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Deep learning (DL) algorithms can enhance wireless communication system efficiency and address numerous physical layer challenges. Channel 
state estimation (CSE) and signal detection (SD) are essential parts of improving the performance of an OFDM wireless system. In this context, 

we introduce a DL model as an effective alternative for implicit CSE and SD over Rayleigh fading channels in the OFDM wireless system. The 

DL model is based on the gated recurrent unit (GRU) neural network. The proposed DL GRU model is trained offline using the received OFDM 
signals related to the transmitted data symbols and added pilot symbols as inputs. Then, it is implemented online to accurately and directly detect 

the transmitted data. The experimental results using the metric parameter of symbol error rate show that, the proposed DL GRU-based CSE/SD 

provides superior performance compared with the traditional least square and minimum mean square error estimation methods. Also, the trained 
DL GRU model exceeds the existing DL channel estimators. Moreover, it provides the highest CSE/SD quality with fewer pilots, short/null 

cyclic prefixes, and without prior knowledge of the channel statistics. As a result, the proposed DL GRU model is a promising solution for 

CSE/SD in OFDM wireless communication systems. 
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1. Introduction 

Orthogonal frequency-division multiplexing (OFDM) is a 

prominent modulation technology utilized in current wireless 

communication systems. Because of its superior bit error rate 

(BER) quality, high spectrum efficacy, significant resistance to 

multi-path fading, and strong resistance to interference, OFDM 

is a strong choice for high data rates in next-generation wireless 

communication systems [1]. 

The performance of an OFDM system is highly dependent 

on the channel estimation and signal detection techniques used. 

In general, the influence of channels in communication systems 

distorts the received signal. The channel influence at the 

receiver, channel state information (CSI), must be precisely 

estimated to retrieve the transferred symbols. In general, the 

receiver estimates the CSI by employing pilot symbols that are 

known to both the receiver and the transmitter [2, 3].  

There are various conventional approaches employed in 

OFDM systems for channel estimation, including least square 

(LS) and minimum mean square error (MMSE). The LS 

estimator is constructed with minimal complexity without 

requiring any knowledge of channel statistics. But, it ignores 

noise interference in the computation operation, which leads to 

inadequate performance in a complicated communication 

context [4-6]. In contrast, the MMSE estimator considers the 

effect of noise to enhance the accuracy of the channel estimate. 

It is, however, more complicated than the LS estimation method 

since it requires prior knowledge of the statistical characteristics 

of the channel. In several situations, such statistical data is 

either impossible to gather or varies rapidly in a short period of 

time [7].  

In addition to the traditional model based on channel 

estimation and signal detection techniques, new machine 

learning (ML)-based models that use deep learning algorithms 

to perform channel estimation and signal detection have 

recently emerged as an efficient alternative [8-12]. DL has 

recently received a lot of interest in wireless communications 

systems. Several methods have been developed in DL-based 

communication systems to improve the performance of various 

present approaches, such as channel estimation, channel 

equalization, signal decoding, and radio resource allocation [9-

24].  

In terms of the channel estimate and signal detection 

applications, the authors in [13], introduce a new channel 

estimation framework for the MIMO-OFDM system aided by 

several deep neural network (DNN) structures. The proposed 

DL-based estimators outperformed the traditional LS and 

LMMSE estimations. In [14], the authors presented a DL-based 

channel estimation approach for the IEEE 802.11p standard. 

The experimental results indicated that the proposed channel 

estimating technique outperformed conventional channel 

estimators significantly. The authors in [15], suggested two 

DNN models for channel estimation with the aid of a pilot 

signal in underwater acoustic OFDM system. The numerical 

results showed that the proposed models achieved superior 

performance compared to the backpropagation neural network 
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(BPNN) model and the traditional MMSE and LS estimators. In 

[16], the author proposed a DL LSTM model for channel 

estimation and signal detection with the aid of pilot signals in a 

multipath OFDM system. The experimental results showed the 

effectiveness of the proposed model compared with the MMSE 

and LS estimations in a limited number of pilots.  A deep 

residual channel estimation network (ReEsNet) was proposed 

for channel estimation in OFDM system [17]. The proposed 

model performed better with minimum complexity 

requirements compared to the LMMSE estimator. A deep 

complex-valued convolutional network (DCCN) was proposed 

to retrieve information from OFDM time-domain signals [18]. 

