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A SIMPLE ROBUST PID CONTROLLER
DESIGN METHOD BASED ON SINE WAVE

IDENTIFICATION OF THE UNCERTAIN PLANT

Štefan Bucz — Ladislav Marič
Ladislav Harsányi — Vojtech Veselý

∗

The paper deals with the development and application of a new simple empirical approach to the design of robust PID
controllers for technological processes in industrial practice. The main advantage of the proposed approach is the possibility
to specify the required performance before the design algorithm implementation. Identification of characteristic data of the
black-box type plant with varying parameters is carried out using the sine wave excitation signal, thus allowing to design
the controller without necessarily knowing the mathematical model of the plant. The proposed approach has been verified
on a real-world physical process.
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1 INTRODUCTION

Empirical methods are popular tools to design indus-
trial controllers [9]. Usually, the design proceeds in two-
steps: the first step is identification of certain character-
istic information about the controlled plant; the second
step is the controller design with parameters that directly
depend on the identified data. The broad use of these
methods is due to their algorithm simplicity and quick
controller synthesis as well as to minimum of a priori in-
formation about the plant necessary for a successful de-
sign [11].

Nevertheless, quite frequently controllers implemented
in various industrial technologies are not tuned effectively
thus bringing about economic losses. The existing studies
have revealed that certain controllers not only do not
guarantee the required closed-loop performance but even
fail to provide closed-loop stability or are operated just
in an open-loop and on achieving setpoint vicinity they
are manually switched-off or are further operated by the
operation staff [4].

The main advantage of the proposed empirical de-
sign method is a quick design of a robust PID controller
for specified performance without knowledge of an ex-
act mathematical model of the plant. Characteristic plant
data are obtained by performing a small number of ex-
periments on the plant during the design process [1].

2 CONTROL LAW OF THE

EMPIRICAL SINE WAVE METHOD

For controller design purpose, stability and perfor-
mance are usually specified in terms of stability margins

[2]. The proposed empirical design method enables the
required phase margin φM to be specified by the control
engineer or process technologist. The control law is easy
to derive from the closed-loop characteristic equation of
the control loop in Fig. 1 when the switch SB is in posi-
tion “1”.

In Fig. 1, G(s) is the plant transfer function with an
unknown mathematical model and GR(s) is the transfer
function of the industrial PID controller. From the closed-
loop transfer function

T (jω) =
L(jω)

1 + L(jω)
=

G(jω)GR(jω)

1 + G(jω)GR(jω)
(1)

results the closed-loop characteristic equation

1 + L(jωn) = 1 + G(jωn)GR(jωn) = 0 , (2)

which can be easily broken down into the magnitude and
phase conditions

|G(jωn)||GR(jωn)| = 1 ,

argG(ωn) + arg GR(ωn) = −π + φM ,
(3)

where φM is the required phase margin specified in ad-
vance, L(jω) is the open-loop transfer function. Intro-
duce the following substitution

ϕ = argG(ωn) , Θ = argGR(ωn) . (4)

Consider a PID controller

GR(s) = K
[

1 +
1

sTi

+ sTd

]

, (5)

∗ Institute of Control and Industrial Informatics, Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and
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Fig. 1. Feedback loop for the sine wave experimental method

Fig. 2. Identification procedure of one point of the plant frequency

response using the sine wave method

Fig. 3. Mutual position of G(jωn) and L(jωn) and verification of
the phase condition (23) in the complex plane

where K is the proportional gain, and Ti and Td are
integral and derivative time constants, respectively. A
frequency domain comparison of the right-hand side of
(5)

GR(jωn) = K + jK
[

Tdωn −
1

Tiωn

]

(6)

with the right-hand side of the PID in polar form

GR(jωn) = |GR(jωn)|ejΘ =

|GR(jωn)| cosΘ + j|GR(jωn)| sin Θ (7)

yields a complex equality

K + jK
[

Tdωn −
1

Tiωn

]

=
cosΘ

|G(jωn)|
+ j

sin Θ

|G(jωn)|
(8)

from which it is possible to obtain PID controller param-
eters using the substitution

|GR(jωn)| =
1

|G(jωn)|
(9)

resulting from the magnitude condition (3a).

