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PSO–BASED POWER SYSTEM STABILIZER FOR
MINIMAL OVERSHOOT AND CONTROL CONSTRAINTS
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Power systems are subjected to severe repetitive oscillations that might cause generators shaft fatigue and consequently
breakdown. The paper presents a simple design technique for power system stabilizers (PSS) that minimize the maximum
overshoot; thus generator shaft fatigue is alleviated. The levels of control signal, as well, have to be maintained within certain
bounds imposed by physical and practical considerations. According to this regard, a technique based on Particle Swarm
Optimization (PSO) is introduced to identify the parameters of a fixed structure lead compensator through the solution of
a min-max problem while satisfying systems constraints. To robustify the PSS performance under wide loading conditions,
a set of operating points is considered within our approach. The designed PSS is applied to a single machine infinite bus
system operating at different loading conditions and the results demonstrated the effectiveness of the developed technique.
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1 INTRODUCTION

Power system stabilizers (PSS) have been extensively
used as supplementary excitation controllers to damp out
the low frequency oscillations and enhance the overall sys-
tem stability. Fixed structure stabilizers have practical
applications and generally provide acceptable dynamic
performance. The typical ranges of PSS parameters val-
ues are found in [1] and summarized in the appendix.
There have been arguments that these controllers, be-
ing tuned for one nominal operating condition, provide
suboptimal performance when there are variations in the
system load. There are two main approaches to stabilize
a power system over a wide range of operating condi-
tions, namely adaptive control [2–4] and robust control.
However, adaptive controllers have generally poor perfor-
mance during the learning phase unless they are properly
initialized.

Robust control provides an effective approach to deal
with the uncertainties introduced by variations of operat-
ing conditions. Many robust control techniques have been
used in the design of PSS such as pole placement [5], the
structured singular value [6] and linear matrix inequal-
ity (LMI) [7]. Variable structure control applied to PSS
results in high control activity (chattering) [8]. The H∞

approach is applied to the design of PSS for a single ma-
chine infinite bus system in [9]. The basic idea is to carry
out a search over operating points to obtain a frequency
bound on the system transfer function. Then, a controller
is designed so that the worst-case frequency response lies

within pre- specified bounds. It is noted that the H∞ de-
sign requires an exhaustive search and results in a high or-
der controller. PSS design based on Kharitonov theorem
[10, 11] leads to conservative design as well. The theorem
assumes that the parameters of the closed loop charac-
teristic polynomial vary independently. This never hap-
pens as these parameters depend on power system load-
ing conditions. Though practical operating conditions re-
quire the magnitude of the control signal to be within a
certain limit, it seems that none of the above-mentioned
papers consider the control limit constraints. Constraints
on rotor angle deviation have also to be considered, oth-
erwise repetitive oscillations with severe overshoots may
cause fatigue and damage to the generator shaft. In view
of the above it is desirable to develop a design technique
that obtains the PSS parameters avoiding: (1) the conser-
vatism in robust designs (2) large overshoots (3) control
signal violation. The paper considers the optimum tun-
ing of fixed structure lead controller to stabilize a single
machine infinite bus system. The lead controllers have
found applications in power system control problem for
their simplicity and ease of realization. The tuning scheme
proposed in this paper uses the particle swarm search
technique that minimizes the overshoot as well as con-
trol signal violation. Minimizing the overshoot is equiva-
lent to increasing system damping. However we are con-
fronted with a necessary compromise between swiftness
of response and allowable overshoot. To achieve robust-
ness and avoiding conservatism in design, the maximum
overshoot is selected to be the worst over three operating
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Fig. 1. Single machine infinite bus system.

regimes (heavy, nominal and light loading). The problem
is formulated in section 2 of the manuscript. The math-
ematical tools for designing the proposed PSS are stated
in section 3. Simulation results are depicted in section 4.
Finally, the paper is concluded in section 5.

2 PROBLEM FORMULATION

Figure 1 shows the system under study, which repre-
sents a single machine infinite bus system. The infinite
bus represents the Thevenin equivalent of large intercon-
nected power system.

