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MODEL REFERENCE ADAPTIVE CONTROL OF
PERMANENT MAGNET SYNCHRONOUS MOTOR

Marián Tárńık — Ján Murgaš
∗

In this paper the classical theory of the direct Model Reference Adaptive Control is used to develop a control algorithm
for Permanent Magnet Synchronous Motor (PMSM). A PMSM model widely used in electric drives community is considered
as base for control system development. Conventionally used controllers are replaced by adaptive ones. The resulting control
system adapts to changes in any of PMSM parameters.
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1 INTRODUCTION

The most common control scheme for Permanent Mag-
net Synchronous Motor (PMSM) is rotor oriented Vector
Control with a voltage source inverter [1, 2]. The com-
manded voltages are modulated using a pulse-width mod-
ulation (PWM). In order to get variables in the rotor dq
reference frame the rotor position is required. The rotor
position can be obtained with an encoder or, in the case
of the so called sensorless control, by estimation of the
rotor position. The rotor speed is then derived from the
rotor position measurement.

The speed regulator gives the commanded torque, this
is considered to be proportional to q -axis current com-
ponent reference value. When the PMSM with the sur-
face mounted magnets is considered, the d-axis current
component does not contribute to the torque production
and its reference value is set to zero. In order to get the
two current closed loops decoupled a decoupling block is
used. After adding the decoupling terms the commanded
voltage is transformed from the dq reference frame to the
polar values in stationary reference frame. Commonly the
PI controller is used in the current control loops and also
in the speed control loop.

The current controller design is usually based on the
PMSM model, which is developed by using the physical
laws. Commonly used model describes the fundamental
dynamics of the PMSM [3]. For the purposes of the high-
precision drive controller design the PMSM with non-
sinusoidal flux density distribution is considered [4, 5].
The parameter values of the PMSM model can be derived
from the motor datasheet or obtained using the appropri-
ate identification method.

The current closed loop dynamics is required to be
fast. Then the torque response of the drive is fast. In high-
performance drives the torque rise time is around 1 ms. In
such a case the exact values of motor model parameters

has to be known. Otherwise the designed current con-
troller may not achieve the desired performance. Know-
ing the exact values is even more important in the design
of decoupling block. Inaccurate decoupling causes signif-
icant deterioration in the performance of current control
system [6]. However, an exact identification of the elec-
tromagnetical subsystem parameters is challenging, es-
pecially when more comprehensive PMSM model with
higher number of parameters is considered. Moreover, the
electromagnetical subsystem parameters are sensitive to
changes in the working conditions, particularly to changes
in the temperature.

The disturbances caused by the electromagnetical pa-
rameters variation can be estimated on-line using a Model
Reference Adaptive System (MRAS) technique and com-
pensated by a feedforward manner [6]. This makes the
decoupling more accurate, so the dynamic performance
of current controller designed for some nominal model re-
mains almost unchanged.

The estimation of disturbances caused by the varia-
tion of electromagnetical parameters can be also used for
torque ripple minimization [7]. The undesired torque rip-
ple is mainly due to the non-sinusoidal flux density distri-
bution of PMSM. This PMSM property can be modeled
using the appropriate model [4, 5]. The primary purpose
of disturbance estimation is to ensure the accuracy of de-
coupling but this disturbance signal also contains infor-
mation that can be used for the current reference signal
shaping. The tracking of the resulting current reference
waweform ensures minimization of the torque ripple. This
principle is used also in [8]. The MRAS is used for the on-
line estimation of flux linkage disturbance. The estimated
disturbance is then processed to obtain certain PMSM
model parameter values. These values are then used as
parameters of block which is designed for the current ref-
erence signal shaping. However, this approach does not
ensure the accuracy of decoupling. Both, the decoupling
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accuracy and the current reference signal shaping are ad-
dressed in [9]. But not all of the current control law pa-
rameters are directly adapted, some of them are consid-
ered to be known.

As mentioned above the speed regulator gives the com-
manded torque. In many cases this commanded torque
is converted to the current reference using the so called
motor torque constant. Together with considering of the
standard time separation principle, when current dynam-
ics is considered to be infinitely fast, the controlled sys-
tem reduces to motor mechanical subsystem. In this case
the main unknown parameters are moment of inertia and
viscous friction coefficient. The load torque acts as con-
trol input disturbance. Simple example of MRAC in such
a case can be found in [10]. In many cases the MRAS
based estimators of motor mechanical parameters are
used, mainly the load torque estimator see [11, 12, 13].