The controller gain K can be expressed directly from

the complex equation (8)

K =
cosΘ

|G(jωn)|
(10)

and the derivative time constant Td can be specified from

the quadratic equation with respect to Tdωn

K
[

Tdωn −
1

βTdωn

]

=
sin Θ

|G(jωn)|
. (11)

The ratio of integral and derivative time constants is set

by an appropriate choice of coefficient β (according to

the most frequently used empirical methods β = 4 [9])

β =
Ti

Td

=⇒ Ti = βTd . (12)

Substituting (10) into (11) yields a quadratic equation

with respect to Tdωn

[

Tdωn −
1

βTdωn

]

= tg Θ (13)

that can simply be modified as follows

T 2
d ω2

n − Tdωn tg Θ −
1

β
= 0 . (14)

From the solution of (14) directly results an expression

for calculation of the derivative time constant Td

Td =
tg Θ

2ωn

±
1

ωn

√

tg2 Θ

4
+

1

β
. (15)

Hence, PID controller parameters are calculated ac-

cording to the following expressions

K =
cosΘ

|G(jωn)|
, Ti = βTd ,

Td =
tg Θ

2ωn

±
1

ωn

√

tg2 Θ

4
+

1

β
,

(16)

where angle Θ is obtained from the phase condition (3b)

Θ = −π + ΦM − argG(ωn) . (17)
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Fig. 4. Dispersion circles MG , ML and the prohibited area delim-
ited by the circle Ms

Fig. 5. Control loop of the DC motor with uncertainties

3 IDENTIFICATION OF THE SINGLE POINT

OF THE PLANT FREQUENCY RESPONSE

USING THE SINE WAVE METHOD

The proposed PID controller synthesis is based on the
knowledge of a single point of the frequency response
G ≡ G(jωn) of the unknown plant

G(jωn) = |G(jωn)|ejϕ(ωn). (18)

If the reference variable in the control loop in Fig. 1 equals
zero, ie w(t) = 0, and the switch SB is in position “2, the
control variable injected into the unknown plant G(s) is
generated by a sine wave signal

u(t) = U0 sin(ωnt) , (19)

where U0 is the amplitude of the excitation signal u(t)
and ωn is the excitation frequency of the sine wave gen-
erator. The output signal y(t) is also of sine wave type
with the same frequency and amplitude Y0

y(t) = Y0 sin(ωnt + ϕ) (20)

ϕ is the phase shift with respect to the excitation sig-
nal u(t). The corresponding time response is depicted
in Fig. 2b. After reading off the values Y0 and ϕ from
the recorded output, the particular point of the plant fre-
quency characteristics corresponding to the excitation fre-
quency ωn

G(jωn) =
Y0

U0
ejϕ(ωn) (21)

is plotted in the complex plane as depicted in Fig. 2c.

The advantage of the sine wave identification is that
the sine signal amplitude Y0 of the output y(t) can be

affected by the amplitude U0 of the excitation sine signal
u(t) generated by the sine wave generator.

Substituting coordinates of the identified point of the
frequency response of the unknown plant G (21) into
(16a) yields final expressions for PID controller param-
eters

K =
U0

Y0
cosΘ , Ti = βTd ,

Td =
tg Θ

2ωn

±
1

ωn

√

tg2 Θ

4
+

1

β
,

(22)

where for the particular excitation frequency ωn the fol-
lowing phase condition holds

Θ = −π + ΦM − ϕ . (23)

The identified point G of the plant frequency response
G(jω)

G = G(jωn) = [|G(jωn)|, arg G(jωn)] = [|G(jωn)|, ϕ]

(24)

determines the amplitude crossover L of the open-loop
L(jω)

L = L(jωn) = [|L(jωn)|, arg L(ωn)] = [|L(jωn)|, ΦM ]

(25)

in which the designed PID controller guarantees the re-
quired phase margin ΦM . Therefore under the excitation
frequency ωn it holds |L(jωn)| = 1. Mutual position of
the points G(jωn) and L(jωn) is depicted in Fig. 3.

The empirical sine wave method evolves from the ful-
filment of the phase condition (23) for the angular fre-
quency ωn of the identified point G and simultane-
ously of the amplitude crossover of L(jω). Similarly as
a PID controller designed using Ziegler-Nichols tuning
rules [1] compensating the critical point of the plant
G(jωc) by shifting it into the open-loop point CPID =
[−0.6,−j0.28], the PID controller tuned according to the
empirical sine wave method moves the identified point
G(jωn) of the plant frequency response into the open-
loop amplitude crossover L(jωn) lying on the unit circle
M1 .

Note that in general a critical point of any plant is a
point of its frequency characteristics with a phase shift
ϕ = −180◦ , where ωc is the critical frequency of the
plant.

