Tata

Consultancy Services (TCS) as a Senior Consultant for

the past 13 years and is currently settled in London, UK.

He is a research scholar at GLA University in the

Department of Computer Engineering and Applications.

His areas of interest include software testing, regression

testing, machine learning, and soft computing. Kamal is

an IT Consultant with strong experience in the Delivery,

Testing and consulting of IT systems for the last 18+

years.

Shashi Shekhar received the MTech. degree in

Computer Science from UPTU Lucknow, India. He

received the Ph.D. degree from GLA University

Mathura, India. He has 22 years of teaching experience

and currently, he is working as an Associate Professor in

Department of computer Engineering and Applications,

GLA University, Mathura, India. His research interests

include Software Testing, Regression Testing, Machine

Learning, Soft Computing and Natural Language

Processing.