The nonlinear equations of the system are:

δ̇ = ω0ω ,

ω̇ =
Tm − Te

M
,

Ė′

q =
1

T ′

d0

(

Efd −
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x′

d + xe
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q +
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d

x′

d + xe

V cos δ
)

,

Ėfd =
1

TE

(

KEEref − KEVt − Efd

)

.

(1)

The above equations can be linearized for small oscil-
lation around an operating point [1] and be cast in the
block diagram shown in Fig. 2.

The parameters of the model are function of the load-
ing (P, Q). The state equation for the system under study
is given by [1]

ẋ = Ax + Bu ,

y = Cx
(2)
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Constants k1 to k6 represent the system parameters at a
certain operating condition [1]. Analytical expression for
these parameters as a function of the loading (P,Q) are
derived in [5, 10] and summarized in the Appendix.

Typical data for such a system are as follows: For the
synchronous machine we have (pu):

xd = 1.6 , ẋd = 0.32 , xq = 1.55 ,

ωb = 2π × 50 rad/sec, T ′

d0 = 6 sec and M = 10 ,

while for the transmission line (pu): xe = 0.4.

To cover wide operating conditions of the machine un-
der study, the following three loading regimes are selected
(pu):

Load P Q

Heavy 1.2 0.2

Normal 1 0
Light 0.7 0.3

The selected regimes for designing PSS are chosen to
cover heavy, medium and light loading. The proposed
controller is designed based on the selected regimes. Test-
ing the obtained controller is checked on the selected ones
as well as other operating conditions.

The resulting matrices of the state equation are:
1. Heavy load regime:

A =







0 314 0 0
−0.1360 0 −0.1194 0
−0.2547 0 −0.4633 0.1667
−42.1430 0 −248.0059 −20






, B =







0
0
0

500






,

C = [ 0 1 0 0 ] .

Fig. 2. Linearized model of the power system
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2. Normal load regime:

A =







0 314 0 0
−0.1206 0 −0.1236 0
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3. Light load regime:

A =
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Fig. 3. Objective function global best values vs iterations

The problem we are interested in is defined as follows:

(1) Given the system (1), find a lead PSS controller in
the form:

u = Gc(s)∆ω , Gc(s) = k
s − Z

s − P
(4)

which stabilizes the system while minimizing the max.
overshoot of ∆δ(t) over the operating range. This ro-
bust minimal-overshoot controller can be obtained by
solving the following mini-max optimization problem

minimize
K,Z,P

J1 = max[∆δ(t)max − ∆δss]/∆δss

∀ selected regimes (5)

where J1 represents the worst overshoot over the se-
lected regimes, ∆δmax and ∆δss represent respectively
the maximum and steady state values of torque angle
deviation.

(2) The control signal should not exceed bounds imposed
by practical considerations. This can be cast as a per-
formance index J2 as follows

if umin < u < umax then J2 = 0 (6)

Otherwise,

minimize
K,Z,P

J2 = max
(

abs(u − umin), abs(u − umax)
)

∀selected regimes.

Combining (5), (6) we get the following overall objec-
tive function:

minimize
K,Z,P

J = αJ1 + βJ2 (7)

where α and β are weighting parameters.

It is worth mentioning that as β → ∞ , control con-
straints given by (6) are satisfied. However, if (7) includes
only J1 one of the system constraints is not included
in the optimization problem. In other words, if the con-
straints given by (6) are included by clipping the control
signal, then in this case the compensator output is no
longer active during the clipping period. Accordingly, the
values of the design parameters will not take into con-
sideration control constraints. We may get a controller,
but by no means is it optimal. By injecting βJ2 in the
cost function we guarantee that the designed compensator
minimizes the overshoot as well as satisfying control con-
straints (to a certain extent since β 6= ∞).