The simulation results demonstrated the proposed model 

outperformed the traditional estimation methods in Rayleigh 

fading channels with mobility and different delay spreads. In 

[19], the authors suggested a DL-based channel estimation 

network named, ChanEstNet in high-speed scenarios for the 

OFDM systems. The suggested model employed the integration 

of LSTM and CNN. Moreover, it has lower computing 

complexity and much superior performance compared to 

conventional approaches. In [20], an online signal detector 

model for OFDM wireless communication system was 

developed by using LSTM NN. The experimental results 

indicated that the employed model has a lower BER than the 

traditional algorithms. Using the assistance of a CNN and batch 

normalization layer, the authors in [21] suggested a recurrent 

neural network (RNN) with bidirectional long short-term 

memory (BiLSTM) structure for SD in a time-varying OFDM 

system. The authors in [22] introduce a system that combines 

compressive sensing (CS) and DL BiLSTM structure to 

perform joint CSE/SD in a MIMO-OFDM system. 

RNNs are designed to process sequence data and have 

demonstrated outstanding performance in numerous time series 

tasks, especially those that involve short sequences. RNN can 

therefore be used as a CSE to improve estimation and detection 

performance. Although RNNs combined with BiLSTM 

architecture outperform standard RNNs in terms of capturing 

long-term dependencies, the architecture of combining RNNs 

with BiLSTM is rather complicated. 

Regarding the above challenges, in this study, we adopt a 

DL architecture operating in an end-to-end manner that 

integrates the functions of CSE and SD for OFDM wireless 

communication systems over Rayleigh fading channels. The 

proposed model is based on the gated recurrent unit (GRU) deep 

learning NN, which is an efficient form of RNNs.  The DL GRU 

model provides an accurate CSI, correctly retrieves transmitted 

data, and reduces the OFDM system's receiver architecture. 

Below is a summary of the main contributions of this work: 

• Use the GRU network model to build a light computational 

DNN method for joint CSE and SD at the OFDM receiver. 

As a result, the proposed DL GRU structure offers an 

efficient solution to reduce the spectrum of resources 

necessary for CSE and SD in OFDM wireless systems. 

• The proposed DL GRU framework is first trained offline 

using the simulation data set findings. As a result, the DL 

model can estimate the channel information implicitly. The 

trained DL model is then used online to directly predict/ 

retrieve the transmitted data without explicitly CSI 

estimating. 

• We demonstrate the efficiency of the proposed DL GRU-

based CSE/SD framework by comparing it to traditional LS 

and MMSE estimation techniques, according to the SER vs. 

SNR criterion. Furthermore, the suggested framework's 

performance is compared to data-driven approaches such as 

the DL BiLSTM model used in [21, 22]. 

• The performance of the examined estimators is tested in 

several simulated situations with cyclic prefix lengths, 

which are not discussed in [21, 22], and variable pilot 

density. Also, there is no prior channel statistics knowledge 

present.   

• The proposed DL GRU model is trained by the adaptive 

moment estimation (Adam) optimizer in all simulation 

scenarios. In addition, three various loss functions to get the 

most effective DL GRU model. 

According to the simulation results, the proposed DL GRU 

model achieves superior SER performance compared to the 

conventional LS and MMSE estimation methods. Furthermore, 

it outperforms the DL BiLSTM model used in [21, 22] in terms 

of robustness when the CP is omitted, limited training pilots are 

utilized, and no prior channel statistics knowledge is present. 

On the other hand, under the limited number of pilots and 

short/null CP, the proposed DL GRU with the mean absolute 

error (MAE) loss function achieves the lowest SER 

performance. In contrast, the proposed DL GRU with the 

conventional "cross-entropy" loss function outperforms the 

model with the sum of squared error (SSE) loss function 

regarding SER performance. 

The rest of this paper is organized as follows. Section 2 

discusses the OFDM system model. Section 3 describes the 

proposed DL GRU model based on CSE and SD and the model 

training process. In Section 4, the performance of the proposed 

DL model is examined using simulation results under different 

scenarios. Finally, the study is concluded in Section 5. 

 

 

2. System architecture 

 

Figure 1 illustrates a simplified model of the employed 

OFDM system. An OFDM system with a single user for the 

current study was employed. The transmitting and receiving 

elements of the OFDM system represented in Fig. 1 are identical 

to those used in traditional systems [24].  