The Speed and current control loops are designed si-
multaneously using the MRAC technique in [14].

Generally speaking, the PMSM consist of the two sub-
systems. The electromagnetical subsystem and the me-
chanical subsystem. The control algorithms for each of
subsystems can be designed separately. In electromag-
netical subsystem the following properties are important.
The current dynamics has to be relatively fast. The time
constant around 1 ms is usually considered. The decou-
pling of the two current control loops has to be accurate,
otherwise the performance of current controllers is de-
graded. When the torque ripple minimization is required
the additional claims to the decoupling block and to the
conversion of torque reference to current reference has to
be satisfied. Exact values of electromagnetical subsystem
parameters are unknown, hard to identify and they can
vary with working conditions. Parameters of mechanical
subsystem can vary in large range as load changes, mainly
the moment of inertia and the load torque. When the
speed closed loop dynamics is given for example by the
reference model or by the pole placement the standard
PI controller may not be able to cope with such a distur-
bances. Although, some steady state requirements can be
still satisfied. But, in high-performance applications also
the speed and position dynamics is important.

In this paper the classical theory of the direct Adaptive
Control discussed for example in textbooks [15, 16, 17] is
used to develop a control algorithm for each PMSM sub-
system. Purpose is to examine the resulting closed loop
systems properties by means of simulations. A PMSM
model widely used in electric drives community is consid-
ered as a base for control laws development.

2 MODEL OF PMSM

IN dq REFERENCE FRAME

The Permanent Magnet Synchronous Motor with sur-
face mounted magnets and with an isotropic rotor, i.e.,
its self and mutual inductances of stator windings do not
depend on rotor position, has in dq reference frame the
form

ud = Rid +
dψd

dt
− ωeψq , (1)

uq = Riq +
dψq

dt
+ ωeψd , (2)

ψd = Ldid + ψdrot , (3)

ψq = Lqiq + ψqrot
, (4)

Mm =
3

2
p
Pmech

ωe

, (5)

J
dω

dt
= Mm −Mz −Bfω , (6)

dϑ

dt
= ω (7)

where ω is the rotational speed of the rotor in rad/s ,

ϑ is the rotor position measured in radians, p is num-

ber of pole-pairs, and ωe = pω , ϑe = pϑ are electrical

angular speed and position. Mm is the torque produced

by the motor, Pmech is part of electrical power which is

converted to mechanical power, Mz is the load torque, J

is the moment of inertia and Bf is the viscous friction

coefficient. ud and uq are the d-axis and q -axis stator

voltages, id and iq are stator currents, R is the stator

winding resistance, Ld and Lq are the stator inductances

in dq reference frame, and Ld = Lq , ψd and ψq are the

total flux linkages and ψdrot and ψqrot
are the flux link-

ages established by the permanent magnets.

When the rotor and stator magnetic field distributions

are not sinusoidal, the permanent magnet flux linkages

can be viewed as the sum of a fundamental component

and the series of higher harmonics, see [4, 5]

ψdrot = ψd0 + ψd6 cos(6ϑe) + ψd12 cos(12ϑe) + . . . (8)

ψqrot
= ψq6 sin(6ϑe) + ψq12 sin(12ϑe) + . . . (9)

where ψd0 , ψd6 , ψd12 , ψq6 and ψq12 are amplitudes of

corresponding higher harmonics. For good approximation

of the permanent magnet flux linkages it is sufficient to

keep only series members up to 12th harmonics.

3 MRAC OF THE CURRENT SUBSYSTEMS

The design of the current controller is based on the

electromagnetical subsystem model which is described by

equations 1–5. Equations governing the id current and iq
current dynamics can be written in the convenient form

did
dt

= −
R

Ld

id +
1

Ld

ud +
1

Ld

Ω⊤

d ϕd , (10)

diq
dt

= −
R

Lq

iq +
1

Lq

uq −
1

Lq

Ω⊤

q ϕq (11)



Journal of ELECTRICAL ENGINEERING 62, NO. 3, 2011 119

cos(.) 0

cos(.)

cos(.)

6

12

p.J

Yd0

Yd6

Yd12

+
+

+

+

x

x

Ld

id

p.w

ud +

+

1
Lds + R

-

+

Mm

x

3
2

p

-

+

p.w

1

Lqs + R

uq

x
Ld

iq

+

+

+

sin(.)

sin(.)