3 PSS DESIGN VIA SWARM OPTIMIZATION

The above mini-max optimization problem can be
solved using Particle Swarm Optimizer (PSO). This tech-
nique belongs to the class of evolutionary programming
approaches for optimization [12]. It is a multi agent search
technique that traces its evolution to the emergent mo-
tion of a flock of birds (agent, particle) searching for food.
Each bird traverses to the search space looking for the
global minimum (or maximum). The PSO technique is
computationally simple since it neither requires gradient
calculations nor necessitates the convexity of the func-
tion to be optimized. It is a stochastic optimization tech-
nique with a large number of agents, so it is unlikely to be
trapped at a local minimum. While the agents in the PSO
algorithm are searching the space, each agent remembers
two positions. The first is the position of the best point
the agent has found (self-best), whilst the second is the
position of the best point found among all agents (group-
best). The equations that govern the motion of each agent
are

Snew =
[

S + v

]

old
,

v|new =
[

γv + ar(0, 1)
(

Sself-best − S
)

+ br(0, 1)
(

Sgroup-best − S)
]

old

(8)

where S is a position vector of a single particle,
v is the velocity of this particle,
a, b are two scalar parameters of the algorithm,
γ is an inertia weight,
r(0, 1) is a uniform random number between 0 and 1,

group-best is the best solution of all particles and self-
best is the best solution observed by the current particle.
A maximum velocity (vmax) that cannot be exceeded may
also be imposed. Application of PSO to power system
control is given in [13–15]
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Fig. 4. Step response ∆δ(t) for heavy load Fig. 7. The control signal u(t) for heavy load

Fig. 5. Step response ∆δ(t) for normal load Fig. 8. The control signal u(t) for normal load

Fig. 6. Step response ∆δ(t) for light load Fig. 9. The control signal u(t) for light load

4 PSS DESIGN

4.1 Robust PSS with Minimal Overshoot and

without Control Constraints

The parameters of the controllers are tuned using PSO

by minimizing (7) with β = 0 (no control constraints). To

achieve this, a proper adjustment of the PSO parameters

is needed [12]. Table 1 shows the parameters of PSO that

provide best results.

Table 1. PSO parameters.

No. Of swarm birds (particles) 30

Particle dimension 3 (k, Z, P)

Max. particle speed, Vmax 10

γ , a , b 0.6, 0.95, 0.75

The poles, zeros and the gains of the controllers within

the population are randomly initialized. Figure 3 shows
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Fig. 10. (P = 1.1, Q = 0.1) Fig. 11. (P = 0.8, Q = 0.2)

Fig. 12. (P = 0.4, Q = 0.1) Fig. 13. Objective function for constraint global best vs iterations

the evolution of the value of the objective function for

the global best solution with iteration. The worst over-

shoot over the operating regimes (Heavy, normal and light

loading) is reduced from 0.06 to 0.000514 in nearly 30 it-

erations. This result is achieved while using the following

controller:

Gc(s) = 47.95
1 + 0.3176s

1 + 0.077s
(9)

The step response ∆δ(t) for heavy, normal and light

loading are shown in Figs. 4–6 respectively, while the

corresponding control signals are given in Figs. 7–9

Remarks

1. Although the proposed design does require calculating

the eigenvalues, it is to be noticed that the worst relative

stability (max real part of closed loop eigenvalues) over

the selected regimes is −1.2094. This shows that the

proposed PSS is very robust and provides an excellent

setting time as well.

2. The effectiveness of the proposed controller is checked

for operating regimes other than the selected ones. The

performance is shown in Figures 10 to 12.

4.2 Robust PSS with Minimal Overshoot and

Control Constraint

Although Figs. 4–9 showed acceptable responses for
∆δ(t), the control signal reached a level of 0.82 p.u. which
violates the acceptable limits imposed by physical con-
siderations. Therefore, our interest in this subsection is
to handle the same problem while satisfying control con-
straints. Two cases will be considered.