On the transmitting side, the input binary data is first 

generated and mapped to data symbols using a specific 

modulation technique. For channel estimation, pilot symbols 

recognized by both the transmitter and receiver are inserted 

alongside data symbols. In addition, they together form an 

OFDM waveform. The transmitted OFDM signals are 

transformed into parallel data streams. Then, the inverse 

discrete Fourier transform (IDFT) is applied to convert the 

OFDM signals from the frequency domain to the time domain. 

After that, the cyclic prefix (CP) is expanded into the OFDM 
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symbols by replicating the previous samples and including them 

in the forefront of the transmitted OFDM symbols to alleviate 

the impact of inter-symbol interference (ISI). Lastly, the time-

domain signals with CP are transformed into a serial data stream 

and then conveyed and propagated via wireless channels. The 

received signal 𝑦(𝑛) in time-domain is given by [24]: 

 

                              𝑦(𝑛) = 𝑥(𝑛) ⊙ ℎ(𝑛) + 𝑤(𝑛),                (1) 

 

where the operator ⊙ denotes the circular convolution of 

transmitted signal 𝑥(𝑛) and the channel impulse response ℎ(𝑛), 

and 𝑤(𝑛) symbolizes the additive white Gaussian noise 

(AWGN) with zero-mean.  

 

 

Fig. 1. OFDM system architecture. 

The process is reversed on the receiving end. After 

parallelizing the received serial data streams, the CP is 

removed, and the time-domain signals are converted to the 

frequency-domain signals by discrete Fourier transform (DFT). 

Lastly, the signal is transformed back into a serial data stream 

for output. Hence, the received signal can be defined as: 

 
              𝑌(𝑘) = 𝑋(𝑘)𝐻(𝑘) + 𝑊(𝑘),                                 (2) 

 

where 𝑊(𝑘), 𝐻(𝑘), 𝑋(𝑘), and 𝑌(𝑘) are the DFT of 𝑤(𝑛), ℎ(𝑛), 
𝑥(𝑛), and 𝑦(𝑛) respectively. 

 

 

3. DL-based channel estimation and signal detection 

 

This section describes in detail the architecture of the 

proposed DL-based CSE/SD functions. Then we briefly outline 

how the training phases are conducted. 

 

 

3.1 Proposed DL architecture 

 

The gated recurrent unit (GRU) network is a type of 

recurrent neural network (RNN) that is relatively new [25]. 

RNNs can be used to learn the characteristic features of time-

series data and predict outcomes; however, RNNs have limited 

short-term memory. The LSTM network is a widely known 

RNN that can capture long-term relationships while also 

avoiding the exploding and vanishing gradient problem in 

long-term dependency tasks [26]. 

The GRU network inherits the benefits of LSTM while 

having a simplified architecture and fewer parameters, 

resulting in improved generalization ability and less 

computation. LSTM and GRU both have internal mechanisms 

known as "gates" that can control the flow of information. Two 

gates regulate the update of cell values in the LSTM network: 

the forget gate and the input gate. Due to the need for two gate 

architectures, the LSTM structure is relatively complicated 

[25, 26]. 

In contrast to LSTM, GRU regulates the forget parameter 

in addition to the update parameter values for the output 

through a single update gate, resulting in less computational 

complexity. This simplification allows the GRU to maintain 

LSTM functionality while reducing network training time. 

Unlike LSTM, GRU has only two gates: a reset gate and an 

update gate. Figure 2 illustrates the GRU cell structure. 

 

 
Fig. 2. Structure diagram of GRU cell. 

 

The update gate 𝑧(𝑡) functions similarly to the forget and 

input gates of an LSTM. It decides what information to discard 

and what new information to include. Another gate that is used 

to decide how much past information to forget is the reset 

gate𝑟(𝑡). The standard GRU architecture is specified 

mathematically by the following equations [27]: 

 

𝑧(𝑡) = 𝜎(𝑤𝑧 𝑥(𝑡) + 𝑈𝑧ℎ̃(𝑡 − 1) + 𝑏𝑧),                                (3) 

 

𝑟(𝑡) = 𝜎(𝑤𝑟 𝑥(𝑡) + 𝑈𝑟ℎ̃(𝑡 − 1) + 𝑏𝑟),                                (4) 