6

12 p.JYq12

Yq6

Fig. 1. Block scheme of the PMSM model

where the terms 8 and 9 are used and

Ωd = [Lq Ψq6 Ψq12 ]
⊤
,

ϕd = [ωeiq ωe sin(6ϑe) ωe sin(12ϑe) ]
⊤
,

Ωq = [Ld Ψd0 Ψd6 Ψd12 ]⊤ ,

ϕq = [ωeid ωe ωe cos(6ϑe) ωe cos(12ϑe) ]⊤

where

Ψd0 = ψd0 , Ψq6 = 6ψd6 + ψq6 ,

Ψd6 = 6ψq6 + ψd6 , Ψq12 = 12ψd12 + ψq12 ,

Ψd12 = 12ψq12 + ψd12 .

The block scheme of the electromagnetical subsystem
model is in Fig. 1.

Consider the reference models for each of currents in
the form

i̇dm = −admidm + bdmrd (12)

i̇qm = −aqmiqm + bqmrq (13)

where adm , bdm , aqm and bqm are constants given by
the refence models designer, rd and rq are the current
reference signals and idm , iqm are the reference model
outputs to be tracked by the actual currents. The control
law substitution to equations (10) and (11) has to lead
to the closed loop equations of same form as the form

of corresponding reference models. Equations (10) and
(11) are coupled by last terms. Therefore, the decoupling
terms has to be added too.

Consider the control laws in the vector form

ud = Θ⊤

d χd , (14)

uq = Θ⊤

q χq (15)

where

Θd = [ Θd1 Θd2 Θd3 Θd4 Θd5 ]
⊤
,

χd = [ id rd ϕd ]
⊤
,

Θq = [ Θq1 Θq2 Θq3 Θq4 Θq5 Θq6 ]
⊤
,

χq = [ iq rq ϕq ]
⊤
.

The closed loop system is formed by substituting (14)
and (15) to (10) and (11) respectively. Equality of the
closed loop systems and reference models (12) and (13)
is obtained using the ideal values of control law parame-
ters. The ideal values of these parameters for d-axis cur-
rent closed loop are Θ⋆

d1
= −admLd + R , Θ⋆

d2
= Ldbdm

and [ Θ⋆
d3

Θ⋆
d4

Θ⋆
d5

]
⊤

= −Ωd . Further, for q -axis cur-
rent closed loop: Θ⋆

q1 = −aqmLq +R , Θ⋆
q2 = Lqbqm and

[

Θ⋆
q3 Θ⋆

q4 Θ⋆
q5 Θ⋆

q6

]⊤
= Ωq . Since the PMSM pa-

rameters are unknown the ideal control law parameters
can not be calculated and are replaced by the estimates.
An adaptive law to generate the control law parameter
estimates on-line has to be determined. In following the
adaptive law for d-axis current control loop is derived.
The adaptive law for the q -axis current control loop can
be derived analogically.

A current tracking error is defined as ed = id − idm .
Parametrization of the controlled plant equation (10) in
terms of the ideal control law parameters can be done by
adding and subtracting the ideal control law term which

is in the form 1

Ld
Θ⋆

d
⊤χd where superscripts ⋆ denotes

that the vector contains the ideal parameters. Then the
plant equation is in the form

i̇d = −admid + bdmrd +
1

Ld

(

ud − Θ⋆
d
⊤χd

)

. (16)

The tracking error dynamics equation is obtained by sub-
tracting (12) from (16), then

ėd = −admed +
1

Ld

(

ud − Θ⋆
d
⊤χd

)

. (17)

The use of control law (14) is considered, then (17) can
be written in the form

ėd = −admed +
1

Ld

(

θ⊤

d χd

)

(18)

where the control law parameters estimation error is in-
troduced

θd = Θd − Θ⋆
d . (19)
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Notice that the equation (18) can be expressed in the form
when the parameters estimation error is related to the
current tracking error trough the Strictly Positive Real
(SPR) transfer function. This motivates the use of SPR
Lyapunov design approach. Consider the candidate for
Lyapunov-like function in the form

Vd =
e2d
2

+
1

2Ld

θ⊤

d Γ−1

d θd (20)

where Ld > 0 because negative inductance is meaningless
and Γd = Γ⊤

d > 0 is the so called adaptation gain matrix.