It is advantageous to derive the frequency of the sine
wave generator from the plant critical frequency ωc that
can be determined by the relay experiment according
Rotač [8]. The experiment is carried out by switching
the switch in the block diagram in Fig. 1 to the position
“3”. The sine wave generator frequency is chosen from
the interval

ωn ∈ 〈0.3ωc, ωc〉 . (26)

As the choice of the frequency ωn influences the
closed- loop dynamics, the interval (26) enables to modify
the closed- loop dynamics [10].
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Fig. 6. Identification of DC motor in three working points using
the sine wave method (for Zmin, Zmed, Zmax )

4 IDENTIFICATION OF THE

UNCERTAIN PLANT AND DESIGN

OF ROBUST PID CONTROLLER

If the plant model is uncertain (due to variations in
humidity, ambient temperature, linearization etc), it can-
not be represented by a single frequency characteristics
but by a set of frequency characteristics. The basic idea
of identification of such an uncertain system consists in
repeating the sine wave identification at the excitation
signal frequency ωn for individual uncertainty changes
yielding a set of identified points Gi , i = 1, 2, . . . , N of
the uncertain plant frequency responses

Gi(jωn) = |Gi(jωn)|ej arg Gi(ωn). (27)

Plant parameter changes are reflected in magnitude and
phase changes |Gi(jωn)| and arg Gi(ωn), respectively, of
the identified points Gi(jωn) in the complex plane.

If the multiple identification of individual points Gi of
the uncertain plant frequency characteristics is performed

using sine wave excitation signals with the same frequency
ωn in each identification experiment, then each identified
point Gi in the complex plane corresponds to a different
frequency characteristics from the set of plant models and
simultaneously, each identified point Gi in the complex
plane corresponds to the same angular frequency ωn for
i = 1, 2, . . . , N ; where N = p + 1 is the number of
identification experiments and p is the number of varying
technological quantities of the plant [6].

Location of identified points Gi(jωn) of the unknown
uncertain plant can be expressed in the complex number
standard form

Gi(jωn) = ai + jbi , i = 1, 2, . . . , N . (28)

The real and imaginary parts of the nominal plant model
G0(jωn)

G0(jωn) = a0 + jb0 (29)

can be obtained as mean values of real and imaginary
parts of identified points according to

G0(jωn) = a0 + jb0 =
1

N

N
∑

i=1

ai + j
1

N

N
∑

i=1

bi . (30)

The nominal point G0(jωn) expressed in polar form is

G0(jωn) = |G0(jωn)|ejϕ0(ωn), (31)

where the magnitude |G0(jωn)| and the phase ϕ0(ωn) =
arg G0(jωn) are calculated as follows

|G0(jωn)| =
√

a2
0 + b2

0 , ϕ0(ωn) = arctg
b0

a0
. (32)

The points Gi representing plant uncertainties can be
enclosed in the circle MG centred in G0(jωn) with the
radius RG ≡ RG(ωn) that can be obtained as a maximum
distance between the i -th identified point Gi(jωn) and
the nominal point G0(jωn) according to

RG = max
{
√

(ai − a0)2 + (bi − b0)2
}

,

i =1, 2, . . . , N .
(33)

The dispersion circle MG centred in the nominal point
G0 with the radius RG encircles all identified points Gi

of the uncertain plant. Figure 4 illustrates the situation
for N = 3 identifications.

The proposed control law generated by the robust con-
troller GRrob(s) designed for the nominal point G0(jωn)
actually carries out the transformation

ℜ :
{

RG → RL : RL = |GRrob|RG

}

(34)

of the set of identified points Gi(jωn) encircled by MG

with the radius RG into the set of points Li(jωn) delim-
ited by ML and also calculates the radius RL ≡ RL(ωn)
of the dispersion circle ML corresponding to the points
Li(jωn) of the Nyquist plot so as to guarantee fulfilment
of the robust stability condition.
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Fig. 7. DC motor closed-loop time responses for different φM

Table 1. Robust PID controller coefficients for various φM

Controller
φM K Ti Td δ0type

PID 50◦ 1.1883 0.3448 1.3793 50◦

PID 70◦ 0.8236 0.4754 1.9018 70◦

The robust PID controller is designed using the em-
pirical sine wave method; the input data for the nominal
model G0(jωn) are its following coordinates

A0 = |G0(jωn)| , ϕ0 = argG0(ωn) . (35)

Substituting coordinates of the nominal model G0(jωn)
into (22) following expressions for calculating robust PID
controller parameters are obtained

Krob =
cosΘ0

A0
, Tirob = βTdrob

,

Tdrob
=

tg Θ0

2ωn

±
1

ωn

√

tg2 Θ0

4
+

1

β
.