 

ℎ̂(𝑡) = 𝑡𝑎𝑛ℎ (𝑤ℎ 𝑥(𝑡) + 𝑈ℎ (ℎ̃(𝑡 − 1) ⊙ 𝑟(𝑡)) + 𝑏ℎ),      (5) 

 

ℎ̃(𝑡) = 𝑧(𝑡) ⊙ ℎ̃(𝑡 − 1) + (1 − 𝑧(𝑡)) ⊙ ℎ̂(𝑡),                   (6) 

 

where 𝑥(𝑡) represents the current input vector and 𝑤𝑧 , 𝑤𝑟 , 𝑤ℎ  

(input weight matrices) and 𝑈𝑧 , 𝑈𝑟  , 𝑈ℎ (recurrent weight 

matrices), while 𝑏𝑧  , 𝑏𝑟 , 𝑏ℎ represent (bias vectors). 

ℎ̃(𝑡 − 1)denotes the input data at time −1 , ℎ̃(𝑡) and ℎ̂(𝑡) 

represents the output and candidate states at time 𝑡.  Hadamard 

product of vectors is represented by ⊙ . Both gates' activations 
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are logistic sigmoid functions 𝜎 , which limit 𝑟(𝑡) and 𝑧(𝑡) to 

values between 0 and 1. 

For CSE/SD function, we have applied DL GRU recurrent 

neural network architecture. The proposed DL model 

comprised of an input layer of the same size as the received 

feature vector, 256 in the current study. Then a GRU layer with 

16 hidden units is used. The GRU layer's output is routed first 

to the fully connected layer with a size of 4 and then to the soft-

max activation layer. Lastly, a classification layer classes the 

values from the soft-max layer to one of the mutually exclusive 

classes using the specified loss function (cross-entropy, MAE, 

or SSE). Figure 3 illustrates the layout of the proposed DL 

GRU model. 

Figure 3 illustrates the layout of the proposed DL GRU 

model. 

 

 

Fig. 3. The proposed DL GRU model layout with variant 

layers. 

 

 

3.2 Training of the proposed DL model 

 

Generally, the implementation of a DLNN model consists 

of two stages: the training stage and the deployment stage [23]. 

Before the implementation, to efficiently estimation of the 

channel parameters and retrieve/predict the transmitted 

symbols in the deployment stage, the proposed DL model must 

be trained on training datasets in the training phase. In the 

current study, training is performed offline, and deployment is 

done online. Figure 4 demonstrates the processes for creating 

training sets and performing offline DL to create a trained GRU 

model. 

The training data set for one subcarrier is randomly 

generated during offline training mode. For two successive 

OFDM blocks, the pilot symbols are assumed to be contained 

within the first OFDM block, while the transmitted symbols are 

in the subsequent OFDM blocks. Together, these two symbols 

can be referred to as a frame. The channel is assumed to be 

constant throughout the pilot and data blocks. However, 

a change occurs from one frame to the next. 

 

Fig. 4. Generation of training data sets for the proposed 

model and offline DL process. 

 

The training datasets are created by sending OFDM frames 

over the adopted channel model. The necessary training dataset 

includes the received OFDM signals, which are influenced by 

existing channel characteristics and noise, as well as the 

originally transmitted symbols. During the online deployment 

stage, the proposed DL model, which was trained offline, takes 

the unknown received signals as input and retrieves the 

transmitted signals using the trained knowledge. Figure 5 shows 

the flowchart of training procedures for the proposed DL GRU 

NN. 

In this study, the proposed DL GRU model is trained by the 

Adam optimizer in all simulation scenarios [28]. On the other hand, 

three various loss functions: mean absolute error (MAE), cross-

entropy function for kth mutually exclusive classes, and the sum of 

squared of the errors (SSE) are utilized to get the most effective DL 

GRU model. The loss functions are described as follows [29]: 

 

𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑒𝑥 = − ∑ ∑ 𝑋𝑖𝑗(𝑘)log (�̂�𝑖𝑗
𝐶
𝑗=1 (𝑘))𝑁

𝑖=1 ,           (7) 

 

𝑆𝑆𝐸 = ∑ ∑ (𝑋𝑖𝑗
𝐶
𝑗=1 (𝑘) − �̂�𝑖𝑗(𝑘))2𝑁

𝑖=1 ,                                   (8) 