The time derivative V̇d along the trajectory of (18) is
given by

V̇d = −adme
2

d + ed

1

Ld

θ⊤

d χd +
1

Ld

θ⊤

d Γ−1

d θ̇d . (21)

Choosing θ̇d = −edΓdχd leads to V̇d ≤ 0. Therefore, the
adaptive law which generates the control law parameter
estimates on-line is given by

Θ̇d = −edΓdχd (22)

where ideal parameters are considered to be constant
or quasi-stationary. Analogically, for the q -axis current
control law the adaptive law is given by

Θ̇q = −eqΓqχq . (23)

With these results it can be shown that all of the signals
in the closed-loop systems are bounded, and the tracking
error goes to zero as time t→ ∞ .

The torque produced by the motor can be expressed
in the form [4, 5]:

Mm =
3

2
p ((Ld − Lq) idiq)−

3

2
p ((Ψq6 sin(6ϑe) + Ψq12 sin(12ϑe)) id)+

3

2
p ((Ψd0 + Ψd6 cos(6ϑe) + Ψd12 cos(12ϑe)) iq) (24)

where the first term has no contribution to the motor
torque since Ld = Lq . The second term has no contribu-
tion to the DC component of the motor torque. Therefore,
the zero value of d-axis current is desired, thus rd = 0.
The last term in (24) is used to derive the block for the
conversion of commanded torque to the q -axis current
reference signal. Let a Current Factor (CF) be the name
of this block. The commanded (desired) torque MW mul-
tiplied by the Current Factor gives the q -axis current ref-
erence signal: rq = CF ·MW where

CF =
1

3

2
p(Ψd0 + Ψd6 cos(6ϑe) + Ψd12 cos(12ϑe))

(25)

Notice that the estimates of CF parameters Ψd0 , Ψd6 and
Ψd12 are already contained in vector Θq . Therefore, CF
can be implemented with adaptive system derived above.

In the case when the perfect model matching is
achieved, so currents tracks the reference models outputs,
the following simplification can be assumed: The transfer
function from the commanded torque MW to the motor
torque Mm is equal to the q -axis current reference model
transfer function.

Mm(s)

MW(s)
=

bqm

s+ aqm

. (26)

This fast dynamics of electromagnetical subsystem can
be then considered in the adaptive speed controller design
process instead of considering the infinitely fast dynamics.

4 MRAC OF THE SPEED SUBSYSTEM

In a speed control point of view the controlled system
is described by equations in the form

ω̇ = −
Bf

J
ω +

1

J
Mm , (27)

Ṁm = −aqmMm + bqmMW (28)

where the load torque Mz is omitted for convenience.
Notice that the load torque acts as a disturbance in input
of the mechanical subsystem. The controlled system can
be expressed in the transfer function form

ω(s)

MW(s)
=

bqm

s+ aqm

1/J

s+Bf/J
= kp

1

s2 + a1s+ a0

(29)

where kp , a1 and a0 are time-varying unknown coeffi-
cients. The kp is referred to as the high frequency gain

and in this case it has a positive sign because the moment
of inertia can not be negative.

The reference model of the speed dynamics is chosen
to have the same relative degree as (29) in the form

ωm(s)

ωr(s)
= Wm(s) = km

1

s2 + am1s+ am0

(30)

where km , am1 and am0 are constants chosen by the
reference model designer and ωr is the speed reference
signal.

The Model Reference Control (MRC) problem for
SISO (Single Input, Single Output) plants discussed in
[15] leads to the use of control law which in this case is
in the form

MW(s) = Θ⋆
1

1

(s+ λ)
MW(s)+

Θ⋆
2

1

(s+ λ)
ω(s) + Θ⋆

3ω(s) + Θ⋆
4ωr(s) (31)

where control law parameters Θ⋆
1 , Θ⋆

2 , Θ⋆
3 and Θ⋆

4 are
given by a solution of the MRC problem and λ is an
arbitrary constant which meets the requirement that (s+
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λ) is a Hurwitz polynomial. By substituting (31) to (29)
the closed loop transfer function is obtained in the form

ω(s)

ωr(s)
= Gc(s) =

kpΘ
⋆
4(s+ λ)

Rp(s)
(

(s+ λ) − Θ⋆
1

)