(36)

For the parameter Θ0 and excitation frequency ωn

the modified phase condition holds

Θ0 = −π + δ0 − ϕ0 . (37)

Thus, δ0 is a modified phase margin and at the same
time a robust PID controller tuning parameter appear-
ing in (36) and (37) for calculation of its parameters that
guarantee the necessary phase margin required for robust
stability; δ0 does not influence the radius of the disper-
sion circle ML , just the distance between L0 and the
critical point (−1, 0). This enables to draw the circle ML

apart from the critical point (−1, 0) thus improving ro-
bust closed-loop performance.

5 ROBUST STABILITY CONDITION

If the nominal open-loop

L0(s) = GR(s)G0(s) , (38)

is stable, then according to the Nyquist stability criterion
[7] the closed-loop with uncertain system will be stable
if the distance between L0 and the point (−1, j0), ie

|1 + L0(jωn)| , will be greater than the radius RL(ωn) of
the dispersion circle ML centred in L0 [3], [6]

RL(ωn) < |1 + L0(jωn)| , (39)

where ωn is the frequency of the sine wave generator.
The distance between the point (−1, 0) and the open-
loop Nyquist plot with the nominal model L0 can be
calculated according to Fig. 3 by applying the cosine rule
to the triangle (−1, 0, L0)

|1 + L0|
2 = |1|2 + |L0|

2 − 2 · 1 · |L0| cos δ0 , (40)

where δ0 is the modified phase margin.

According to the robust stability condition the dis-
tance

|1 + L0| =
√

1 + |L0|2 − 2|L0| cos δ0 , (41)

has to be greater than the radius RL of the dispersion
circle centred in L0 , ie the following inequality has to be
satisfied

RL

!
< |1 + L0| . (42)

Substituting the distance (41) into (42) yields the robust
stability condition in the form

RL

!
<

√

1 + |L0|2 − 2|L0| cos δ0 . (43)

From the concept of the proposed empirical sine wave
PID controller tuning method results, that the robust
controller shifts the nominal point of the plant frequency
response G0 to the point L0 of the unit circle at fre-
quency ωn . Thus ωn becomes amplitude crossover fre-
quency for the open loop. As the point L0 is lying on the
circle M1 , the magnitude |L0(jωn)| equals one

|L0| = |G0||GR| = 1 , (44)
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Fig. 8. Robust stability for different φM

yielding the transformation ratio |GR| = |G0|
−1 between

the radii RG and RL of the circles MG and ML , respec-
tively. The radius RL of the dispersion circle ML can be
expressed as

RL = RG|GR| = RG|G0|
−1. (45)

Substituting (45) and (44) in (41) yields the robust sta-
bility condition in the following form

R2
G|G

2
R|

−1 !
< 2 − 2 cos δ0 . (46)

After minor manipulations, condition for calculating
the angle δ0 is obtained

cos δ0 <
(

1 −
R2

G

2|G2
0|

)

. (47)

According to the robust stability condition the chosen
value δ0 is subsequently substituted into the phase condi-
tion (37) and subsequently parameters of the robust PID
controller are calculated from (36) for δ0 ≥ φM .

6 VERIFICATION OF THE EMPIRICAL SINE

WAVE METHOD ON A REAL PLANT

The empirical sine wave method was applied for robust
control of a physical model — the DC motor. In case of
the DC motor the controlled output y(t) is the speed, the
input variable is the armature voltage generated by the
control system implemented in Matlab-Realtime Work-
shop. To sense the output y(t) a tachogenerator (TG)
is used. The disturbance affecting the motor operation is
the load torque z(t), as depicted in the feedback control
loop in Fig. 5.

Three identification experiments were carried out on
the DC motor, for the minimum, medium and the maxi-
mum loads. Corresponding time responses are in Fig. 6.

Parameters of the designed robust PID controllers for two
phase margin values φM = 50◦ and 70◦ are in Table 1.

Robust properties for both cases were verified by ap-
plying DC motor reference speed step change and after
the transient response died out the load step change was
applied. Corresponding time responses are in Fig. 7.

7 CONCLUSION

Stability and performance of designed robust control
loops [5] have been proved by the time responses in Fig. 7
and by the position of the dispersion circle ML in Fig. 8.
Moreover, Figure 8 shows that the DC motor control loop
designed for the phase margin φM = 70◦ determines a
larger prohibited area in the complex plain delineated by
the circle Ms than the control-loop designed for a phase
margin φM = 50◦ . Both control loops have successfully
coped with the step change of the motors load torque
z(t) occurred at 65 s with keeping a 100 % steady-state
accuracy.
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