 

𝑀𝐴𝐸 =
∑ ∑ ∣𝑋𝑖𝑗(𝑘)− �̂�𝑖𝑗(𝑘)∣𝐶

𝑗=1
𝑁
𝑖=1

𝑁
,                                                (9) 

 

where 𝑁 represents the entire number of samples, 𝐶 denotes the 

entire number of classes, 𝑋𝑖𝑗 denotes the ith sample data sent for the 

jth category, and �̂�𝑖𝑗 is the proposed model's outputs for sample  𝑖for 

category 𝑗. 
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Fig. 5. The flowchart of training procedures for the proposed 

DL GRU NN. 

 

 

4. Simulation results 

 

In this part, extensive simulation is carried out to evaluate 

the performance of the proposed DL GRU-based CSE/SD. 

Table 1 shows the simulation parameters for the utilized OFDM 

system and the selected channel model, while the parameters of 

the proposed DL GRU framework are listed in Tab. 2. The data 

set for training and validation is created for a single subcarrier. 

The simulated data is created utilizing a previously 

determined channel model with a randomly generated signal as 

input and transformed into an OFDM frame using the 

simulation settings. The simulated data is then transformed into 

(XTrain, XTest) input data and (YTrain, YTest) outcomes. The DL 

GRU model is fitted with (XTrain, YTrain) and it is verified with 

the equivalent (XTest, YTest). Table 3 shows the data size used in 

this study.  

TABLE 1. Channel model and OFDM system settings 

 

Parameter Value  

Channel Model Rayleigh Fading 

Number of Subcarriers 64 

Modulation Type Quadrature phase shift keying 
(QPSK) 

Number of Paths 24 

Carrier Frequency 2.6 GHz 

Number of Pilots 64,8 

Cyclic Prefix (CP) Length 16,8,0 

Noise Model Additive white Gaussian noise 
(AWGN) 

 

 

TABLE 2. Proposed DL GRU architecture and the training 

parameters 

Parameter Value 

Input Layer Size 256 

LSTM Layer Size 16 hidden neurons 

Fully Connected Layer Size 4 

Number of Epochs 1000 

Mini Batch Size 1000 

Optimization Algorithm   Adam 

Loss Function Cross-entropy, MAE, SSE 

 

 

TABLE 3. Data settings 

Parameter Value 

Number of OFDM packets 10000 

XTrain 8000 x 1 cells 

YTrain 8000 x 1 categorical 

XTest 2000 x1 cells 

YTest 2000 x1 categorical 

 

 

4.1 Effect of the number of pilots and cyclic prefix length on 

system performance 

 

Experimental studies have been conducted to demonstrate 

the performance of our proposed DL GRU structure for an 

efficient estimate of the channel in addition to accurately 

retrieving transmitted symbols. 

In this subsection, the performance of the proposed DL 

GRU framework is compared with the conventional LS and 

MMSE estimation techniques, in addition to the DL BiLSTM 

model used in [21, 22] in terms of SER versus SNR. Different 

cyclic prefix lengths of 16, 8, and 0 and different pilot densities 

of 64 and 8 will be used to evaluate the performance of the 

examined estimators. The proposed DL GRU model will be 

trained using the Adam optimizer, and the cross-entropy loss 
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function will be applied in the final classification layer. 

When 64 pilots and the length of CP of 16 are used, the 

proposed DL GRU-based CSE exhibits comparable 

performance to the examined channel estimators over a low 

SNR range (0–7 dB), as illustrated in Fig. 6. The proposed DL 

GRU framework exceeds the competitive estimation methods, 

starting at 8 dB. 

At the length of CP of 8, Fig. 7 shows that the proposed DL 

GRU model outperforms the conventional estimators at all 

SNRs. Furthermore, starting at 15 dB, the proposed GRU model 

significantly outperforms the DL BiLSTM model used in [21, 

22]. The traditional LS estimator, on the other hand, performs 

the worst. 

The proposed DL GRU-based CSE outperforms the other 

estimators in a simulated scenario of 64 pilots without CP, as 

described in Fig. 8. Also, the findings indicate that the BiLSTM 

model is highly comparable to the MMSE estimator. The LS 

estimator, on the other hand, still has the worst performance. 