−kp

(

Θ⋆
2

+ Θ⋆
3
(s+ λ)

) (32)

where Rp(s) = (s2 + a1s + a0). The MRC objective is
the equality of responses obtained from the closed loop
system and the reference model. Therefore, the match-
ing equation is Gc(s) = Wm(s). In the known plant pa-
rameters case the ideal control law parameters can be

calculated from the matching equation, then Θ⋆
4 = km

kp
;

Θ⋆
1 = a1−am1 ; Θ⋆

3 = 1

kp

(

λ(a1−am1)+(a0−am0)−a1Θ
⋆
1

)

;

Θ⋆
2 = 1

kp

(

λ(a0 − am0) + a0Θ
⋆
1 − kpλΘ

⋆
3

)

.

The plant (29) can be represented in the state space
in the form

ẋ = Ax + bMW , (33)

ω = c
⊤
x (34)

where x is the state vector of plant and A ; b ; c
⊤ are the

matrices of coefficients with corresponding dimensions.
The control law (31) can be represented in the state space
in the form

ν̇1 = −λν1 +MW , (35)

ν̇2 = −λν2 + c
⊤
x , (36)

MW = Θ⊤DX + Θ4ωr (37)

where D = diag ([ c⊤ 1 1 ]) is introduced, X =

[x ν1 ν2 ]⊤ is an augmented plant state vector and

Θ = [ Θ3 Θ1 Θ2 ]
⊤

; Θ4 are the estimates of ideal con-
trol law parameters. Including of the auxiliary states ν1
and ν2 to the plant states space representation leads to
following equations

Ẋ = AoX + BcMW , (38)

ω = C⊤

c X (39)

where

Ao =





A 0 0
0 −λ 0
c
⊤ 0 −λ



 ; Bc =





b

1
0



 ; Cc =





c

0
0



 .

The equations (38) and (39) will be called an augmented
plant in this paper. Substituting the control law with ideal
parameters to equation (38), the ideal closed loop transfer
function is obtained in the form

Ẋ = AcX + BcΘ
⋆
4ωr , (40)

ω = C⊤

c X (41)

where Ac = Ao + BcΘ
⋆⊤D , which implies

Gc(s) = C⊤

c (sI − Ac)
−1BcΘ

⋆
4 = Wm(s) . (42)

This also means, that the reference model can be de-
scribed by the nonminimal state space representation in
the form

Ẋm = AcXm + BcΘ
⋆
4ωr , (43)

ωm = C⊤

c Xm (44)

where Xm is the state vector of the reference model non-
minimal state space representation.

Next, an adaptive law to generate the speed control
law parameter estimates on-line has to be determined. Let
e = X − Xm and e1 = ω − ωm to be the speed tracking
error. Parametrization of the augmented plant equation
(38) in terms of the ideal control law parameters can be
done by adding and subtracting the ideal control law in

the form BcΘ
⋆⊤DX + BcΘ

⋆
4ωr . Then the plant equation

is in the form

Ẋ =AcX+BcΘ
⋆
4ωr + Bc(MW − Θ⋆⊤DX − Θ⋆

4ωr), (45)

ω = C
⊤

c X . (46)

Subtracting (43) from (45) and (44) from (46) yields to
the error equations in the form

ė = Ace + Bc

1

Θ⋆
4

(MW − Θ⋆⊤DX − Θ⋆
4ωr) , (47)

e1 = C
⊤

c e (48)

where Bc = BcΘ
⋆
4 is introduced, so it can be clearly

seen that if the control law (37) is substituted to (48)
then the control law parameters errors are related to the
tracking error through the transfer function Wm(s). For
the use of the SPR-Lyapunov design method to determine
the adaptive law, the transfer function which relates the
control law parameter error to the estimation error has to
be SPR. However, Wm(s) can not be made SPR because
of its relative degree n⋆ = 2. Using the identity (s +

ρ)(s + ρ)−1 = 1, for some ρ > 0, the equation (48) can
be expressed in the form

ė = Ace+Bc

1

Θ⋆
4

(s+ρ)
(

MWf −Θ⋆⊤DXf −Θ⋆
4ωrf

)

(49)

where MWf = (s + ρ)−1MW , Xf = (s + ρ)−1X and

ωrf = (s+ ρ)−1ωr are a filtered signals. Let Wm(s) and
ρ to be chosen so that Wm(s)(s+ ρ) is the SPR transfer
function and consider the following control law instead of
(37) in the form