Case 1: The control signal must not violate ±0.2

By substituting for α = 1 and β = 2 in (7), the con-
strained min-max optimization problem is solved using
the same population size. Figure 13 shows the progress
of the objective function for the global best with the it-
eration number. From these results, it is clear that the
objective function J is reduced from 0.29 to 0.1963 in
nearly 27 iterations. The value of J1 , which corresponds
to the maximum overshoot, at the optimal solution is
0.1963 while J2 = 0. At the optimal solution, the struc-
ture of the lead controller is given by:

Gc = 3.665
1 + 1.12s

1 + 0.14s
. (10)
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Fig. 14. Step response ∆δ(t) for the worst case Fig. 15. The control signal u(t) for the worst case

Fig. 16. Objective function for constraint global best vs iterations Fig. 17. Step response ∆δ(t) for the worst case

Figure 14 shows the optimal response of ∆δ(t) for the
worst case out of three operating regimes. The control
behavior for this case is presented in Fig. 15. From these
results it is clear that we achieved the possible minimal
value of the maximum overshoot while satisfying system
constraints.

Fig. 18. (The control signal u(t) for worst case..

Case 2: The control signal must not violate ±0.1

Selecting α = 1 and β = 10 and following the same
lines as above, J is reduced from 1.39 to 0.223 (Fig. 14).

The optimal value thus obtained are J1 = 0.223 and
J2 = 0.The step response for the worst case and its
corresponding control signal are shown in Figs. 17 and
18. The obtained lead controller is:

Gc = 1.2
1 + 1.27s

1 + 0.092s
. (11)

Out of the previous figures, it is clear that the severer
control constraint imposed, the dynamic performance is
sacrificed.

5 CONCLUSIONS

In this paper, a technique based on particle swarm
optimization is developed for tuning the parameters of
a fixed structure PSS. Besides ensuring system stability,
the proposed controller provides a minimal-overshoot re-
sponse over a wide range of power system operation while
satisfying control constraints imposed on the system.

The algorithm offers designers the flexibility to achieve
a compromise between conflicting design objectives, the
overshoot and control constraint.

The design of such a controller is done off-line, so the
computational time is not of prime importance. Applica-
tion of the developed method to a typical problem showed
its effectiveness in achieving the stated design objectives.
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Appendix

1. Typical values of the parameters of PSS

The lead transfer function of the power system stabilizer is
given by

Gc(s) = KPSS
1 + T1s

1 + T2s

Typical values of the parameters are:
KPSS is in the range of 0.1 to 50,
T1 is the lead time constant, 0.2 to 1.5 sec,
T2 is the lag time constant, 0.02 to 0.15 sec.

2 The k -parameters of the machine expressed in

terms of P and Q

k1 = C3

P 2

P 2 + (Q + C1)2
+ Q + C1 ,

k2 = C4

P
√

P 2 + (Q + C1)2
,

k3 =
x′

d + xe

xd + xe

,

k4 = C5

P
√

P 2 + (Q + C1)2
,

k5 = C4xe
P

V 2 + Qxe

[

C6

C1 + Q

p2 + (C1 + Q)2

]

,

k6 = C7

√

P 2 + (Q + C1)2

V 2 + Qxe

[

xe +
C1xq(C1 + Q)

p2 + (C1 + Q)2

]

,

C1 =
V 2

xe + xq

, C2 = k3

C3 = C1

xq − x′

d

xe + x′

d

, C4 =
V

xe + x′

d

,

C5 =
xd − x′

d

xe + x′

d

, C6 = C1

xq(xq − x′

d

xe + xq

,

C7 =
xe

xe + x′

d

List of Symbols

All quantities are in p.u. except the time constants and M

are in seconds.

Tm : mechanical torque.
Te : electrical torque.
Vt : terminal voltage.
emf : electro motive force.
Eq : induced emf proportional to field current.
Efd : generator field voltage.
Vref : reference value of generator field voltage.

x′

d, xd, xq : generator direct-axis transient reactance, direct
and quadrature-axis synchronous reactance re-
spectively.

xe : external (line) reactance.
δ : angle between quadrature axis and infinite bus

bar.
∆ω : speed deviation.
ω0 : 2πf , f = 50 Hz.
T ′

do : open circuit direct — axis transient time con-
stant.

M : inertia coefficient.
kE , TE : exciter gain and time constant.
U : stabilizing signal (PSS output).
V : infinite busbar voltage.
P, Q : real and reactive power loading; respectively.
k1, . . . , k6 : the k -parameters of the synchronous generator

block diagram.
s : the Laplace operator.
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