 

 

Fig. 6. SER performance curves of the proposed DL GRU 

model and the different estimators with 64 pilots and a CP 

length of 16 using the Adam optimizer and cross-entropy 

loss function. 

 

 
Fig. 7. SER performance curves of the proposed DL GRU 

model and the different estimators with 64 pilots and a CP 

length of 8 using the Adam optimizer and cross-entropy 

loss function. 

 

 

Fig. 8. SER performance curves of the proposed DL GRU 

model and the different estimators with 64 pilots and 

without CP using the Adam optimizer and cross-entropy 

loss function. 

It is clear from Figures 6, 7, and 8 that the LS estimator 

always gives the worst SER performance in all cases because 

its estimating method relies on no prior knowledge of channel 

statistics. The MMSE estimator, in contrast, uses mean and 

covariance matrices (second-order channel statistics), resulting 

in better performance than its LS counterpart. In all scenarios, 

the SER performance of our proposed DL GRU CSE was better 

than that of the two traditional methods and the DL BiLSTM 

model used in [21, 22]. This demonstrates the effectiveness of 

the proposed DL GRU structure in jointly estimating the 

channel state and detecting transmitted symbols due to the 

feature of the GRU layer architecture, which allows it to 

remember previously processed information better than the DL 

BiLSTM model. Furthermore, it proves the robustness of the 

proposed DL GRU structure with the short/no cyclic prefix. 

Figure 9 illustrates the estimating methods' behavior when 

the number of pilots is limited to 8, and the length of CP is 16. 

As this figure shows, the proposed DL GRU-based CSE 

significantly beats the examined estimators starting at 7 dB. 

Also, neither LS nor MMSE can efficiently estimate the channel 

information.  

The proposed DL GRU estimator still provides the best 

performance over its counterparts when the length of CP 

decreases to 8, as shown in Fig. 10. On the other hand, the SER 

curve of the traditional MMSE and LS estimators saturated at 

SNR values exceeding 10 dB.  

In the simulation scenario with 8 pilots and no CP, the DL 

GRU-based CSE still has the best SER performance compared 

to its peers, as shown in Fig. 11. In addition, the DL BiLSTM 

model performs similarly to the MMSE estimator. It is also 

noted that the MMSE has a better SER performance than the LS 

estimator, which offers the worst performance. 
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Fig. 9. SER performance curves of the proposed DL GRU 

model and the different estimators with 8 pilots and a CP 

length of 16 using the Adam optimizer and cross-entropy 

loss function. 

 
Fig. 10. SER performance curves of the proposed DL 

GRU model and the different estimators with 8 pilots and 

a CP length of 8 using the Adam optimizer and cross-

entropy loss function. 

 
Fig. 11. SER performance curves of the proposed DL 

GRU model and the different estimators with 8 pilots and 

without CP using the Adam optimizer and cross-entropy 

loss function. 

 

Fig. 12. SER performance of the proposed DL GRU 

framework at 8 pilots and CP lengths of 16, 8, and zero 

using the Adam optimizer and cross-entropy loss 

function. 

 

The performance of the proposed DL GRU-based CSE at 8 

pilots and different CP lengths of 16, 8, and 0 is summarized in 

Fig. 12. At low SNRs, we can see that the suggested DL GRU 

architecture with short/no CP has the same performance over 

(0–8 dB) SNRs. Furthermore, the suggested DL GRU model 

with CP shows fewer variances over the SNR ranges than its 

counterpart without CP (8–14 dB). 

In summary, we can conclude from the obtained results that 

the proposed DL GRU-based CSE/SD is robust under the 

conditions of few pilots and with short/no CP. This benefit is 

critical for the DL CSE to implement in real time since the same 

performance can be reached with much fewer computations. 

Furthermore, for OFDM wireless communication systems, the 

proposed DL GRU structure with minimal spectrum resources 

used for channel state estimation is recommended to 

significantly improve their spectrum efficiency, energy 

efficiency, and transmission data rates. 

 

 

4.2 Impact of various loss functions on system performance 

 

The loss function is essential to creating and improving the 

performance of the DL algorithms. The lower the value of the 

loss function, the better performance is achieved. Generally, the 

DL model is trained using an optimizer that employs a loss 

function to compute an error between the expected output of the 

model and the predicted outcome. There are numerous loss 

functions, and selecting the proper one for a given problem 

might be difficult. During the training stage, learning 

algorithms (optimizers) attempt to minimize the current loss 

function to the specified error target by iteratively optimizing 

the DLNN weights and biases at each training epoch. 