MWf = Θ⊤
DXf + Θ4ωrf . (50)
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Substituting the (50) to (49) and introducing θ = Θ−Θ⋆

and θ4 = Θ4−Θ⋆
4 leads to the error equations in the form

ė = Ace + Bc

1

Θ

⋆

4

(s+ ρ)
(

θ⊤DXf + θ4ωrf

)

, (51)

e1 = C⊤

c e (52)

or

e1 = Wm(s)(s+ ρ)
1

Θ⋆
4

(

θ⊤DXf + θ4ωrf

)

(53)

which means that the SPR-Lyapunov design approach
can be used.

The originally considered control law has to be changed
because MWf = (s + ρ)−1MW which implies MW =
(s+ ρ)MWf which can be written in the form

MW = Θ̇⊤
DXf + Θ⊤

DX + Θ̇4ωrf + Θ4ωr . (54)

The equations (51) and (52) can be after some rear-
rangement transformed by introducing e = e −
(

Bc
1

Θ

⋆

4
θ⊤DXf + Bc

1

Θ⋆
4

θ4ωrf

)

to the form

ė = Ace + B1

1

Θ⋆
4

(

θ⊤DXf + θ4ωrf

)

, (55)

e1 = C⊤

c e (56)

where B1 = AcBc + ρBc and the fact that C⊤

c Bc = 0
is used. Equation (55) is suitable for the Lyapunov-like
function design. Consider the Lyaponov-like function in
the form

V =
1

2
e
⊤Pe +

1

2

∣

∣

∣

1

Θ⋆
4

∣

∣

∣
θ⊤Γ−1θ +

1

2

∣

∣

∣

1

Θ⋆
4

∣

∣

∣
γ−1θ24 (57)

where Γ = Γ⊤ > 0, γ > 0 are the design parameters
of adaptive law and P = P⊤ > 0 satisfies the algebraic
equation implied by Mayer-Kalman-Yakubovich (MKY)

lemma If Wm(s) = C⊤

c (sI−Ac)
−1B1 is SPR, then we can

write

A
⊤

c P + PAc = −Q , (58)

PB1 = Cc (59)

where Q = Q⊤ > 0. The time derivate V̇ of V along the
trajectory of (55) is given by

V̇ = e
⊤(−Q)e +

1

Θ⋆
4

e
⊤PB1θ

⊤DXf+

1

Θ⋆
4

e
⊤PB1θ4ωrf +

∣

∣

∣

1

Θ⋆
4

∣

∣

∣
θ⊤Γ−1θ̇ +

∣

∣

∣

1

Θ⋆
4

∣

∣

∣
γ−1θ4θ̇4 . (60)

The adaptive law results from the requirement that

V̇ ≤ 0. Choosing θ̇ = − sgn(1/Θ⋆
4)e1ΓDXf and θ̇4 =

− sgn(1/Θ⋆
4)e1γωrf leads to V̇ = e

⊤(−Q)e ≤ 0. There-
fore, the adaptive law which generates the control law
parameters estimates on-line is given by

Θ̇ = − sgn
( 1

Θ⋆
4

)

e1ΓDXf , (61)

Θ̇4 = − sgn
( 1

Θ⋆
4

)

e1γωrf (62)

where e
⊤PB1 = e1 and 1

Θ⋆
4

=
∣

∣

∣

1

Θ⋆
4

∣

∣

∣
sgn

(

1

Θ⋆
4

)

is used. The

further analysis shows, see [15], that all of the closed-loop
system signals are bounded, and the tracking error goes
to zero as t→ ∞ .

5 SIMULATION EXPERIMENTS

The used PMSM model parameters are listed in Ta-
ble 1. The PMSM rated torque is 0.5 Nm.

The performance of the above designed adaptive con-
trol system is studied in the several simulation experi-
ments. In all of the experiments, the same step signal
around 50 rad/s is used as a rotational speed reference
signal ωr . The whole experiment takes 0.5 s. The load
torque is almost zero at the beginning of the simulation,
then a step increase in the load torque to Mz = 0.25 Nm
at time t = 0.225 s is simulated.

The d-axis and q -axis reference model parameters are
chosen as follows: adm = aqm = 1000 and bdm = bqm =
1000. Thus the desired time constant of the currents
dynamics is 1 ms. The desired time constant of the PMSM
mechanical subsystem is chosen to be 5 ms. The speed
subsystem reference model consist both of desired time
constants and its parameters are: am1 = 1200, am0 =
200000 and km = am0 .

The auxiliary filters characterized with parameter λ =
500 and the filters for obtaining filtered signals, such as
ωrf , with parameter ρ = 500, are designed to be faster
relative to the desired mechanical subsystem dynamics.

The ideal control law parameters can be calculated us-
ing values in Table 1. The initial values of the control law
parameters are chosen to be close to these ideal values.

The used initial control law parameters are:
Θd = [ 5 0 0 0 28 ], Θq = [ 5 0 0.2 0 0 30 ],
Θ = [ 0 −200 0 ] and Θ4 = 0.

Table 1. Parameters of the PMSM

Value (Unit) Value (Wb)

p 2
R 33.6 (Ω) Ψd0 0.303

Ld 0.0284 (H) Ψd6 0.0181

Lq 0.0284 (H) Ψd12 0.0024

J 0.000016 (kg/m2) Ψq6 0.0036

Bf 8.2 × 10−6 (kg m2/s) Ψq12 0.0022
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Fig. 2. Experiment 1: All of PMSM parameters remains unchanged
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The adaptation gain matrices has been determined
using trial and error method. A good values was found
to be:
Γd = diag ([ 2 2 0.8 0.8 2 ]) ,
Γq = diag ([ 2 2 0.8 0.8 0.8 2 ]) ,
Γ = diag ([ 12 12 12 ]) and γ = 12.

Convergence of the parameters is then fast enough
with low oscillations.

In the first simulation experiment all of the PMSM
model parameters remains unchanged at their nominal
values. Therefore, the adaptation process due to the ini-
tial control law parameters deviation from the ideal values
is expected only at the beginning of simulation. Results of
the first simulation experiment is in the Fig. 2 and Fig. 3.

Because the ω is required to be smooth, or ripple-free,
the motor torque Mm has to be smooth. However, the
smooth motor current iq leads to ripple in Mm , see (24).
To cancel this ripple the CF block is used to generate
appropriate rq . In the ideal case the transfer from rq to
iq is not infinitely fast, but given by dynamics of q -axis
reference model. This causes that the MW has to con-
tains ripple too. Nevertheless, the result is smooth motor
torque Mm . To illustrate this, the simulation results in
Fig. 3 are provided.

In the second simulation experiment the parameters
variation in the electromagnetical subsystem is simulated.
Specifically, the 20% step decrease of parameter Ψd0 at
time t = 0.15 s and the 80% step decrease of parameter
Ψd12 at time t = 0.3 s are simulated. The control law
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parameters which corresponds to these PMSM model pa-
rameters are also contained in the CF block.

The evolution of these parameters during the second
simulation experiment is in the Fig. 4. The influence of
adaptation process is illustrated by means of tracking
errors in Fig. 5.

In the third experiment the parameters variation in
the mechanical subsystem is simulated. The viscose fric-
tion coefficient Bf increases 10 times at t = 0.1 s and the
moment of inertia J increases 20 times at t = 0.25 s. All
other parameters of the PMSM model remains unchanged
in nominal values. The third experiment simulation re-
sults are in Fig. 6 and in Fig. 7. In Fig. 6 only the two of
speed control law parameters are shown to simplify the
figure. To demonstrate that these adapted parameters are
bounded the longer simulation was performed and result
is in Fig. 8.

6 CONCLUSION

As evidenced by the simulation results, the theory
of the Model Reference Adaptive Control has been suc-
cessfully applied in the design process of the Permanent
Magnet Synchronous Motor control system. The resulting
adaptive control loops are able to adapt to changes in the
any of PMSM parameters which has been also confirmed
by means of simulation experiments.

The adaptive schemes can be also modified to reduce
the effect of unmodelled dynamics and external distur-
bances, see [18, 19].

The designed current adaptive controller and the speed
adaptive controller are independent and they can be com-
bined with the other (even non-adaptive) controllers. For
example, the conventional PI controller can be used in
the speed control loop while the above designed adaptive
current controller is used in the current control loop.

On the other hand, searching for the appropriate val-
ues of adaptive controllers design parameters, such as the
adaptive gain or the auxiliary filters parameter, may be
difficult and depends on the particular case.
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