The current subsection investigates the performance of the 

proposed DL GRU structure with various loss functions at 8 

pilots and different CP lengths of 16, 8, and 0. Cross-entropy, 

which was investigated in the previous subsection, MAE, and 
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SSE are the three loss functions utilized in the classification 

layer of the proposed DL GRU model. The Adam optimization 

algorithm is employed to train the proposed DL GRU network, 

and various loss functions are applied in the final layer to obtain 

the most effective and robust version of the proposed DL GRU-

based CSE/SD.  

Figure 13 indicates that at 8 pilots, CP lengths of 16, and 

with Adam optimization, the proposed DL GRU structure with 

a cross-entropy-based classification layer model achieves the 

same performance as the SSE- and MAE-based classification 

layer models over a low SNR range (0-10 dB) and (0-7 dB), 

respectively. Above these SNR levels, the proposed DL GRU 

structure with a cross-entropy-based classification layer model 

beats both the SSE- and MAE-based classification layer 

models. In contrast, the MAE model shows the lowest 

performance. 

The proposed DL GRU structure with the SSE-based 

classification layer model provides superior performance when 

the length of CP decreases to 8, as shown in Fig. 14. 

Furthermore, the cross-entropy model exceeds the MAE model.   

In the simulation scenario of 8 pilots and the absence of the 

CP, the proposed DL GRU with (cross-entropy, SSE, or MAE)-

based classification layer models show comparable 

performance over the SNR range (0–20 dB), as illustrated in 

Fig. 15. Beyond these SNR ranges, the cross-entropy model 

outperforms the SSE and MAE models.  

Figure 16 confirms the robustness of the proposed DL GRU 

model with a limited number of pilots against the very 

short/without CP used. Moreover, they highlight the 

significance of analyzing different loss function-based 

classification layers during the deep learning process to attain 

the most effective model of any suggested DL GRU structure. 

 

 
Fig. 13. SER performance of the proposed DL GRU 

model at 8 pilots and a CP length of 16 by using the Adam 

optimizer and various loss functions. 

 
Fig. 14. SER performance of the proposed DL GRU 

model at 8 pilots and a CP length of 8 by using the Adam 

optimizer and various loss functions. 

 
Fig. 15. SER performance of the proposed DL GRU 

model at 8 pilots and without CP using the Adam 

optimizer and various loss functions. 

 
Fig. 16. SER performance comparison of the best  

GRU-based DL model with a limited number of pilots 

(8 pilots) using different lengths of CP and various loss 

functions. 
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5. Conclusion 

 

In this study, a DL architecture based on GRU recurrent 

neural networks has been proposed for the channel state 

estimation (CSE) and signal detection (SD) applications. The 

proposed DLNN performs in an end-to-end manner and 

combines CSE and SD functions in OFDM wireless 

communication systems. The proposed DL GRU framework 

has been trained in an offline manner using the received OFDM 

signals that have been exposed to various channel defects 

before being executed online to extract/retrieve the transmitted 

data symbols. Several investigations have been carried out to 

assess the performance of the proposed DL GRU structure and 

show its efficiency for CSE/SD functions compared to the 

classical LS and MMSE estimation methods, in addition to the 

DL-based BiLSTEM model. The simulation results indicate 

that the proposed DL GRU model beats the traditional LS and 

MMSE estimators as well as the DL BiLSTM model in terms 

of SER. They also show that the proposed DL GRU RNN 

framework has a lot of potential for CSE and SD while reducing 

computational requirements. Furthermore, the proposed DL 

GRU framework can adapt to a reduction in pilots' number and 

CP length that traditional approaches cannot. Because the 

proposed DL-based technique, which employs a GRU RNN, is 

data-driven, has fewer computational requirements, and is 

independent of channel characteristics; it could be applied to 

any channel situation. In short, the suggested DL GRU 

framework offers a potential alternative for CSE/SD in OFDM 

wireless communication systems. On the other hand, the 

simulation results prove the significance of examining different 

loss functions to acquire the most effective model of the 

proposed DL GRU framework. In future work, the proposed DL 

GRU-based CSE/SD will be used in more complicated system 

models, such as MIMO environments. 
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